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Abstract

Processes involving heat generation and dissipation play an important role in the perfor-

mance of numerous materials. The behavior of (semi-)aqueous materials such as hydrogels

during production and application, but also properties of biological tissue in disease and

therapy (e.g., hyperthermia) critically depend on heat regulation. However, currently avail-

able thermometry methods do not provide quantitative parameters characterizing the overall

temperature distribution within a volume of soft matter. To this end, we present here a new

paradigm enabling accurate, contactless quantification of thermal heterogeneity based on

the line shape of a water proton nuclear magnetic resonance (1H NMR) spectrum. First, the
1H NMR resonance from water serving as a "temperature probe" is transformed into a tem-

perature curve. Then, the digital points of this temperature profile are used to construct a

histogram by way of specifically developed algorithms. We demonstrate that from this histo-

gram, at least eight quantitative parameters describing the underlying statistical temperature

distribution can be computed: weighted median, weighted mean, standard deviation, range,

mode(s), kurtosis, skewness, and entropy. All mathematical transformations and calcula-

tions are performed using specifically programmed EXCEL spreadsheets. Our new para-

digm is helpful in detailed investigations of thermal heterogeneity, including dynamic

characteristics of heat exchange at sub-second temporal resolution.

Introduction

Temperature control in production and application of aqueous materials such as hydrogels

requires detailed insight into thermal properties, notably heat conduction and dissipation.

Hydrogels were the first biomaterials developed for human use [1], and in recent years a wide

range of functional, structural and dynamic properties of hydrogels, including also "intelligent"

or "smart" hydrogels, have been studied by a variety of methods [2–11], including nuclear

magnetic resonance (NMR) [4, 5, 12]. Further research has focused on temperature-dependent
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behavior of hydrogels [13, 14]. Moreover, investigation of temperature regulation in biological

tissue has gained renewed interest in view of modern medical techniques such as hyperther-

mia, cryotherapy/cryosurgery, tissue cutting/welding with lasers, and transplantation of organs

after frozen storage [15–19]. In all these cases, considerable temperature gradients occur

within the materials in question, and change significantly over time. This highlights the neces-

sity to not only measure average temperature values, but to quantify thermal heterogeneity

within these (semi)-aqueous materials. Although temperature mapping for individual selected

slices of body tissue has recently been used in clinical environments [19–22], this approach

does not provide parameters that characterize thermal heterogeneity in a quantitative manner.

By contrast, an adequate evaluation of the frequency of occurrence (= frequency distribution)

of all temperature values present within a given sampled volume, at a given time point, would

enable quantitative analysis of the characteristics of thermal heterogeneity. To address this

challenge, we propose a new paradigm allowing, for the first time, examination of the statistical

distribution of temperature values, resulting in at least eight different heterogeneity parameters

for many water-containing materials. This is achieved experimentally by multiparametric

analysis of the 1H NMR signal of water, an intrinsic "physicochemical temperature probe" for

(semi-)aqueous materials.

Generally, the exact position (chemical shift) of a water 1H NMR signal varies with the sam-

ple temperature in a linear fashion (ca. 0.01 ppm/˚C) [23–25], primarily as a consequence of

temperature effects on the number, lengths and angles of hydrogen bonds [24, 26]. This rela-

tionship has been exploited to determine one single temperature value for a given sample

volume (or volume element = voxel). The use of the water 1H NMR signal for temperature

measurement in a hydrogel-loaded cell perfusion system has been demonstrated more than 20

years ago [27], and was further developed for in vivo applications based on selected cross sec-

tions of biological tissue [28–30]. A large number of studies were aimed at clinical applications

[31–33]. Conventionally, the chemical shift of the highest point ("the" maximum) of the water
1H NMR resonance is converted to a temperature value based on a calibration curve, and this

value is interpreted to indicate "the" temperature of the measured volume or volume element

(voxel) [27, 30]. Although this procedure yields fairly realistic average temperature values for

narrow and symmetric temperature distributions, it is inadequate when a temperature distri-

bution deviates from this ideal shape due to significant thermal heterogeneity within the vol-

ume represented by the NMR spectrum. By contrast, our qualitatively new approach is based

on the circumstance that a water 1H NMR signal obtained from aqueous material in which

temperature gradients exist, represents the entire temperature distribution throughout the

underlying volume, rather than merely a single, averaged temperature value. We convert the

entire water resonance into a temperature curve, then exploit the shape of this temperature

distribution profile via its histogram to derive the following quantitative parameters adapted

from classical statistics: one or multiple temperature modes (= curve maxima); weighted mean

and median temperatures [34], each of which takes into account the entire temperature distri-

bution; temperature range; and asymmetry (skewness [35]), peakedness (kurtosis [34, 36]) and

smoothness (entropy [37, 38]) of temperature distributions. Finally, ratios of areas under indi-

vidual temperature modes and/or ranges are determined to obtain a quantitative measure of

the relative sizes of volumes with characteristic temperature ranges. This method does not

require imaging technology, and can therefore be implemented in widely available analytical

