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Abstract

Cardiac fibrosis is a significant global health problem with limited treatment choices.

Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-

fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate

whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors

(PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with

vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice

were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ven-

tricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO

treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and

inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of colla-

gens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treat-

ment. Moreover, the expression of fibrosis related genes, and the phosphorylation of

PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not

change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts.

Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activa-

tion of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA atten-

uated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced

mice model. This study indicates that IMA could be a potentially therapeutic option for car-

diac fibrosis in clinical application.
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Introduction

Cardiac fibrosis, one of the common pathological manifestations following many cardiovascu-

lar disease conditions such as cardiac surgery, myocardial ischemia, myocardial infarction and

chronic hypertrophy induced by pressure overload, is characterized by the excessive produc-

tion and deposition of the extracellular matrix (ECM) proteins in heart, and seriously affects

the prognosis of patients [1–3]. Various reports have shown that cardiac fibroblasts play the

important roles in the occurrence, the development and the outcome of cardiac fibrosis [2, 4–

8]. Aldosterone, angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), platelet-

derived growth factors (PDGFs), endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α)

are known to promote the fibroblast activation and cardiac fibrosis [1, 9–11]. After binding

the ligands (PDGFs and TGF-β1), tyrosine kinase receptors (PDGFRs and TGF-β1 receptor)

are activated and play the core role in the cardiac fibrosis [1]. However, the definite mecha-

nisms responsible for cardiac fibrosis have not been uncovered. Therefore, there are currently

no effective therapies that can prevent its occurrence or halt its progression.

Imatinib mesylate (Imatinib, IMA), a small molecule inhibitor of tyrosine kinase (TKI), has

been approved for the treatment of BCR-ABL positive leukemia and gastrointestinal stromal

tumors (GIST), which has dramatically improved the clinical outcome of those cancers [12,

13]. IMA inhibits not only BCR-ABL/c-Abl and c-Kit kinases activation but also other tyrosine

kinase, such as PDGFRs [14]. The potential treatment effect of IMA in non-malignant diseases

such as fibrosis has been paid more attention. The anti-fibrotic effect of IMA has been demon-

strated in pulmonary fibrosis, liver fibrosis, scleroderma fibroblasts, and renal fibroblasts [14–

17]. IMA could attenuate cardiac fibrosis in spontaneously hypertensive rat model [18], deso-

xycorticosterone induced salt-sensitive hypertensive rat model [19], and myocardial infarction

model [20]. The mechanism of IMA in different model is diverse.

Chronic stimulation by catecholamines such as isoproterenol (ISO) in animal models is

known to induce cardiac hypertrophy, fibroblast activation, and fibrosis [10, 21–23]. However,

the anti-fibrotic effect of IMA in ISO-induced cardiac fibrosis has not been investigated. The

aim of this study was to evaluate the effect of IMA in ISO-induced cardiac fibrosis mice model.

Then we examined whether IMA inhibited PDGFRs tyrosine kinase activity in attenuating car-

diac fibrosis in vivo and in vitro.

Materials and methods

Reagents

Isoproterenol (ISO) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved

in PBS. Imatinib (IMA) was obtained from MedChem Express (Monmouth Junction, NJ,

USA) and dissolved in PBS. Phenylmethanesulfonyl fluoride (PMSF) was purchased from

Sigma-Aldrich. Recombinant murine Platelet-Derived Growth Factor-AA (PDGF-AA) was

obtained from PeproTech (Rocky Hill, NJ, USA).

Animal and treatments

Adult male C57BL/6 mice (11–13 weeks old) were divided into 4 groups: vehicle, ISO, IMA,

IMA plus ISO. The vehicle group was treated with PBS. Cardiac fibrosis was induced by subcu-

taneous ISO injection daily (20 mg/kg/d for 7 days) [24–26], and/or IMA (40 mg/kg/d for 7

days) [27, 28] was administered by intraperitoneal injection daily. After 7 days, animal echo-

cardiography was used to preliminarily evaluate the success of the cardiac fibrosis model. At

the end of the study mice were anesthetized with 3% isoflurane and a terminal blood sample

was drawn immediately from the left ventricle. Blood was centrifuged and serum was stored at
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-80˚C. Euthanasia was performed by cervical dislocation under deep anesthesia with isoflurane

at day 8, and hearts were excised and frozen in liquid N2 and stored at -80˚C until biochemical

analysis or fixed in paraformaldehyde for histological analysis. No mice died before the end of

the experiment. All animals used in the present study were purchased from the animal center

of Sun Yat-sen University and raised carefully in accordance with the Guide for the Care and

Use of Laboratory Animals (2011). All experimental procedures were approved by the Animal

Care and Use Committee of Sun Yat-sen University (Permit Numbers: SCXK (Guangdong)

2015–0107).

