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Abstract

Fire activity in North American forests is expected to increase substantially with climate

change. This would represent a growing risk to human settlements and industrial infrastruc-

ture proximal to forests, and to the forest products industry. We modelled fire size distribu-

tions in southern Québec as functions of fire weather and land cover, thus explicitly

integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We

found that, contrary to expectations, land-cover and not fire weather was the primary driver

of fire size in our study region. Fires were highly selective on fuel-type under a wide range of

fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently

burned areas decreased the expected fire size in their vicinity compared to conifer forest.

This has large implications for fire risk management in that fuels management could reduce

fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated

landscape were converted to hardwoods, the probability of a given fire, occurring in that

landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by

a factor of 21. A similarly marked but slightly smaller effect size would be expected under

extreme fire weather conditions. We attribute the decrease in expected fire size that occurs

in recently burned areas to fuel availability limitations on fires spread. Because regenerating

burned conifer stands often pass through a deciduous stage, this would also act as a nega-

tive biotic feedback whereby the occurrence of fires limits the size of nearby future for some

period of time. Our parameter estimates imply that changes in vegetation flammability or

fuel availability after fires would tend to counteract shifts in the fire size distribution favoring

larger fires that are expected under climate warming. Ecological forecasts from models

neglecting these feedbacks may markedly overestimate the consequences of climate warm-

ing on fire activity, and could be misleading. Assessments of vulnerability to climate change,

and subsequent adaptation strategies, are directly dependent on integrated ecological fore-

casts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feed-

backs in simulation models of coupled climate–fire–fuels systems.
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Introduction

Fire is a major disturbance process structuring ecosystems and influencing the distribution of

biodiversity around the globe [1,2]. Fire activity in boreal forests has been predicted to sub-

stantially increase over the 21st century, in response to climate warming [3–5]. However, biotic

interactions and feedbacks related to land-cover effects are rarely included in the models used

to forecast fire activity. This is because, until recently [6–8], land-cover effects were believed to

be negligible relative to fire weather, likely because of the lack of heterogeneity in land-cover

data [9, 10]. If land-cover effects are in fact not negligible, then the reliability of these forecasts

is questionable. This limitation of our understanding of ecosystem functioning limits our

ability to reliably forecast how climate change will impact climate–fire–fuels systems. There-

fore, there are non-trivial risks of developing inappropriate fire management and mitigation

strategies.

A fire size distribution (FSD) is an empirical distribution, or a theoretical model, of the fire

sizes characteristic of a given temporal and spatial extent. In comparison to some indicators of

fire regime, such as fire frequency [10–12] or the rate of burn [4,5,9], FSDs have been relatively

little studied and there are still important gaps in knowledge [13]. The distribution of fire sizes

emerges from complex interactions among top-down controls of fire spread, e.g. fire weather,

and bottom-up controls such as the spatial configuration of physical barriers, e.g. water bodies,

and fuels [13]. A coupled fire-fuels system exhibits strong feedbacks in that past fires negatively

influence the spread of subsequent fires by reducing fuel availability [14,15] and altering fuel

composition [16,17]. Furthermore, there is a growing body of evidence that fires do not burn

all types of fuels indiscriminately, but rather display type-specific preferences and avoidances

[15,18–20]. For example, northern hardwoods are often regarded as “fireproof” during the

growing season [21,22].

A variety of probability distributions have been used to model FSDs [23], the family of

power-law or Pareto distributions being most often supported by data [13]. However, FSDs

rarely if ever follow a pure power-law distribution over the whole range of observed fire sizes,

particularly at the upper tail. The frequency of large fires often falls far below the expectations

under a power law [15,24–27]. For example, in Schoenberg et al. [25], the predicted frequency

of very large fires according to a Pareto model fit was orders of magnitude higher than the

observed frequency. Yet, reliable prediction of the frequency of these large fires is of funda-

mental importance given that they generally account for most of the area burned [23], and

strongly affect ecosystems dynamics [28]. Schoenberg et al. [25] introduced an alternative dis-