NMR spectrometers. Moreover, it is sufficiently fast to follow changes in temperature profiles

over time at a rate of multiple measurements per second. Statistical analysis of water 1H NMR

line shapes as a method for contactless quantitative analysis of thermal heterogeneity in (semi-

)aqueous materials may first and foremost find broad utility in design, optimization and appli-

cation of new biomaterials, including the development of thermosensitive biogels; but also in
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the study of thermal regulation in biological materials and tissues in vitro (including also food

materials [39, 40]) and in vivo (hyperthermia, cryotherapy and others). The theoretical con-

cept as well as the algorithms used for the calculation of statistical temperature parameters

(descriptors) will be presented as a proof of principle. While this theoretical paper is predomi-

nantly supported by in-silico data, a comprehensive report currently in preparation will

include both extended in-silico and numerous hydrogel 1H NMR experiments that validate

our concept and provide application examples.

Background and algorithms

Conditions for determining temperature heterogeneity by 1H NMR

spectroscopy

The use of 1H NMR spectroscopy for temperature measurement is based on the temperature

dependence of the chemical shift, δH2O, of the water resonance. The relationship between δH2O

and the sample temperature, temp, is virtually perfectly linear between room and physiological

temperatures, and very close to linear between 0 and 100˚C [23, 27]:

temp ¼ a0 þ a1 � dH2O ð1Þ

where a0 and a1 are empirical values that have to be determined by way of calibration measure-

ments. These values vary slightly as a function of the material under consideration. As an

example, for hydrogel loaded with mammalian cells in culture medium under physiological

conditions, a0 = 471.8˚C and a1 = -93.4˚C/ppm [27]. Moreover, to make appropriate use of

eq 1, chemical-shift referencing is required as described in Materials and Methods.

Our method for quantitative characterization of temperature distributions presented here is

based on the following new, general paradigm: Suppose that a sample is heterogeneous with

respect to a measurement parameter, p. Further suppose that the chemical shift of an NMR res-

onance is a function of p. Then, the statistical distribution of the p values within the sample

can be obtained by appropriate line shape analysis of said NMR resonance.

To derive a temperature distribution from a water 1H NMR resonance, the NMR resonance

needs to be converted to a temperature curve using eq 1 above. This temperature profile then

represents the temperature distribution within the measured volume. Note that the resulting

curve may also be influenced by other contributions to the line shape: (i) by magnetic-field

inhomogeneity and transverse relaxation (T2) processes; (ii) potentially by uneven free-water

distribution across regions of varying temperature; and (iii) by the spectral processing parame-

ters chosen, in particular filter parameters. In heterogeneous materials, the T2 effect (natural

line width) is often much smaller than the T2
� effect (line width dominated by magnetic-field

inhomogeneity). Therefore, it is suitable to focus on optimizing the magnetic field homogene-

ity to minimize T2
� effects on line width, and to use adequate, constant filter parameters to

compare statistical descriptors of temperature heterogeneity between measured samples. In

the special case of applications to biological tissue, in particular in vivo, T2
� effects are due to

microscopic variations in magnetic susceptibility. This applies to all temperature measure-

ments by tissue water 1H NMR, and is not specific to our new method. Such effects may prin-

cipally arise from blood since soft tissue is perfused by blood, and the magnetic susceptibility

of blood depends on the oxygenation status of red blood cells. The oxygenation status, in turn,

determines the relative concentrations of Fe2+ vs. Fe3+ in hemoglobin. Also other paramag-

netic ions such as Mn2+ can be at the origin of T2
� effects. Furthermore, if significantly differ-

ent tissue types are comprised within a voxel used for temperature measurement (e.g., soft

brain tissue along with cerebrospinal fluid), the water protons of that voxel will be character-

ized by multiple T2 values. Therefore, voxels should be chosen judiciously, even though the
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overall line shape of water protons is clearly dominated by T2
� rather than T2 effects. Of

course, in the presence of very strong susceptibility gradients (caused by, e.g., air pockets,

strong paramagnetic centers, or even ferromagnetic materials), line shape distortions will be

too strong to be dealt with; such NMR spectra will contain susceptibility artifacts and should

not be evaluated.

Even with all precautions taken as recommended above, line shape contributions attribut-

able to factors other than temperature-dependent δH2O may influence experimentally deter-

mined temperature curves for very small temperature gradients covering only a few ˚C.

The consequences of contributions from factors other than temperature effects on water 1H

chemical shift are, of course, reduced precision of our temperature curves and, consequently,

reduced precision of the statistical parameters extracted from these curves. The limitations

imposed by these imprecisions are material-dependent and have been validated in great detail

in a separate report, as pointed out above in Introduction. They become significant when the

temperature range covered by the temperature distribution curve is of the same order as, or

smaller than, the uncertainty introduced by the spurious effects. However, our new deconvolu-

tion procedure is able to largely compensate for these spurious effects on temperature curves

in most cases (see S2 File).