Echocardiography

Mice were anaesthetized with 1.5% isoflurane/oxygen, and cardiac function was assessed using

transthoracic echocardiography (VisualSonics system, Toronto, Ontario, Canada) performed

at day 8. M-mode and two-dimensional echocardiography were performed to assess cardiac

parameters, including left ventricular (LV) end-diastolic dimension, wall thickness, LV frac-

tional shortening and ejection fraction, whilst pulse-wave Doppler was used to assess mitral

valve flow (E/A ratio), as reliable measures of diastolic function.

Immunoassay for serum cardiac troponin T (cTnT)

Serum cTnT was assayed by enzyme-linked immunosorbent assay (ELISA) using mouse

immunoassay kits from Uscn Life Science Inc. (Wuhan, China), according to the protocol.

Real-time quantitative polymerase chain reaction (RT-qPCR)

Total RNA was extracted from the ventricle of heart or cells by TRIzol reagent (Invitrogen),

and cDNA was synthesized using the qPCR RT Master Mix kit (TOYOBO, Osaka, Japan).

PCR primers were designed and synthesized by Invitrogen (Shanghai, China), as illustrated in

Table 1. Quantitative PCR analysis was performed according to the instructions using a KOD

SYBR qPCR Mix (TOYOBO) by LightCycle 480 (Roche, Basel, Switzerland). For analysis, the

expression of target genes was normalized to the GAPDH.

Western blot analysis

Proteins were isolated from the ventricular homogenate or cells with lysis buffer (Beyotime

Institute of Biotechnology, Shanghai, China) with PMSF. Equal amounts of protein were

Table 1. Primer sequences used for RT-PCR.

Gene (Mouse) Forward Reverse

GAPDH GGTCATCCATGACAACTT GGGGCCATCCACAGTCTT

collagen I AACTCCCTCCACCCCAATCT CCATGGAGATGCCAGATGGTT

collagen III ACGTAAGCACTGGTGGACAG GGAGGGCCATAGCTGAACTG

PDGF-A AGCGTCAAGTGCCAGCCTTC CTCACCTCACATCTGTCTCCTCCT

PDGF-B GGGTGAGCAAGGTTGTAATG AAGGAAGTGGAGGCAATGGACAG

PDGF-C GCTGCTGATGCTGGCTATGGT GATTGACTCCTCTTGGTGCCTCTG

PDGF-D TGACATGGTGGCTCCGTTCC TCCTCTGACAACAGTGCTGCTCTC

PDGFRα CAACCACACTCAGACGGATG GCGGCAAGGTATGATGGCAGAG

PDGFRβ GCGACACTCCAACAAGCAT TGTAGCCACCGTCACTCTC

TGF-β1 ACCGCAACAACGCCATCTAT TTCAGCCACTGCCGTACAACTC

CCN2 TGTCTTCGGTGGGTCGGTGT CAGGCAGTTGGCTCGCATCATAG

HGF TCAGCACCATCAAGGCAAGG GCACATCCACGACCAGGAACAAT

MMP-9 AACCACAGCCGACAGCACCT ATCCAGTACCAACCGTCCTTGAAG

https://doi.org/10.1371/journal.pone.0178619.t001

Imatinib inhibites cardiac fibrosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0178619 June 1, 2017 3 / 19

https://doi.org/10.1371/journal.pone.0178619.t001
https://doi.org/10.1371/journal.pone.0178619


subjected to SDS-PAGE and transferred to PVDF membranes (Milliopore, Billerica, MA,

USA). The membranes were blocked and then incubated with GAPDH (Proteintech, Rose-

mont, IL, USA), MMP-9, α-SMA, p-PDGFRα (Tyr720), PDGFRα (Abcam, Cambridge, MA,

USA), p-PDGFRβ (Tyr740), PDGFRβ (Cell Signaling Technology, Danvers, MA, USA),

PDGF-A, PDGF-B, PDGF-C and PDGF-D (Bioss, Beijing, China). Subsequently, the mem-

branes were incubated with an HRP-conjugated secondary antibody (Thermo Fisher Scien-

tific, Waltham, MA, USA) at room temperature for 1 h and were visualized using enhanced

chemiluminescence reagents (Sigma-Aldrich) according to the manufacturer’s instruction.

Cell culture

Cardiac fibroblasts were harvested from adult C57BL/6 mice and cultured as reported previ-

ously [29]. Briefly, hearts were removed and washed with PBS. After enzymatic digestion by

0.1% Collagenase II (Gibco, South Logan, UT, USA), cardiac fibroblasts were cultured in Dul-

becco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 100 U/ml penicillin,

100 ug/ml streptomycin and 10% fetal bovine serum (FBS, Gibco). After three passages, cells

were collected and passaged for further experiments. All cells cultures were maintained at

37˚C in an atmosphere of 5% CO2. After three passages, cardiac fibroblasts were cultured in

presence PDGF-AA (10 ng/ml) for 24 h, and the cells were harvested for protein expression

assays by western blotting or mRNA assays using RT-qPCR.