tribution, the tapered Pareto, which offers some advantages over a strict power-law or Pareto

model. The tapered Pareto distribution closely approximates the Pareto distribution up to

some size limit after which the probability density decreases exponentially. This allows a more

accurate representation of the upper tailed behaviour of FSDs. Regional variations in the

upper tail behaviour of FSDs have also been found [24,29], but we know of no studies that

have modelled this variation in relation to environmental factors. Moritz et al. [30] proposed

that parametric models, in which the distributional parameters are functions of environmental

covariates, could be used to shed light on the effect of these factors on FSDs. We know of no

prior studies having done so other than Cumming [15], who showed that land-cover covariates

affected FSDs in boreal forest of western Canada. In this study, we extend Cumming’s results

to account for fire weather effects, and simultaneously to explore controls on upper tail behav-

iour fire. We do this by adopting a tapered Pareto distribution, where both the shape and the

taper the taper parameter are functions of covariates for land-cover and annual fire weather.

We aimed to assess and contrast how the FSD would respond to changes in two primary

abiotic and biotic drivers, namely fire weather and land cover. Our objective was to determine
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the relative importance of fire weather and land-cover on fire sizes overall and on the fre-

quency of large fires in particular, i.e., on the upper tail behaviour of the FSD. We wanted to

evaluate whether fire weather and land-cover would affect the lower and middle parts of the

FSD or the tail, both or none, and to what extent extremes of weather or specific vegetation

types might shift the FSD towards a higher or lower frequency of larger fires. Using the tapered

Pareto distribution, we developed parametric statistical models to link the FSD with both of

these controls. We conducted separate analyses for the distribution of lightning- and human-

caused fires sizes.

Methods

Study area

The study area (Fig 1) is a 197,000 km2 heavily forested region of southern Quebec, Canada.

Forests covered about 73% of the area, followed by lakes and large rivers (~10%), open areas

(wetlands, croplands and zones with human development; 9%), while recently disturbed areas

(� 15 years) accounted for the remaining 8%. The topography is gently rolling with elevations

of 250–450 m. The climate is humid continental [31]. Climate and land-cover form the two

main environmental gradients in our study area. Regional mean temperatures range from –

15˚C in winter (December, January, February) to +18˚C in summer (June, July, August). Sea-

sonal rainfall decreases from east to west and averaged 88–407 mm in winter and 153–547 mm

in summer. Sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis
Britt.) are the dominant species in the southern sections. Northwards, forests become gradu-

ally dominated by boreal species such as black spruce (Picea mariana (Mill.) B.S.P.), balsam fir

(Abies balsamea (L.) Mill), jack pine (Pinus banksiana Lamb), paper birch (Betula papyrifera
Marsh.) and trembling aspen (Populus tremuloides). Forest management is the dominant land

Fig 1. Land-cover map with the five classes used in this study.

https://doi.org/10.1371/journal.pone.0179294.g001
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use in most of the study area, with limited conversion to agricultural activities on the southern

perimeter and a few other areas with appropriate soils.

Data

We compiled data on fire occurrence and size (source: Ministère des Forêts, de la Faune et des

Parcs), fire weather and land-cover for the period 2000–2010. The details of the dataset con-

struction are given in Marchal et al. [10]. Fire attributes include the date of detection, starting

location, cause and final size. Fire sizes were measured by SOPFEU, the fire protection agency

of Québec. They do this from post-fire aerial photography to delineate the burned area. The

data were registered by starting location to a grid of 1969, 10 km square pixels, as used for

downscaling climate projections [32]. The study area was entirely embedded in a zone of

intensive fire management. We assumed a constant fire detection efficiency over the study

spatial and temporal frames given the high capabilities of the fire protection agency [33]. We

used Monthly Drought Code (MDC) as an indicator of fire weather conditions because it was

found to be well correlated with annual area burned [34]. MDC is the monthly mean of a daily

Drought Code, an indicator of the net effect of cumulative daily precipitation and temperature

on the moisture content of coarse fuels and organic soils horizons. We estimated MDC for

May, June, July and August of each cell in each year, using methods of Bergeron et al. [35]. We

also derived seasonal variants of MDC by computing mean MDC for 2, 3 and 4 month periods

within years. We used a 5-way land-cover classification (hardwood, conifer, recently disturbed,

open areas, open water) derived from digital 1:20 000 vegetation maps following Marchal et al.