In summary, a temperature curve obtained with eq 1 accurately depicts the underlying tem-

perature heterogeneity, within the limits described above. Such a curve is, in fact, an envelope

representing the sum of all thermal environments existing within the measured volume. Thus,

all thermal environments combined cover the range of temperature values given by the result-

ing temperature curve. However, to this date no effort has been made to characterize and

interpret such envelope curves, judging by published literature. In the following we propose to

analyze temperature curves by multiple statistical methods, to extract a number of parameters

providing quantitative information on the nature of thermal heterogeneity.

Parameterizing thermal heterogeneity by statistical descriptors

The most basic objective of statistical analysis of temperature in heterogeneous aqueous mate-

rials is the determination of a temperature value that is representative of the entire temperature

distribution. Simply using the highest point of the overall curve, as commonly practiced, may

be misleading in the case of an asymmetric temperature distribution because this choice would

overrepresent sample regions with temperatures close to the maximum value, and neglect

regions represented by an extended flank (tail) of the temperature distribution. We suggest a

new strategy providing accurate, weighted-average temperature values (temp), and several

additional statistical parameters describing thermal heterogeneity. This strategy is based on

the concept that the temperature curve calculated from a water 1H NMR spectrum can be

approximated as a histogram. Such a histogram is formed by using the intensities of the digital

points of a temperature curve as heights of the corresponding histogram bars (details are

described in the following paragraph). The abscissa values of the histogram are identical with

the temperature values of the digital points of the temperature curve, as pointed out above (eq

1). All algorithms used for calculating thermal heterogeneity parameters correspond to estab-

lished statistical algorithms; however, the original equations have been adjusted for tempera-

ture curve-derived histograms rather than conventional histograms.

The most important steps in the calculation of statistical temperature heterogeneity descrip-

tors based on a water 1H NMR signal are shown in Fig 1 (schematic simulated spectrum).

Note that this figure exclusively serves to exemplify the principles of (i) converting the chemi-

cal-shift values of digital NMR spectrum points into temperature values, and (ii) evaluating,

on this basis, the statistical properties of the resulting temperature distribution curve. If a
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temperature curve as "pure" as possible is to be generated from an experimental water NMR

resonance, spurious contributions, discussed in the preceding subsection, have to be mini-

mized (in experimental setup, spectral processing) and/or compensated for (by spectral post-

processing) in a separate procedure prior to chemical-shift-to-temperature conversion. In an

NMR spectrum, the intensity I represents the height of a digital curve point as a function of

the resonance frequency (here: chemical-shift scale δ in ppm; Fig 1A). The abscissa values for

Fig 1. Conversion of a trimodal water 1H NMR resonance into a temperature distribution curve.

Positions and intensities (weights) of digital points are indicated by points in (B) to (E), and by

vertical lines in (E). A) Simulated water 1H NMR spectral region before ppm-to-temperature conversion. B)

Water spectral region as in (A), represented by the evenly spaced digital points of the spectrum without fitted

curve. The height of each digital point is given by I (intensity), its position on the spectral axis by δ (chemical

shift). C) Data points as in (B), after ppm-to-temperature conversion. The pattern defined by the digital points

is unchanged compared to (B) due to the linear relationship between the chemical-shift (ppm) and

temperature (˚C) scales. The resulting weight W corresponds to the spectral point intensity I shown in (B). D)

Temperature profile generated by curve fitting to the data points represented in (C). In this example, three

temperature maxima (modes) can be easily identified. E) Histogram: temperature distribution represented by

vertical bars generated by connecting the digital points from (C) with the abscissa. The length of each bar

corresponds to its weight W. F) Temperature distribution as shown in (E). The envelope of the temperature

distribution is identical to the temperature curve shown in (D). The area under the curve is subdivided into

individual color-coded regions associated with the modes identified in (D). This schematic figure exemplifies

the following procedures: (i) point-by-point conversion of chemical shift to temperature values, (ii) subsequent

generation of an (unbinned) temperature histogram based on digital points, and (iii) visualization of the

resulting temperature curve, modes, and individual regions (sub-areas under a curve) associated with these

modes. In experimentally obtained spectra, lineshapes are always influenced by factors unrelated to

temperature distribution (significant for temperature distributions over small temperature ranges); these are

dealt with prior to chemical-shift-to-temperature conversion.

https://doi.org/10.1371/journal.pone.0178431.g001
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the equidistant digital points of a water 1H NMR spectral line (Fig 1B) are directly converted

from δ to temp values according to eq 1 (Fig 1C). Connecting the points results in a tempera-

ture distribution curve that may show one or several temperature maxima (modes) (Fig 1D).