Histological analysis

Excised hearts were fixed in 4% paraformaldehyde, paraffin embedded, and sectioned at 5 μm

thickness. Deparaffinized sections were stained for Hematoxylin-Eosin (H&E) or picrosirius

red staining. Image-Pro Plus software (Media Cybernetics, Rockville, MD, USA) was used to

measure fibrosis from 10 random fields per section. FITC was used to measure apoptosis in

deparaffinized heart sections via terminal deoxynucleotidyl-transferase-mediated dUTP nick-

end labeling (TUNEL, Roche). Deparaffinized sections were incubated with proteinase K, and

DNA strand breaks were labeled according to manufacturer’s instructions. Cells were visual-

ized at the Zeiss microscope (Carl Zeiss, Jena, Germany) and the percentage of TUNEL-posi-

tive nuclei calculated from 10 random fields per section.

Immunohistochemistry (IHC)

Ki-67 or α-SMA was detected in the ventricle of mice heart by IHC. After ethanol exposure

and hydration, the sections were rinsed in PBS, quenched for 10 min in methanol containing

3% H2O2, and incubated for 15 min in blocking solution (PBS containing 2% BSA and 0.1%

Triton X-100), followed by incubation overnight in primary antibodies against Ki-67 (Sigma-

Aldrich, diluted 1:50) or α-SMA (Abcam, diluted 1:400) in blocking solution. After washing

with PBS, the sections were incubated for 60 min with the secondary antibody (Goat anti-rab-

bit IgG, (H+L), horseradish peroxidase conjugated, Thermo Fisher Scientific). DAB substrate

kit for peroxidase was then used to stain sections as described in the manufacturer‘s instruc-

tions (Sigma-Aldrich). The sections were counterstained with hematoxylin. The images were

acquired using a Zeiss microscope. The expression region of Ki-67 or α-SMA was quantified

and analyzed using the Image-Pro Plus software.

Statistical analysis

Data were presented as mean ± SEM. Statistical analysis was performed using GraphPad Prism

Software (Version X, La Jolla, CA, USA) and SPSS v. 16.0 (SPSS, Inc. Armonk, NY, USA). The
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ANOVA with Tukey’s multiple comparisons test (equal variance) or the Kruskal-Wallis test,

followed by Dunn’s Multiple Comparison test (unequal variance) was used for multiple com-

parisons. p< 0.05 was considered statistically.

Results

IMA decreased the left ventricular (LV) wall thickness in ISO-induced

mice model

To assess changes of the cardiac structure and function in response to catecholamine or/and

IMA stimulation, adult male C57BL/6 mice were treated with vehicle, ISO (20mg/kg/d,

injected subcutaneously everyday), IMA (40mg/kg/d, injected intraperitoneally everyday),

IMA + ISO for one week. Cardiac function of the mice was assessed using echocardiography.

As shown in Fig 1A, treatment with ISO increased the LV wall thickness in comparison with

that of vehicle treatment. Compared to ISO-treated group, IMA + ISO-treated group was

showed to decrease the LV wall thickness significantly (Fig 1A and Table 2). The LVIDd was

significantly lower in the ISO group than that in the IMA + ISO, IMA and vehicle groups

(Table 2). Combined IMA + ISO treatment prevented ISO-mediated increase in heart rate

(HR), IVSd, IVPWd, IVSs, and IVPWs, whereas IMA did not induce changes in cardiac func-

tion on its own compared to vehicle (Table 2). No significant differences were found in LV

percent fractional shortening (FS), percent ejection fraction (EF), E/A ratio, LVEVd, LVEVs,

and LVIDs among the vehicle, IMA, ISO and IMA + ISO groups (Fig 1B and Table 2). These

results suggested that IMA improved left ventricular structure in ISO-induced mice model.

IMA inhibits ISO-induced cardiac hypertrophy but has no obvious harm

to mice

Previously report showed that ISO could induce the cardiac hypertrophy [30]. We assessed the

changes of hearts weight among four groups. The hearts of ISO-treated group were bigger

than that in vehicle-treated group and IMA + ISO-treated group (Fig 1C). Heart weight to

body weight ratio was significantly lower in the IMA + ISO group than that in the ISO group

(p<0.01) (Fig 1D). No significant difference in the heart weight to body weight ratio was

found among the vehicle, IMA, and IMA + ISO groups (Fig 1D).

We also assessed the safety of treatment with ISO ± IMA on mice. The serum cTnT did not

change in any of the groups (Fig A in S1 Fig). The body weights of the mice were stable, with

no significant differences among the vehicle-, IMA -, ISO- and IMA + ISO-treated groups (Fig

B in S1 Fig). Motor activity and feeding behavior were all normal.