[10]. The underlying spatial resolution of the land-cover polygons depends on the mapping

standard, which vary from 0.1 to 8 ha [36]. We calculated the proportional class areas for

each cell in each year. In brief, the classification used forest stand origin dates within the 15

preceding years to determine recently disturbed areas, and a 50% threshold in tree basal area

to determine the hardwood and conifer types. For each 10 km square pixel, the proportions

covered by all cover types sum to 1.

Tapered Pareto distribution

The survival function of the tapered Pareto distribution is given by

SðxÞ¼
a
x

� �b
exp

a � x
y

� �
; a � x <1 ð1Þ

where α the lower truncation point is generally known a priori, the shape parameter, β, con-

trols the rate of frequency decrease as x increases and the taper parameter, θ, governs the loca-

tion of the exponential taper. The survival function of the tapered Pareto begins to decay

exponentially near a fire size of θ; the distribution converges to a Pareto distribution as θ
approaches infinity. An increase in β will lead to a more negative (or steeper) slope, therefore

smaller fire sizes. An increase in θ will lead to a weaker taper, and thus larger fires. The mean

(calculated as in [37]) does not uniquely determine the two parameters. Thus, it is possible

that two distributions could have the same mean but very different tail behaviours. On a log-

log plot, the survival function of a tapered Pareto is approximately linear for a range from α to

near theta, and then gradually decays in an exponential fashion. We find graphical methods

helpful in understanding the influence of the shape and taper parameters on the size distribu-

tion (S1 Fig). We fixed α = 1 because of the influence of fire suppression on small fires in man-

aged forests [38] such as the study area, and controls distinct from those affecting fire spread

determine fire size at this scale [39]. We estimated β and θ by maximum likelihood.
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Regression analysis

We built a set of alternative hypotheses, here formulated as statistical models where we

expressed two parameters of the tapered Pareto distribution, β and θ, as a function of either

fire weather or land-cover, both or neither. The null hypothesis corresponds to the case where

neither β nor θ are influenced by fire weather or land cover. This led us to design a full factorial

experiment (see Table 1 for levels). Since not necessarily the same fire weather variables

Table 1. Alternate statistical models of fire size distribution ordered by AICc.

Model form Terms1 AICc
2 AD3

β θ
Lightning

WLC_WLC WLC WLC 1215 96.63

WLC_LC WLC LC 1216 98.63

LC_WLC LC WLC 1234 103.89

LC_LC LC LC 1237 103.25

WLC_W WLC W 1256 98.19

WLC_Null WLC Null 1258 97.80

W_WLC W WLC 1261 139.41

W_LC W LC 1262 140.80

LC_W LC W 1270 103.85

LC_Null LC Null 1270 103.35

Null_WLC Null WLC 1277 147.13

Null_LC Null LC 1279 144.79

W_W W W 1303 143.15

W_Null W Null 1303 142.71

Null_Null Null Null 1318 152.27

Null_W Null W 1319 151.97

Human

WLC_WLC WLC WLC 1820 218.35

LC_LC LC LC 1822 216.26

WLC_LC WLC LC 1828 216.90

LC_WLC LC WLC 1829 215.41

Null_WLC Null WLC 1871 279.97

Null_LC Null LC 1872 278.80

W_WLC W WLC 1872 274.35

W_LC W LC 1873 271.33

LC_Null LC Null 1873 218.03

WLC_Null WLC Null 1875 218.08

LC_W LC W 1875 218.36

WLC_W WLC W 1876 218.40

W_Null W Null 1909 275.16

Null_Null Null Null 1910 1

W_W W W 1911 275.39

Null_W Null W 1912 279.02

The best fit by each criteria is shown in bold.
1The presence of a fire weather term is noted “W”, land-cover terms “LC” and the intercept only “Null”.
2AICc is the small sample corrected Akaike Information Criterion.
3AD is the Anderson Darling statistic modified for upper tail sensitivity (see Methods). For both AICc and AD,

lower values indicate a better fit.