The temperature distributions given in Fig 1C and 1D can also be represented by a histogram

(Fig 1E). Wherever meaningful, the total area under the temperature distribution curve can

be subdivided, and the resulting sub-histograms can be evaluated individually (Fig 1F, color-

coded subregions). For instance, the areas under the subregions of the temperature distribu-

tion curve can be quantified to calculate area ratios, area1: area2: area3. All four diagrams (Fig

1C to 1F) represent the same temperature distribution. The shapes of these distributions are

identical to the shapes of the underlying spectral line (Fig 1A and 1B), which is a consequence

of the strictly linear relationship between δ and temperature.

Temperature curves as histograms

A classical histogram is a representation of a discrete probability distribution, and is built from

a frequency table based on a total of n independently measured parameter values [41]. Each

observation (measured value), indicated by an individual rectangle in the schematic Fig 2A,

belongs to one of m adjacent categories xk, from k = 1 to k = m. The category axis becomes the

abscissa of the histogram.

The weight Wk of each category xk is proportional to the frequency of observations (mea-

surements) falling into this category. Thus, Wk necessarily is an integer. Weights are indicated

by the heights (or areas) of vertical columns (sums of identical rectangles, Fig 2A). Conse-

quently, the total number of measurements n equals the sum of all weights: n ¼
Pm

k¼1
Wk. If

the observed parameter is a continuous variable x, the total range of this variable is broken

down into a number of equal intervals xk (’buckets’ or ’bins’) from k = 1 to k = m. Taken

together, the frequencies with which a measured parameter falls into all of these intervals xk

constitute the frequency distribution.

Modern NMR spectrometers acquire and process spectra as digitized data sets. In practical

terms, an NMR spectrum consists of a sequence of equidistant digital points that can be

thought of as representing a statistical frequency distribution (ordinate) of chemical shifts

δ (abscissa); however, the m intervals (bins) of classical histograms (Fig 2A) are substituted

with m discrete values of the measured variable δk from k = 1 to k = m (Fig 2B). Moreover, the

heights of the digital points of a spectrum do not reflect sums of individual measurements, but

represent signal intensities at curve points, Ik. For this reason, the weights derived from NMR

spectra are rational numbers rather than integers. After δ (ppm) values are converted point by

point to temperature (˚C) values, the abscissa is made up of discrete temperature values, tk (Fig

2C). In analogy to Fig 1, spurious lineshape contributions are not discussed for Fig 2 or in the

ensuing derivation of our algorithms, and are dealt with separately.

Weighted mean and median temperature

The conversion of digital temperature curves to histograms as introduced in the previous para-

graph, permits the calculation of weighted-average temperature values and other statistical

parameters in analogy to established algorithms. In these histograms, the weight, Wk, of any

given bin is defined as the intensity of the corresponding digital point in the temperature

curve: Wk = Ik, where k is the index counting the histogram bins or digital curve points to be

used for calculating the weighted average from k = 1 to k = m. Based on these curve points, a

weighted-average temperature value can be readily obtained by multiplying the temperature

value, tk, of each digital point by its weight, Wk, and by dividing the sum of these products

by the sum of all weights, as described in S2 File. Besides temp calculation, Ik is used in the
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Fig 2. Graphical presentation of (A) a conventional histogram based on bins (buckets), and

analogous histograms based digital points of (B) an NMR spectral line, and (C) a temperature

distribution curve derived from (B). A) The number (frequency) of individual observations associated with

each bin xk (from k = 1 to k = m) corresponds to weight Wk (in this example: W1 = 3; W2 = 5; W3 = 7; W4 = 4;

W5 = 6; W3 = 4;. . .; Wm = 2). Each rectangle represents an individual observation (= individual contribution to

the distribution function). The total number of observations n equals the sum of all weights:n ¼
Pm

k¼1
Wk. B)

Intensity values Ik (arbitrary unit) of the digital points δk (from k = 1 to k = m) of an NMR spectral line (in this

example: I1: I2: I3: I4: I5: I6:. . .: Im = 3: 5: 7: 4: 6: 4:. . .: 2, by analogy to (A)). The sum of all intensity values is
Pm

k¼1
Ik. Each vertical bar has been placed at the center of each bin of (A). C) Weights Wk (arbitrary unit) of

digital temperature curve points tk (from k = 1 to k = m) derived from NMR spectral point intensities Ik shown in

(B). W1: W2: W3: W4: W5: W6:. . .: Wm = 3: 5: 7: 4: 6: 4. . .: 2, by analogy to (A) and (B). The sum of all weights is

equivalent to the nominal sum n of all (hypothetical) contributions to the entire distribution:n ¼
Pm

k¼1
Wk. This

schematic figure exemplifies the relationship between conventional histograms based on binned data (A), and

our histograms based on unbinned, discrete data (B, C). For spurious effects on experimental spectra, see

legend to Fig 1.