Effects of IMA on the heart cells survival

Next, we examined the cells apoptosis and proliferation in heart of model mice. Apoptosis, as

estimated via TUNEL-positive nuclei was significantly increased at one week following ISO

treatment compared to vehicle treatment (p<0.01), and IMA treatment prevented ISO-

induced apoptosis (p<0.05) (Fig 2A and 2B). In ISO-treated group, the number of Ki-67 pro-

liferating interstitial cells was increased compared with vehicle group (Fig 2C and 2D). IMA

inhibited the increase of proliferation induced by ISO (p<0.05) (Fig 2C and 2D).

IMA inhibits ISO-induced cardiac fibrosis

In addition to hypertrophy, cardiac fibrosis was estimated by RT-qPCR and sirius red staining.

As shown in Fig 3A, ISO treatment significantly increased the mRNA levels of collagen I and

III when compared with vehicle treatment, and IMA attenuated the increases of collagens
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caused by ISO. Heart sections were stained with sirius red and observed under a light micro-

scope. Sirius red staining showed striking collagen deposition in the ventricular wall from

ISO-treated mice compared with vehicle-treated animals (Fig 3B). Quantitative histology anal-

ysis demonstrated that interstitial fibrosis was increased in ISO-treated group when compared

Fig 1. IMA reduces the ventricular wall thickness and cardiac hypertrophy caused by ISO. Mice were

treated with vehicle, Imatinib (IMA, 40mg/kg/d, injected intraperitoneally everyday), Isoproterenol (ISO, 20mg/

kg/d, injected subcutaneously everyday), IMA + ISO for 7 days. (A) The ventricular wall thickness was

detected by M-mode echocardiography at day 8. (B) The early to late diastolic peak velocity (E/A) ratio was

detected by Doppler echocardiography at day 8. (C) Hearts removed from one mouse in each group are

shown. (D) The gravimetric analysis of heart weight to body weight (HW/BW) ratio. (n = 5–8 per group,

**: p<0.01, ***: p<0.001).

https://doi.org/10.1371/journal.pone.0178619.g001
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with that in vehicle-treated group (p<0.01), and it was decreased in IMA + ISO-treated group

when compared with that in ISO-treated group (p<0.01) (Fig 3B).

Then we tested the protein expression of α-SMA in hearts using western blotting assay. As

shown in Fig 3C, ISO treatment significantly increased the level of α-SMA compared with

vehicle treatment (p<0.05), and the level of α-SMA was decreased in IMA + ISO-treated

group (p<0.05). The immunohistochemistry result of α-SMA in hearts sections was similar to

result of western blot (S2 Fig).

IMA reduces the expression of fibrosis related genes induced by ISO

Due to the crucial role of PDGFs in fibrosis, we examined the protein changes of PDGFs in

model mice hearts. The myocardial protein expressions of PDGF-A, PDGF-B, PDGF-C and

PDGF-D were examined by Western blot. As shown in Fig 4A, treatment with ISO signifi-

cantly increased the protein levels of PDGF-A and PDGF-C when compared with vehicle

treatment ((p<0.01 for PDGF-A; p<0.05 for PDGF-C), and the protein levels of PDGF-A and

PDGF-C were decreased in IMA + ISO-treated mice hearts compared to that in ISO-treated

hearts (p<0.01 for PDGF-A; p<0.05 for PDGF-C). The levels of PDGF-B and PDGF-D did

not significantly change in any of the treatment groups (Fig 4A). The mRNA result of PDGFs

in hearts was similar to result of western blot (S3 Fig). Then we tested the mRNA changes of

two important molecules associated with fibrosis: connective tissue growth factor (CTGF,

also named CCN2) and hepatocyte growth factor (HGF). They were significantly increased in

ISO group when compared with that in vehicle group and decreased by IMA + ISO treatment

(Fig 4B).

Table 2. Echocardiographic parameters.

Variables Vehicle IMA(40mg/kg/d) ISO(20mg/kg/d) IMA+ISO

HR 456±31 463±24 558±31 *& 485±25

IVSd(mm) 0.60±0.04 0.68±0.06 0.87±0.05 *& 0.74±0.04 *

LVIDd(mm) 4.21±0.15 4.10±0.15 3.42±0.11 *& 3.86±0.06 *

LVPWd(mm) 0.63±0.06 0.62±0.04 0.85±0.07 *& 0.75±0.04

LVEVd(μL) 37.57±2.12 36.58±3.02 34.43±2.51 35.28±2.07

IVSs(mm) 0.91±0.06 0.94±0.06 1.27±0.09 *& 1.05±0.10

LVIDs(mm) 3.17±0.11 3.05±0.10 2.79±0.12 2.88±0.13

LVPWs(mm) 1.01±0.11 1.21±0.18 1.75±0.06 *& 1.36±0.17

LVEVs(μL) 16.77±1.15 16.21±2.41 14.52±3.45 14.97±2.12

FS,% 32.37±1.92 33.57±2.25 28.28±2.15 30.47±2.28

EF, % 60.36±3.89 56.77±5.03 53.21±4.17 53.72±4.85

E, mm/s 564±33 543±40 464±28 546±41

A, mm/s 271±21 261±43 229±26 267±35

E/A ratio 2.08±0.04 2.10±0.19 2.03±0.13 2.05±0.11

Data were expressed as mean ± SEM. HR: Heart Rate; IVSd: end-diastolic interventricular septal thickness; IVSs: end-systolic interventricular septal