https://doi.org/10.1371/journal.pone.0179294.t001
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(e.g. different months) would be best correlated with both β and θ, e.g. because they are not

abstractions of the same underlying processes, we introduced some flexibility in that fire

weather variables used for β and θ may differ. However, in order to evaluate our hypotheses on

the same basis, models should be nested. In other words, we had to retain a single fire weather

variable for all βs expressed a function of fire weather, and possibly another for all θs. From

there, we selected the fire weather variables present in the best model, itself selected according

to the Akaike Information Criterion corrected for small samples (AICc, [40]). We checked for

linear and nonlinear correlations among the fire weather and land-cover variables by calculat-

ing the Spearman’s rho coefficients.

We used a log-linear model for β to enforce non-negativity, and because there is a linear

relationship between β and the logarithm of the fire sizes (see Eq 1). θ is on the same scale as

the fires sizes, thus we modeled θ as a linear function of the covariates. This leads to the follow-

ing system of equations:

logðbi;tÞ ¼ g0 þ
Xn� 1

k¼1

gkLCk;i;t þ gwWi;t ð2Þ

yi;t ¼ d0 þ
Xn� 1

k¼1

dkVk;i;t þ dwWi;t ð3Þ

where Wi,t is the fire weather covariate in pixel i in year t; LCk,i,t is the proportional area of

cover type k in pixel i in year t; γ and δ are vectors of parameters to be estimated; n = 5 is the

number of cover types in the model and index w is equal to n. These equations are the most

general model. The alternate hypotheses are expressed by setting certain coefficients to 0. To

ensure identifiability, we dropped the proportions of conifer-dominated stands, thus k ends at

n − 1. The intercepts can be interpreted as the conifer-dominated reference level against which

coefficients for the other land-cover terms can be compared. We measured the relative impor-

tance of environmental covariates on β and θ, and by extension on the FSD, by comparing

their effect sizes. To facilitate the comparisons of effect sizes, we normalized the fire weather

variables by scaling them between 0 and 1, so that x = (x–xmin) / (xmax−xmin). This ensures that

all covariates are on the same scale; land-cover terms being proportions were already bounded

between 0 and 1. We rescaled the fire weather variables independently for the models of light-

ning- and human-caused fires.

We estimated β and θ by direct minimization of the log-likelihood function (Eq 4; taken

from [40]) using the differential evolution algorithm implemented in the DEoptim package

[41] for the R software [42]:

logLðbi;t; yi;tÞ ¼
XN

j¼1

log
bi;t

xj
þ

1

yi;t

 !

þ bi;tN log a � bi;t

XN

j¼1

log xk þ
aN
yi;t
�

1

yi;t

XN

j¼1

xk ð4Þ

where N is the number of fires, and i, t are as in Eq 2. We assessed models goodness of fit using

AICc score and the Anderson-Darling statistic (AD) modified for upper tail sensitivity [43].

For the best models of lightning- and human-caused fires, we used a parametric bootstrap

approach to derive 95% confidence intervals around the estimates. We generated 5,000 repli-

cate datasets by random sampling from the tapered Pareto distributions predicted using the

parameter estimates from the best models. For each replicate, we re-estimated the model

parameters, and took the 2.5 and 97.5% percentiles of the bootstrapped estimates as our CIs.

We computed the confidence bounds around the empirical survival function as in Schoenberg

Statistical models of fire size distribution
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& Patel [44]. We used Eq 9 from Kagan & Schoenberg [37] to calculate expected fire sizes for

each cell and year.