https://doi.org/10.1371/journal.pone.0178431.g002
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calculation of the weighted median gtemp, but also in the determination of (i) skewness, (ii)

kurtosis and (iii) entropy of temperature distributions as well as (iv) distinct areas under

temperature curves (see below). Note that due to the linearity between δ and temperature,

sequential ppm-to-temperature conversion of the equidistant digital points of a spectrum

results in equidistant points on the temperature scale. Major advantages of using a weighted-

average temperature value compared with the temperature of a single (i.e. the highest) curve

point are: (i) tempprovides an unbiased mean temperature that truly represents the entire tem-

perature range, (ii) tempcan be obtained regardless of the shape of the temperature distribu-

tion (broad or narrow; symmetric or asymmetric; unimodal, bimodal or multimodal), and (iii)
1H NMR lineshape distortions caused by factors other than temperature have little influence

on the resulting temp value since lineshapes are affected by these factors independently of

temperature, unless magnetic-field inhomogeneity is extremely large and varies significantly

between volume regions characterized by different temperatures. In many applications it may

be possible, and even preferable, to reference the water chemical shift to a resonance whose

chemical shift is independent of temperature.

Akin to temp, median temperature, gtemp, provides an unbiased temperature value that rep-

resents the entire temperature range; it can be obtained regardless of the shape of the tempera-

ture distribution; and lineshape distortions caused by other factors than temperature have

little influence on the resulting gtemp value. In addition, a well-known advantage of medians

vs. means is that the former are more robust to outliers. Weighted-median temperature was

determined according to an algorithm that is essentially equivalent to the general algorithm

for median calculation from a frequency distribution [34, 42, 43].

Temperature skewness, kurtosis and entropy

Histograms constructed as described above can be analyzed for skewness and kurtosis in tem-

perature. Since skewness is a measure of the lack of symmetry of a given distribution [34], tem-

perature skewness = G1temp = 0 for perfectly symmetric normal temperature distributions,

whereas G1temp < 0 (> 0) for temperature distribution curves with a relatively heavy left

(right) tail. Since kurtosis determines to what degree a distribution is peaked or flat relative to

a normal distribution, kurtosis of a normal temperature distribution = G2temp = 0 [34, 44].

Our equations for skewness and kurtosis calculation were adopted from the statistics module

of the EXCEL spreadsheet, and adapted to temperature distributions as described in S2 File.

While kurtosis can be used as a measure of the peakedness or flatness of a heterogeneous tem-

perature distribution, also the evenness (smoothness) of a temperature curve can be deter-

mined by employing a statistical function known as standard entropy, HS (discrete Shannon

entropy [45–47]). Temperature entropy, based on the equation given in S2 File, is a direct mea-

sure of how even a temperature distribution is: low entropy indicates that there are significant

sample volumes with particular temperature values that occur at much higher frequencies

than other regions within the measured volume [42].

Temperature modes, ranges and volume regions

In statistics, the mode is the value that occurs most frequently in a data set or a probability dis-

tribution, and a multimodal distribution is a continuous probability distribution with two or

more modes [34, 42, 48]. The distribution of temperature values across a given volume of het-

erogeneous material may be multimodal, as described above. This type of temperature distri-

bution manifests itself by two or more maxima (= modes) in a temperature distribution curve.

Their associated temperatures (positions of the corresponding maxima, Figs 1D and 3D)

can often be determined individually, along with the corresponding peak heights. Likewise,
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multiple characteristic temperature ranges (Figs 1F and 3E) in a temperature curve can be fre-

quently identified by determination of their left and right limits; the corresponding individual

delimited areas can be quantified by integration as described below. In summary, the tempera-

ture modes and temperature ranges-based methods presented here have the advantage of

yielding more detailed temperature information than the commonly used practice of deter-

mining one overall maximum only for an entire temperature curve. Our approach amounts to

an identification of multiple "subpopulations" of sample subregions, where each subpopulation

is characterized by a specific temperature distribution centered about a distinct, dominating

temperature value, and/or by a specific temperature range. Further details concerning the

background of and algorithms for our statistical descriptors of temperature distributions are

provided in S2 File.

Results and discussion

Application of temperature heterogeneity algorithms to Gaussian and

Lorentzian line shapes

The ability of our approach to provide the statistical descriptors of temperature distribution

mentioned above is best demonstrated by applying our algorithms to several well-defined com-

puter-simulated line shapes. Gaussian curves possess rather light tails; therefore, extreme points

do not contribute significantly to temperature distribution curves (Fig 3A, 3C to 3E). However,

for better precision the data point range considered should comprise extended tails where

these are present, particularly for line shapes with markedly Lorentzian character (Fig 3B). In

Fig 3. Basic simulated 1H NMR-derived line shapes used for in-silico modeling of temperature

distributions. The corresponding values for statistical descriptors are given in Table 1. A) Gaussian

distribution curve centered about 37˚C. The full width at half maximum (FWHM) was chosen to be on the

order of line widths (7.5 Hz) obtainable in gel or tissue water 1H NMR spectra at 500 MHz under ideal

experimental conditions and for minimal temperature variance:FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi
2ln2
p