thickness; LVIDd: end-diastolic left ventricular internal diameter; LVIDs: end-systolic left ventricular internal diameter; LVPWd: end-diastolic left ventricular

posterior wall thickness; LVPWs: end-systolic left ventricular posterior wall thickness; LVEVd: end-diastolic left ventricular volume; LVEVs: end-systolic left

ventricular volume; FS: fractional shortening; EF: Ejection Fraction; E: peak early diastolic flow; A: peak late diastolic flow; E/A ratio: left ventricular early to

late diastolic peak velocity ratio. (n = 10–13 per group).

*: p<0.05 compared with vehicle;
&: p<0.05 compared with IMA+ISO. IMA: imatinib; ISO: isoproterenol

https://doi.org/10.1371/journal.pone.0178619.t002
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Fig 2. Effects of IMA on the heart cells survival. (A) (B) Representative transferase-mediated dUTP nick-

end labeling (TUNEL) staining (400×), and percentage of TUNEL positive cells in the hearts sections from

mice treated with vehicle, IMA, ISO, IMA + ISO for one week are shown. Ki-67 was tested by

immunohistologic analysis (400×). (C) (D) The percentage of Ki-67 positive cells in the hearts sections from

mice treated with vehicle, IMA, ISO, IMA + ISO for one week are shown. (n = 5–8 per group, *: p<0.05,

**: p<0.01). HPF: High Power Field.

https://doi.org/10.1371/journal.pone.0178619.g002
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TGF-β1 is known to play a major role in the fibrotic processes [31]. The mRNA change of

TGF-β1 in mice hearts was examined. ISO treatment significantly upregulated the TGF-β1

mRNA expression when compared with vehicle treatment and IMA + ISO treatment

(p<0.05), and there was no significant difference between vehicle-treated group and IMA +

ISO-treated group (Fig 4B).

IMA inhibits the kinase activation of PDGFRs in vivo

PDGFs exert their biological effects through binding and activation of two receptor tyrosine

kinases, PDGFRα and PDGFRβ [32]. Due to the important role of PDGFs/PDGFRs signaling

Fig 3. IMA inhibits ISO-induced cardiac fibrosis. (A) Myocardial mRNA expression of collagen I and III

was decreased in mice hearts treated with IMA + ISO compared with that in ISO treated mice hearts. (B)

Histopathological features of collagen deposition by Sirius red staining of heart sections from mice model

(100×), and quantification of sirius red staining. (C) The lysates of hearts tissue from mice treated with vehicle,

IMA, ISO, IMA + ISO for one week were subjected to western blotting to analyze the expression of α-SMA,

and quantitative analysis of the α-SMA expression. (n = 8 per group, *: p<0.05, **: p<0.01). (The Kruskal-

Wallis test, followed by Dunn’s Multiple Comparison test, was used to perform statistical comparison for

mRNA expression of collagen I.).

https://doi.org/10.1371/journal.pone.0178619.g003
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Fig 4. IMA reduces the expression of fibrosis related genes induced by ISO. (A) The protein expression

of PDGF-A, PDGF-B, PDGF-C, and PDGF-D in hearts from mice treated with vehicle, IMA, ISO, IMA + ISO

for one week was tested by Western blot. (B) The mRNA level of HGF, CCN2, and TGF-β1 in hearts from

mice treated with vehicle, IMA, ISO, IMA + ISO for one week was tested by RT-qPCR. (n = 5–8 per group,

*: p<0.05, **: p<0.01).

https://doi.org/10.1371/journal.pone.0178619.g004
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pathway in the fibrosis [33], the changes of PDGFRα and β in mice hearts were tested. RT-

qPCR results showed that there were no significant differences in mRNA expression of

PGDFRα among four groups (Fig 5A). Compared with other treatments, ISO treatment did

not significantly change the mRNA expression of PGDFRβ (Fig 5A). To assess the myocardial

phosphorylation state of PDGFRα and PGDFRβ (activated form), we performed western blot-

ting for testing the phosphorylated form (p-PDGFRα: Tyr720; p-PDGFRβ: Tyr740). As shown

in Fig 5B, the myocardial phosphorylation of the PDGFRα and PDGFRβ was increased in

ISO-treated group compared with that in vehicle group (p<0.05), but it was significantly

inhibited by IMA + ISO treatment compared to ISO treatment (p<0.05).