Results

Over the 11-year study interval, 186 lightning-caused fires and 397 human-caused fires were

recorded. Fire sizes ranged from 1 to 107,004 ha for lightning fires, and from 1 to 59,847 ha for

human-caused fires. The mean and median sizes were 994 ha and 3 ha for lightning-caused

fires, and 208 ha and 2.3 ha for human-caused fires. There were no strong correlations between

land-cover and monthly fire weather at the spatial and temporal scales of the analysis (S1 Table).

For lightning-caused fires, the best model included both fire weather and land-cover on

both β and θ (Table 1). Models with fire weather terms alone did not perform as well as models

with land-cover terms alone, and in some cases did not perform any better than the null

model. Further, dropping the fire weather term did not lead to a huge drop in model support.

For example, removing the fire weather term on both sides (LC_LC model) led to an AICc

increase of 22 while removing the land-cover terms instead (W_W model) increased AICc by

88. Our best models described FSDs reasonably well, with the tail tapering as do the data but

also capturing to some extent the upward curvature present in the first part, i.e. left portion, of

the FSD (range 10 to 1,000 ha; Fig 2).

For human-caused fires, the best model included both fire weather and land-cover on both

β and θ (Table 1). The addition of fire weather covariates to linear predictors did not necessar-

ily lead to better support compared to models with land-cover terms only: the model having

fire weather and land-cover (WLC) on both β and θ sides was equally supported as that having

land-cover alone (LC) (ΔAICc� 2, Table 1). Dropping the land-cover terms on both β and θ
sides led to an AICc increase of 91 while dropping fire weather led to an AICc increase of only

2. All observations made with AICc were partially or totally corroborated by the AD statistic

(Table 1).

Both lightning- and human-caused FSDs responded to an increase in the proportion of

hardwood-dominated stands or water bodies in the landscape by increasing0020β and decreas-

ing θ (Table 2), thus squeezing FSDs towards a smaller range of sizes (Fig 3). The abundance of

hardwood-dominated had the strongest “landscape effect” on the shape parameter β, which

determines the decay of frequency with size. Hardwood-dominated stands influenced FSDs in

essentially the same degree as water bodies (γHW = 2.76 and γWT = 2.58 for lightning-caused

FSD, and γHW = 1.66 and γWT = 1.57 for human-caused FSD, Table 2). The influences of hard-

wood-dominated stands and water bodies on the slopes of FSDs, i.e. βs, were statistically dis-

tinct from the other vegetation types in that their coefficients did not overlap with that for

conifer-dominated stands (95% CI, Table 2), and likely distinguishable from 0 given their

effect sizes and the lower bound of their CIs. Thus, we reject the null hypothesis that β is inde-

pendent of land cover classes.

For the lightning-caused FSD, both β and θ decrease with more extreme fire weather

(γMDC_Jun = −1.51, δMDC_MayJun = −1, Table 2). Decreasing β implies an increasing probability

of large fires below the taper-size θ, while decreasing θ sharply decreases the probability of

fires larger than θ (Fig 4). For the human-caused FSD, under increasingly extreme fire weather,

β tends to decrease slightly (γMDC_MayJul = −0.098), while θ shifts towards larger fire sizes

(δMDC_May = 1.59, Table 2).

The latitudinal gradient in land-cover composition, with conifer abundance increasing

with latitude (S2 Fig), is clearly reflected in the spatial patterning of the predicted mean fire

size (Fig 5). The annual variability in the MDC of June is presented in S3 Fig. To explore

the implications of our results with respect to the potential effects of fuels management, we

Statistical models of fire size distribution
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Fig 2. Fitted survival functions of (a) lightning- and (b) human-caused fire sizes) with 95% confidence

intervals (shaded polygons), and empirical distributions (black lines).

https://doi.org/10.1371/journal.pone.0179294.g002
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compared the predicted frequencies of large fires on landscapes of 100% conifer-dominated

stands and “treated” landscapes with 70% conifer and 30% hardwood. According to the best-

supported model (WLC_WLC), under mean fire weather conditions the probability of a light-

ning-caused fire exceeding 100,000 ha on the treated landscape is reduced by a factor of 21, rel-

ative to the untreated landscape. In extreme fire weather conditions, i.e. the 90th percentiles of

fire weather covariates, this effect size is reduced to a factor of 7 (S4 Fig). In landscapes fully

covered by hardwoods and under mean fire weather conditions, fires larger than a few tens of

hectares are predicted to be very improbable (Fig 3).