� s. Here, the Gaussian

standard deviation, σ, corresponds to s, the nominal standard deviation of our algorithm. B) Lorentzian

temperature distribution centered about 37˚C, with a similar line width as for (A). C) ’Asymmetric Gaussian’

temperature distribution ’centered’ about 37˚C. For temperature values < 37˚C, the same s value as in (A) was

chosen. For temperature values > 37˚C, an s value twice as large as in (A) was chosen. D) Bimodal

temperature distribution based on two superimposed Gaussians centered about 34.5 and 37˚C, with s values

as in (A). t1 and t2: temperature modes 1 and 2. E) Bimodal temperature distribution as in (D), with

characteristic color-coded sub-regions of the area under the distribution curve. a1 and a2: areas associated

with modes 1 and 2.

https://doi.org/10.1371/journal.pone.0178431.g003
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Gaussian distributions, skewness, G1, and kurtosis, G2, are zero by definition. Using our algo-

rithm, G1 = G2 = 0.000 was obtained for a set temperature range of at least 5.898˚C, and a line

width of 7.5 Hz for simulated Gaussian temperature distributions (Fig 3A and Table 1, column

A). Narrowing the range resulted in less precise, i.e., small finite G1 and G2 values. Note that

the nominal standard deviation, s, corresponds to the well-defined Gaussian standard deviation,

σ, resulting in a Gaussian line width, FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi
2ln2
p

� s(FWHM = full width at half maxi-

mum). However, σ is not well-defined for distributions other than Gaussian. Although Lorent-

zian distributions are perfectly symmetric, we obtained a G1 value slightly smaller than 0.000

(Fig 3B and Table 1, column B), despite the choice of a very large temperature range (60˚C)

almost perfectly centered about 37˚C. Obviously, the extremely extended tails of a Lorentzian

render skewness sensitive even to temperature curve points very distant from the center of the

distribution.

The very high G2 value was to be expected in view of the narrow tip and extended tails of

Lorentzians, as was the increased nominal standard deviation that proved to be higher than

that of any other simulated distribution shown in Fig 3 and Table 1. Note that for measured

curves, the temperature range usable for descriptor calculations would be smaller than for

simulated curves because it is limited by background noise; thus, G2 values as low as 0.000 are

highly unlikely even if the discernible line shape should be perfectly Gaussian.

Table 1. Statistical descriptors characterizing temperature heterogeneity, based on simulated and experimental temperature distribution curves.

descriptor A[a] B[b] C[c] D/E[d] H[g] H[h]

weighted mean, temp[˚C] 37.02 37.00 37.66 36.18 41.42 41.10

weighted median, gtemp [˚C] 37.02 37.00 37.54 36.62 48.17 48.44

mode, t1 [˚C] 36.95 36.95 37.09 36.95 15.30 14.44

mode, t2 [˚C] - - - 34.43 53.41 54.55

standard deviation, s [˚C] 0.59[f] 3.62[f] 1.03[f] 1.33[f] 14.99 14.78

peak area ratios (a2/a1) [e] a1/a2
[i] a1/a2

[i]

- fitted - - - 0.50:1

- integrated - - - 0.49:1 0.49 0.85

peak height ratios (h2/h1) [e] h1/h2 h1/h3

- fitted - - - 0.50:1

- at curve max. - - - 0.50:1 0.38 0.46

skewness, G1 0.000 -0.013 0.588 -0.506 -0.732 -0.736

kurtosis, G2 0.000 20.779 0.256 -0.959 -0.945 -1.034

standard entropy, HS 4.133 5.775 4.880 4.990 8.168 7.841

range, r [˚C] 5.88[f] 59.96[f] 9.25[f] 8.13[f] 66.56 46.64

A to D/E: values derived from the corresponding simulated curve shapes presented in Fig 3A to 3E.
[a] Gaussian distribution.
[b] Lorentzian distribution.
[c] asymmetric Gaussian distribution.
[d] bimodal distribution based on two overlapping Gaussian distributions.
[e] an and hn: areas and peak heights, respectively, associated with modes tn, for n = 1 or 2 (or 3 for experimental curve).
[f] s and r: judiciously chosen values; note that by definition, both are infinitely large for ideal Gaussians and Lorentzians.
[g] and [h]: values obtained without [g] or with [h] correction by reference deconvolution of the underlying hydrogel water 1H NMR spectrum.
[i] a1/a2: for these particular experimental curves, comparison of area ratios is of limited value since deconvolution resulted in significant change of curve

shape.

https://doi.org/10.1371/journal.pone.0178431.t001
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For perfectly symmetric distributions such as Gaussian and Lorentzian (Fig 3A and 3B;

Table 1, columns A and B), mode, weighted mean and weighted median should yield identical

values. In practice, mode may deviate from temp and gtemp by a minute amount since its preci-

sion depends on the distance between the digital points near the curve maximum. Note that

the temperature mode values given in Table 1 refer to discrete curve points rather than inter-

polated curve maxima. This choice is in keeping with the classical statistical definition of

modes corresponding to discrete histogram bins. However, if mode were to be determined by

interpolation, e.g., by defining the position of the maximum as a variable to be fitted to an

appropriate, mathematically defined curve shape, the resulting value could be considered to

represent the "real" maximum of the distribution curve. This method is known as peak fitting

in NMR spectroscopy, although it may prove to be difficult to identify appropriate fit functions

for many temperature distributions. By contrast, the use of digital curve points for temperature

mode definition as suggested in this work is generally applicable, and would result in ambigu-

ity only if two adjacent curve points at the curve maximum have identical heights, which is

however highly unlikely.