Due to MMP-9 participation in the degradation of ECM components [34], we assessed the

change of MMP-9 in the hearts of model mice. There were no obvious changes of MMP-9 in

the mRNA expression and the protein level among the vehicle-, IMA-, ISO- and IMA + ISO-

treated groups (Fig 5B and 5C).

IMA inhibited the expressions of fibrosis related genes by blocking the

phosphorylation of PDGFRα in PDGF-AA treated cardiac fibroblasts

PDGF-A and phosphorylated PDGFRα were increased in the ISO-treated group (Figs 4A and

5B). As the PDGF-AA isoform only effectively activates PDGFRα [35], we treated mice cardiac

fibroblasts with IMA (0.5 μM and 1.0 μM) or/and PDGF-AA (10ng/ml) for 24 h. As shown in

Fig 6A and 6B, PDGF-AA treatment increased the phosphorylation of PDGFRα in cultured

cardiac fibroblasts. IMA administration blocked the phosphorylation of PDGFRα caused by

PDGF-AA. The expressions of α-SMA, collagen I and III were upregulated by PDGF-AA treat-

ment, and were decreased by IMA + PDGF-AA treatment (Fig 6B and 6C).

Discussion

Cardiac fibrosis is one of significant global health problems and associates with nearly all

forms of heart disease [1]. Myocardial infarction, cardiac surgery, pressure overload, cardio-

myopathy, toxic factors (such as anthracyclines or alcohol), metabolic disturbances (such as

obesity and diabetes), and aging are associated with the development of cardiac fibrosis [36–

39]. However, the molecular mechanism underlying cardiac fibrosis has not been fully under-

stood. Therefore, there are currently no efficient therapies available to reverse or arrest the

fibrosis.

In this study, we evaluated the anti-fibrotic effect of IMA in ISO-induced cardiac fibrosis

mice model. Our findings showed that treatment with 40 mg/kg of IMA decreased the LV

thickness, and attenuated the cardiac hypertrophy in the ISO-induced mice model. Treatment

with IMA inhibited the apoptosis and proliferation in the ISO-treated heart cells. IMA attenu-

ated the accumulation of interstitial collagens and α-SMA, and down-regulated the increases

of fibrosis related genes in the ISO-induced mice model. The blunting of collagens synthesis

caused by IMA was associated with decreased phosphorylation of PDGFRα and β. Moreover,

inhibition of PDGFRα by IMA decreased the mRNA expressions of collagen I and III and the

protein level of α-SMA in PDGF-AA-treated mice cardiac fibroblasts. Thus, IMA attenuated

the cardiac fibrosis by inhibiting the kinase activation of PDGFRs.

Cardiac fibroblast is widely accepted to be responsible for cardiac fibrosis. TGF-β1 and

PDGFs are key driving forces in fibroblasts activation [1]. TGF-β1 binds its receptors and pro-

motes fibrosis by upregulating ECM and tissue inhibitors of matrix metalloproteinase gene

expression, as well as suppressing MMP gene level [1]. PDGF-A and PDGF-B induced cardiac

fibrosis in transgenic mice by activation of PDGFRα and PDGFRβ, respectively [40]. PDGF-C

induced fibroblasts activation, cardiac fibrosis, hypertrophy, and dilated cardiomyopathy
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Fig 5. IMA inhibits the kinase activation of PDGFRs in mice heart tissue. (A) The mRNA expressions of

PDGFRα and PDGFRβ in hearts from mice treated with vehicle, IMA, ISO, IMA + ISO for one week were

tested by RT-qPCR. (B) The lysates of hearts tissue were subjected to western blotting to analyze the

phosphorylation level of p-PDGFRα (Tyr720), and p-PDGFRβ (Tyr740), and the expression of PDGFRα,

PDGFRβ, and MMP-9. The western results from one mouse in each group and statistical analysis of western

blot bands are shown. (C) The mRNA expression of MMP-9 in hearts from four groups was tested by RT-

qPCR. (n = 5–8 per group, *: p<0.05).

https://doi.org/10.1371/journal.pone.0178619.g005
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through up-regulation and activation of PDGFRα [41]. PDGF-D promoted activation of car-

diac fibroblasts by binding PDGFRβ [9, 42]. In myocardial infarction, PDGF-A and PDGF-D

were significantly increased in myofibroblasts [43]. PDGFs not only induced the activation of

cardiac fibroblast, but also elevated TGF-β1 expression in vivo and in vitro [9, 20, 42]. In addi-

tion, PDGFs also directly stimulate fibroblasts to contract collagens and differentiate into myo-

fibroblasts [17]. In our study, ISO treatment increased the mRNA expressions of PDGF-A and

PDGF-C, enhanced the activation of PDGFRα and PDGFRβ, and elevated TGF-β1 expression.