Discussion

Fire weather has been considered the dominant control on the FSD in boreal forests, but

recent studies have shown that fire weather alone is not enough to determine either fire spread

Table 2. Maximum-likelihood estimates and 95% confidence intervals for each term in top models for

lightning- and human-caused fires: models WLC_WLC and WLC_WLC of Table 1.

Term Estimate Confidence interval (95%)

Lightning

β
γ0 -1.02 (-1.74, -0.40)

γMDC_Jun -1.51 (-2.23, -0.74)

γHW 2.76 (1.88, 3.67)

γD 1.05 (-0.71, 2.83)

γO 1.18 (-1.25, 4.16)

γWT 2.58 (1.07, 5.02)

θ (x105)

δ0 1.5 (0.11, 4.12)

δMDC_MayJun -1 (-2.37, 0.45)

δHW -0.16 (-1.91, 1.79)

δD -1.36 (-5.36, 0.4)

δO -0.99 (-3.07, 1.76)

δWT -0.74 (-2.50, 0.00)

Human

β
γ0 -1.09 (-1.83, -0.45)

γMDC_MayJul -0.098 (-0.59, 0.39)

γHW 1.66 (0.90, 2.55)

γD -0.78 (-2.40, 1.50)

γO 0.78 (-3.36, 2.14)

γWT 1.57 (0.30, 3.03)

θ (x104)

δ0 -0.67 (-3.47, 0.76)

δMDC_May 1.59 (-2.63, 5.71)

δHW 2.9 (0.05, 16.4)

δD -2.91 (-15.34, -0.02)

δO 17.7 (0.59, 82.4)

δWT 0.8 (-0.73, 5.46)

Coefficients with CI that encompasses zero are not statistically significant. Estimates with 0 subscripts

indicates intercepts and HW, hardwood; D, recently disturbed; O, open areas; WT, open water.

https://doi.org/10.1371/journal.pone.0179294.t002
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[6], nor the final fire sizes [13,19,20]. Other factors such as human footprint and topography

([6], Table 3) or land-cover [13] are also important. We found that land-cover was more

important than monthly fire weather as a control of FSDs in Southern Québec (βs, Table 1;

Figs 3 and 4). While many coefficients of the land-cover terms are not distinguishable from 0

at the 95% level (γs, δs, and their CIs, Table 2), models with land-cover terms only were much

more strongly supported based on both AICc and AD statistics than were models with fire

weather terms only (Table 1). Our results support the hypothesis that fires preferentially burn

some fuel types and avoid others, and in this respect are consistent with past findings [18–20],

Fig 3. Influence of landscape fuel composition on the shape of the predicted distribution of lightning-caused fires sizes under

the best supported model (full model where β and θ are both function of fire weather and land cover, see Tables 1 and 2).

Predicted FSDs for hypothetical landscapes from 100% conifer to 100% deciduous in 10% increments, under means of fire weather

covariates.

https://doi.org/10.1371/journal.pone.0179294.g003
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excepting of Podur and Martell [45]. Because past disturbances reduce the availability of fuel

to burn, subsequently limiting the ability of future wildfires from spreading [14,15], neglecting

land-cover effects, including negative feedbacks where they exist, may result in unreliable fire

risk forecasts.