For positively and negatively skewed temperature distributions (Fig 3C, 3D and 3E, respec-

tively), G1 showed positive and negative values as expected (Table 1, columns C and D/E,

respectively), regardless of their monomodal (C) or bimodal (D/E) nature. The ranges chosen

were almost identical for these distributions. Note that in practice, the useful range of a tem-

perature distribution may be limited by the signal-to-noise ratio of the underlying NMR

spectrum. However, for our (noise-free) simulated distribution curves, maximal range values

were determined beyond which there were no significant effects on range-sensitive statistical

descriptors, notably kurtosis. Since the bimodal distribution chosen has a dip rather than a

peak at the center, its G2 value was negative, as opposed to the moderately positive G2 value

found for the asymmetric monomodal temperature distribution with one marked peak in

addition to a heavy tail. Entropy values were not dramatically different between the tempera-

ture distributions presented, but were, unsurprisingly, relatively high for the distribution with

the heaviest tail (Lorentzian; Fig 3B and Table 1, column B), and relatively low for the distribu-

tion with the lightest tail (single Gaussian; Fig 3A and Table 1, column A). The theoretical

peak height and area ratios for the bimodal temperature distribution (Fig 3D and 3E) are

a2/a1 = h2/h1 = 0.5, based on the parameters used for numerical simulation of the two Gaus-

sians. Since the overlap of the two curves is only moderate, we obtained ratios identical to or

very close to the ideal values (Table 1, column D/E). Thus, the theoretical soundness of our

paradigm for quantitative statistical characterization of thermal heterogeneity by water 1H

NMR spectroscopy has been demonstrated for all statistical descriptors suggested.

Example of an application of temperature heterogeneity algorithms to a

measured water 1H NMR line shape: The hydrogel experiment

An experimental proof of principle for our new method was obtained through a water 1H

NMR spectrum from a dedicated hydrogel sample exposed to strong temperature gradients.

This sample was generated by inserting a cold hydrogel-filled NMR tube into a wider coaxial

tube filled with hot hydrogel, as described in Methods. After spectrum processing and chemi-

cal shift-to-temperature conversion, the two peaks of an essentially bimodal temperature dis-

tribution can be distinguished (Fig 4, left).

The right (high-temperature) peak is larger than the left (low-temperature) peak, in agree-

ment with the outer volume being about three times as large as the inner volume in the com-

bined sample. Some limited heat exchange between the two compartments is reflected by the

finite curve intensity between the two peaks indicating a temperature difference of about 40˚C
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at the time of measurement (see also Table 1, last two columns). Temperature gradients of this

order of magnitude may be relevant in studies aimed at testing the behavior of aqueous materi-

als. When chemical shift-to-temperature conversion was performed after deconvolution of the

underlying spectrum with a reference spectrum obtained on the same sample in the absence of

temperature gradients, a temperature curve with better resolved details was obtained (Fig 4,

right). Comparison of the two curves demonstrates that line shape contributions imposed by

factors other than temperature (T2, T2�) may obscure some details of a given temperature dis-

tribution, although overall shapes of the two curves are rather similar. For most statistical tem-

perature heterogeneity descriptors shown in Table 1 (last two columns), there is no dramatic

difference between curves with and without deconvolution. However, the values for tempera-

ture ranges were substantially altered by reference deconvolution. This is due to the fact that

the outer tails of the underlying NMR resonance approach the baseline more or less asymptoti-

cally, due to the inherent T2� and T2 effects on any NMR line shape. NMR line shapes are also

influenced by the filter parameters chosen (usually Lorentzian, Gaussian, or a combination of

both). In summary, our deconvolution method serves to (i) enhance the resolution of the

resulting temperature curve and thus provide more details of the actual temperature distribu-

tion, and (ii) remove "artificial" tails from the overall temperature curve, thus providing a real-

istic value for the true underlying temperature range. Further comprehensive validation will

be provided in a forthcoming study based on both simulated and experimental temperature

distributions.

Conclusion

We have presented here a method for quantifying thermal heterogeneity in aqueous materials.

Our approach is based on a new paradigm suggesting statistical line shape analysis of water 1H

NMR signals which are considered as approximations of temperature histograms. The most

important statistical descriptors of temperature distribution that can be derived from our anal-

ysis have been presented. Further descriptors can be adopted from classical distribution statis-

tics; it remains to be seen which descriptors will turn out to be most useful ones in practical

applications. A comprehensive validation of our concept and suggested algorithms, compris-

ing analyses of a broad range of line shapes using in-silico and in-vitro NMR experiments, will

be presented separately, in conjunction with applications to dynamic changes of temperature

gradients.