Fig 6. Effect of IMA in PDGF-AA treated mice cardiac fibroblasts. Mice cardiac fibroblasts were treated

with PDGF-AA (10 ng/ml), IMA-0.5 (0.5 μM), IMA-1.0 (1.0 μM), PDGF-AA + IMA-0.5, and PDGF-AA + IMA-

1.0 for 24 h. (A) The lysates were subjected for western blotting analysis the expression of p-PDGFRα,

PDGFRα, and α-SMA. (B) Quantitative analysis of p-PDGFRα and α-SMA protein level. (C) The mRNA

expression of collagen I and III. The data are representative of three independent experiments. (*: p<0.05).

https://doi.org/10.1371/journal.pone.0178619.g006
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However, the PDGF-B and PDGF-D transcriptions were not changed among four groups.

These data are in stark contrast to a recent study that PDGF-D was increased in the infarcted

heart [43]. Disulfide bridging between PDGF chains results in the formation of the homo-

dimeric molecules PDGF-AA, PDGF-BB, PDGF-CC and PDGF-DD or the heterodimeric

PDGF-AB molecule [33]. PDGF-AA induces fibroblasts activation through binding and acti-

vating PDGFRα [35]. So cardiac fibroblasts stimulated by PDGF-AA were used to explore the

mechanism in our study. We found that IMA inhibited the expressions of fibrosis related

genes by blocking the phosphorylation of PDGFRα in PDGF-AA treated cardiac fibroblasts.

MMP-9 can cleave ECM proteins and plays an important role in atherosclerosis, hyperten-

sion, myocardial infarction, heart failure, and cardiac fibrosis [34]. The MMP-9 protein level

was increased in ISO-induced cardiac hypertrophy rat model [44]. In contrast, ISO treatment

did not change the mRNA transcription and the protein level of MMP-9 in mice hearts of our

model. There may be some reasons: 1) the responses of rat and mouse to ISO may be different

at some extent; 2) the dose of ISO was different (rats subcutaneously injected with 170 mg/kg/

d ISO, and mice treated with 20 mg/kg/d ISO); 3) the time of testing MMP-9 was different (4

weeks after administration of ISO for 4 days in rat model, after treatment with ISO for 7 days

in mice model).

Animal models are used to better understand the pathogenesis and the mechanism of cardio-

vascular diseases to improve diagnosis, prevention and therapy of cardiac disease and to help

develop and test new diagnostic, preventive and therapeutic procedures [45]. Many animal

models have been used for the research of cardiac fibrosis, such as spontaneously hypertensive

induced cardiac fibrosis model [18], the surgery models (myocardial infarction model, myocar-

dial ischemia/reperfusion injury model, and transverse aortic constriction model) [45], and the

induced models (desoxycorticosterone induced salt-sensitive hypertensive model [19], Ang II

induced cardiac fibrosis model [46], and ISO induced cardiac fibrosis model [10]). However,

the mechanisms of cardiac fibrosis in different models are diverse. Chronic ISO infusion in

mice is a common model system that mimics the elevated catecholamines and sustained β-

adrenergic receptors (β-AR) stimulation observed during cardiac hypertrophy that lead to fibro-

sis [47–50]. In our current study, we found that ISO treatment in C57BL/6 mice increased car-

diac hypertrophy, cardiomyocyte death, interstitial fibrosis, and cardiac dysfunction. Moreover,

the tyrosine kinase receptors of PDGFRs were activated in ISO-treated hearts. Recent studies

showed that enhanced expression of β3-adrenoceptor, gefitinib, difluoromethylornithine

(DFMO) inhibited the cardiac fibrosis in ISO-induced mice model [10, 30, 50]. In this study, we

found that IMA attenuated the cardiac fibrosis induced by ISO. Our results indicated that IMA

could be a potential therapeutic approach to prevent cardiac fibrosis in clinical application.

The ways of administration and dose of ISO contribute differently on the survival of myocar-

dial cells. As in previous studies (ISO< 50 mg/kg/d), myocardial apoptosis was observed in

ISO-induced animal models [30, 50]. However, myocyte apoptosis was not increased after treat-

ment with single injections of 200 or 300 mg/kg ISO in mice [51]. In our study, adult male

C57BL/6 mice were treated with ISO (20 mg/ kg/d) for one week and we found that apoptosis

was significantly increased in ISO-treated mice heart cells. In addition, the proliferation and

activation of cardiac fibroblast is recognized for its fundamental contributions to the heart’s

response to various forms of injury [2]. Our results showed that ISO treatment increased the Ki-

67 positive cells in mice hearts. Moreover, the expression of α-SMA, an important marker of

myofibroblasts which are activated fibroblasts, was increased in ISO-treated mice hearts. Our

data indicated that ISO treatment increased the proliferation of cardiac fibroblasts, and induced

the activation and the differentiation of these cells to myofibroblasts. Furthermore, IMA reduced

the apoptosis and proliferation induced by ISO in mice heart cells. These results indicated that