According to Liu et al. [20] and Barros & Pereira [19], the dominant control of the FSD

shifts from land-cover to fire weather with increasing fire sizes. If so, one could expect that

models where the taper parameter θ was a function of fire weather covariates would be better

Fig 4. Influence of fire weather on the shape of the expected distribution of the lightning-caused fires sizes (full model where β
and θ are both function of fire weather and land cover, see Tables 1 and 2). Predicted FSDs for fire weather conditions in 10

percentiles increments from the driest to wettest Monthly Drought Code (MDC) recorded in our data. For illustrative purposes, all lines are

for landscapes with 50% hardwoods and 50% conifer-dominated stands.

https://doi.org/10.1371/journal.pone.0179294.g004
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Fig 5. Expected fire sizes, conditional on the fitted tapered Pareto distributions of (a) lightning- and

(b) human-caused fires along with the location and sizes of recorded fires (black circles).

https://doi.org/10.1371/journal.pone.0179294.g005
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supported than models where it was a function of land-cover covariates. We found the con-

trary (Table 1). Further, the effect sizes of the land-cover terms were typically higher than

those of fire weather terms. Most of the effect sizes of the fire weather terms did not differ sig-

nificantly from 0 (Table 2), which suggests a limited effect of monthly fire weather. Particular-

ities of our study region and 11-years dataset may partially explain these results. Under

sufficiently extreme fire weather conditions, all fuel types can support high intensity fire with

rates of spread such that we would expect little effect of land-cover on fire size. However, in

the study region drought conditions are rarely severe (see Fig 4 in Girardin and Wotton [34]

for Canada-wide variations of MDC), and extreme MDC values are infrequent. In real land-

scapes there are probably interactions between land-cover and fire weather. Fuels types differ

in terms of fuel loads and drying rates [46] such that they exhibit different fire behaviours

except perhaps under the most extreme conditions.

For lightning-caused FSD, the taper location shifted towards lower sizes under more

extreme fire weather. While this may seem counterintuitive, our graphical analysis (Fig 4)

revealed that under low MDC values, the tapered Pareto is converging to a Pareto distribution

with a large slope (β high) and low expected size. Large fires are so improbable under these

conditions that there is no evidence of tapering in the distribution under these conditions.

Tapering, reflecting larger scale controls on fire size such as geography or burning season

length, becomes important only under drier conditions (Fig 4).

Our study used 11 years of data, which is a limited time frame. While our sample size of

fires was reasonable (186 caused by lightning and 397 by humans) compared to previous stud-

ies (e.g. [18,20,45]), the lack of data at the extreme upper tail of the FSD should encourage con-

tinued modelling efforts. Although there was considerable variation in conditions across the

years, our ability to infer the relationship between the FSD, land-cover and fire weather would

be enhanced with more years of data and further our ability to predict reliably in conditions

not observed. For example, in the case of the human-caused fires, our best models did not cor-

rectly capture the tail. However, this could also be the signature of processes or environmental

controls not included in this study, e.g. the growing season start date because more than 70%

of human-caused fires started in April or May (S5 Fig). At that time, hardwood foliage is

absent and hardwoods are much more flammable than during the summer season [47, 48].

The MDC covariate may to account for these conditions. Our results use monthly drought

code to represent fire weather; therefore our conclusions do not reflect the short-term (hourly

or daily) variations in fuel flammability, and may underestimate the influence of fire weather.

This study provides inference only about longer term and larger scale characteristics of fire

regime rather than individual fires. Finally, we assumed a particular error distribution (tapered

Pareto) and functional form for the model parameters in relation to the covariates. The choice

of error distribution is well supported empirically (e.g. [25]). We feel our choice of functional

forms (linear in the shape parameter, log-linear in the taper parameter) are justified, but it

remains possible that the model structure is misspecified. Alternate modelling approaches that

allowed for more nonlinear relationships or for interactions might yield different results in

terms of the relative importance of different classes of covariates.