Fig 4. Temperature distribution curve measured by 1H NMR spectroscopy. The underlying hydrogel

spectrum was obtained based on the coaxial-tube experiment described in the text. Left: Temperature

distribution based on the spectrum without deconvolution correction. Right: Temperature distribution based

on the same spectrum, after deconvolution with a water resonance obtained at thermal equilibrium.

[Deconvolution performed with the EXCEL calculation template provided in S1 File.] The corresponding

temperature distribution descriptor values are presented in columns H of Table 1.

https://doi.org/10.1371/journal.pone.0178431.g004
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Materials and methods

In-silico techniques and spectrum processing

All computer simulations and calculations were performed using EXCEL spreadsheets pro-

grammed with the algorithms presented in this work (EXCEL for Macintosh vs. 14.4.7,

Microsoft, Redmond, WA, USA). A detailed manual describing the use of this spreadsheet is

provided as a document embedded in the EXCEL file temp_param_template.xlsx (S1 File).

Briefly, the mathematical function for δ-to-temperature conversion (eq 1) was used to trans-

form the ppm units of the digital points of an experimental spectrum to ˚C units. The underly-

ing spectrum may be the uncorrected raw spectrum, or the raw spectrum corrected by our

deconvolution procedure using an experimental reference spectrum. The resulting data were

plotted to generate a temperature profile (= temperature distribution curve). Interactive selec-

tion of the relevant spectral region was employed to determine the range of the temperature

curve. This range was used to calculate the statistical descriptors (mean, median, mode(s),

skewness, kurtosis, entropy, nominal standard deviation, integrated areas under the curve (see

BACKGROUND AND ALGORITHMS section). However, fitted areas under the curve were

determined by using the appropriate procedure (mdcon = "mixed deconvolution" command)

of our spectrum processing software (TopSpin 1.3, Bruker, Rheinstetten, Germany), after

importing the simulated temperature curve. For more technical details concerning in-silico

line shape simulation and processing, see S2 File.

Water 1H NMR spectroscopy of a dedicated hydrogel sample

A test sample designed to provide genuine temperature gradients was generated as follows. An

alkaline (pH 8.2) gel sample containing 1% agarose and 20 mM phosphorylcholine as chemi-

cal-shift reference was filled into a 5-mm NMR tube which was then put on ice. In addition, an

alkaline gel sample containing 1% agarose and 20 mM N-acetylaspartate as a chemical-shift

reference was filled into a 10-mm NMR tube, which was then maintained at 60˚C in a water

bath. Subsequently, the 10-mm tube was removed from the water bath, the cold 5-mm

NMR tube was inserted into the hot 10-mm tube, and a 1H NMR spectrum was immediately

acquired from the combined sample in the 10-mm NMR probe of an AVANCE 400 WB spec-

trometer (Bruker, Rheinstetten, Germany). The 1H NMR acquisition at 400 MHz was based

on a simple one-pulse sequence with one transient (NS = 1) and a very small flip angle (1.5˚), a

signal (FID) acquisition time of 0.41 s corresponding to 4 k data points, and a sweep width of

12.4723 ppm. The acquisition of our spectrum was timed so as to occur before substantial heat

exchange could take place between the tubes, with the aim of demonstrating the presence of

rather large temperature gradients.

Supporting information

S1 File. Supplemental software. Example and template for calculation of statistical tempera-

ture distribution descriptors.

(XLSX)

S2 File. Supplemental theory. Further details on paradigms and algorithms.

(PDF)
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46. Güçlü B. Maximizing the entropy of histogram bar heights to explore neural activity: a simulation study

on auditory and tactile fibers. Acta Neurobiol Exp. 2005; 65:399–407.

47. He K, Meeden G. Selecting the number of bins in a histogram: A decision theoretic approach. J Stat

Plan Inference. 1997; 61:49–59.

48. Butler G. Mode. In: Salkind N, editor. Encyclopedia of Research Design. Thousand Oaks: SAGE;

2010. p. 140–2.

Multiparametric quantification of thermal heterogeneity by NMR: Theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0178431 May 26, 2017 16 / 16

https://doi.org/10.1080/00031305.2014.917055
https://doi.org/10.1080/00031305.2014.917055
http://www.ncbi.nlm.nih.gov/pubmed/25678714
https://doi.org/10.4315/0362-028X.JFP-12-424
http://www.ncbi.nlm.nih.gov/pubmed/23726207
https://doi.org/10.1016/j.meatsci.2010.04.033
http://www.ncbi.nlm.nih.gov/pubmed/20605688
https://doi.org/10.1158/0008-5472.CAN-13-0767
http://www.ncbi.nlm.nih.gov/pubmed/23752692
https://doi.org/10.1371/journal.pone.0178431