IMA inhibited the injury of heart and the activation of cardiac fibroblasts caused by ISO.
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Many studies have demonstrated the anti-fibrotic effect of IMA in pulmonary fibrosis,

renal fibrosis, liver fibrosis and dermal fibrosis [15, 17, 52–54], whereas few studies have inves-

tigated the effect of IMA on the heart. Jang et al reported that IMA attenuated cardiac fibrosis

and improved diastolic cardiac dysfunction in a hypertensive rat model [18]. In the desoxycor-

ticosterone induced salt-sensitive hypertensive rat model and the myocardial infarction rat

model, IMA attenuated cardiac remodeling and reduced myocardial fibrosis [19, 20]. Consis-

tent with these results, our data showed that IMA attenuated myocardial fibrosis and improved

cardiac function in the ISO-treated mice. As a classical tyrosine kinase inhibitor, IMA inhibits

the kinase activation of PDGFRs, c-Kit and c-Abl [14]. Recent studies demonstrated that the

mechanisms of inhibition fibrosis by IMA were associated with blocking the activation of

PDGFRs, and c-Abl [18–20]. Our results showed that IMA inhibited the activation of

PDGFRα and PDGFRβ and decreased the mRNA expression of TGF-β1.

In a hypertensive rat model, IMA attenuated cardiac fibrosis by inhibiting the activation of

PDGFRβ as well as the phosphorylation of c-Abl [18]. In the hypoxia-induced pulmonary arte-

rial hypertension model, IMA inhibited the perivascular fibrosis via blocking PDGFRβ path-

way [15]. Liu et al reported that IMA inhibited the activation of PDGFR and reduced the

mRNA expression of TGF-β1 in myocardial infarction model [20]. In our study, IMA inhib-

ited not only the activation of PDGFRβ but also the phosphorylation of PDGFRα as well as the

up-regulated mRNA of TGFβ1 caused by ISO treatment.

The cardiovascular toxicity issue related to IMA is somewhat controversial. Although all

TKIs approved for CML therapy share activity against BCR-ABL, they are distinct in their

potency and activity against other kinases, and each TKI has a distinct toxic effect profile [55].

Due to the strong potency binding kinase domain of new-generation tyrosine kinase inhibi-

tors, dasatinib, nilotinib, and ponatinib treatment increased the risk of vascular occlusive

events compared with IMA treatment in patients with CML [56]. Although some studies have

been reported that longer-term IMA treatment was associated with cardiac toxicity, including

asymptomatic LV dysfunction and congestive heart failure in patients with CML or GISTs [57,

58], the true incidence of this side effect is still uncertain. Prospective and sequential cardiac

imaging in patients on IMA showed a low incidence of asymptomatic cardiac dysfunction,

comparable to the expected population incidence [59, 60]. This indicated that IMA-related

pathological changes in the myocardium did not necessarily translate into clinical significant

cardiac toxicity, especially under short-term treatment with IMA [61]. In addition, IMA

reversed experimentally induced PAH in animal models [62]. Our results showed that IMA

treatment did not increase the level of serum cTnT and decrease the weight of mice. Moreover,

IMA treatment reduced the apoptosis of heart cells caused by ISO. These results indicated that

IMA did not cause cardiotoxicity at normal administered dose and had a protective effect on

the heart. In others and our studies, the subjects of observation or experiments did not have

cardiac failure before the observation or experiments started. And there are no reports to

study the cardiovascular toxicity of IMA in cardiac failure patients or animal models. So the

short-term and long-term effect of IMA in patients or animal models with cardiac failure need

to be further investigated.

In summary, we showed that IMA attenuated cardiac fibrosis and improved diastolic dys-

function in the ISO-induced mice model by inhibiting the phosphorylation of PDGFRs. Our

results provided an approach for treatment cardiac fibrosis with IMA in clinical application.

Supporting information

S1 Fig. Imatinib has not obvious harm to mice. After treatment with vehicle, IMA, ISO, IMA

plus ISO for one week, mice were euthanized and the hearts were excised at day 8. (A) The
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serum cTnT of mice was measured by ELISA. (B) The body weights were monitored and plot-

ted versus time. (n = 8 per group).

(TIF)

S2 Fig. Imatinib inhibits the increase of α-SMA induced by ISO in mice hearts. (A) (B) His-

topathological feature of α-SMA in hearts was tested by immunohistologic analysis (100×) and

quantitative analysis. (n = 8 per group, �: p<0.05, ��: p<0.01).

(TIF)

S3 Fig. IMA reduces the mRNA of PDGFs gene induced by ISO. (A)-(D) The mRNA expres-

sion of PDGF-A, PDGF-B, PDGF-C, and PDGF-Din hearts from mice treated with vehicle,

IMA, ISO, IMA + ISO for one week was tested by Western blot (n = 5–8 per group, �: p<0.05,
��: p<0.01).

(TIF)
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