We explicitly integrated the effects of land-cover on fire regimes via the coefficients for

fuel-type in the models. This would enable forecast of FSDs based on these models to respond

to land-cover feedbacks. This integration is essential (a) in assessing vulnerabilities to fire in a

context of climate change [49,50] and subsequent adaptation strategies, (b) for the sustainable

long-term management of forest resources [13,51], and (c) to improve our understanding of

the climate–fire–fuels linkages and more generally improve the understanding of fire as a key

process of the ecosystems on Earth [1]. This study constitutes the first step towards improving

the reliability of FSDs’ forecasts, which will contribute directly to decision support systems,
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coupled climate–fire–fuels modeling and a more mechanistic vision of the linkages between

fire, weather and land-cover. We stress the need to account for land-cover while forecasting

FSDs, particularly in a context where land-cover changes are expected due to both climate

change (e.g. [52]) and steadily increasing levels of land-cover conversion. Our findings have

implications for fire risk management in that fuels may be managed to reduce fire risk. For

example, converting 30% of a conifer-dominated landscape to hardwoods will, according to

our models, substantially decrease the size of fires (Fig 3 and S4 Fig) along with the number of

fires [10].
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Québec, the National Sciences and Engineering Research Council of Canada Discovery Grants

program (SGC) and the Canada Research Chair program (SGC and EJBM). We thank T.

Logan from the Ouranos Consortium for providing the weather data.

Author Contributions

Conceptualization: JM SGC EJBM.

Formal analysis: JM.

Funding acquisition: SC EJBM.

Investigation: JM.

Methodology: JM SGC EJBM.

Software: JM.

Supervision: SGC EJBM.

Validation: EJBM.

Visualization: JM SGC EJBM.

Writing – original draft: JM.

Writing – review & editing: JM SGC EJBM.

References
1. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the Earth sys-

tem. Science. 2009; 324(5926):481–4. https://doi.org/10.1126/science.1163886 PMID: 19390038

2. Bond WJ, Woodward FI, Midgley GF. The global distribution of ecosystems in a world without fire. New

Phytol. 2005; 165(2):525–38. https://doi.org/10.1111/j.1469-8137.2004.01252.x PMID: 15720663

3. Balshi MS, McGuire D, Duffy P, Flannigan MD, Walsh J, Melillo J. Assessing the response of area

burned to changing climate in western boreal North America using a Multivariate Adaptive Regression

Splines (MARS) approach. Glob Chang Biol. 2009; 15(3):578–600. https://doi.org/10.1111/j.1365-

2486.2008.01679.x

4. Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ. Future Area Burned in Canada. Clim

Change. 2005; 72(1–2):1–16. https://doi.org/10.1007/s10584-005-5935-y

5. Boulanger Y, Gauthier S, Burton PJ. A refinement of models projecting future Canadian fire regimes

using homogeneous fire regime zones. Can J For Res. 2014 Apr; 44(4):365–76. https://doi.org/10.

1139/cjfr-2013-0372

6. Wang X, Parisien M-A, Flannigan MD, Parks SA, Anderson KR, Little JM, et al. The potential and real-

ized spread of wildfires across Canada. Glob Chang Biol. 2014; 20(8):2518–30. https://doi.org/10.1111/

gcb.12590 PMID: 24700739

7. Pausas JG, Paula S. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosys-

tems. Glob Ecol Biogeogr. 2012; 21(11):1074–82. https://doi.org/10.1111/j.1466-8238.2012.00769.x

Statistical models of fire size distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0179294 June 13, 2017 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179294.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179294.s010
https://doi.org/10.1126/science.1163886
http://www.ncbi.nlm.nih.gov/pubmed/19390038
https://doi.org/10.1111/j.1469-8137.2004.01252.x
http://www.ncbi.nlm.nih.gov/pubmed/15720663
https://doi.org/10.1111/j.1365-2486.2008.01679.x
https://doi.org/10.1111/j.1365-2486.2008.01679.x
https://doi.org/10.1007/s10584-005-5935-y
https://doi.org/10.1139/cjfr-2013-0372
https://doi.org/10.1139/cjfr-2013-0372
https://doi.org/10.1111/gcb.12590
https://doi.org/10.1111/gcb.12590
http://www.ncbi.nlm.nih.gov/pubmed/24700739
https://doi.org/10.1111/j.1466-8238.2012.00769.x
https://doi.org/10.1371/journal.pone.0179294
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