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Abstract

Common bean (Phaseolus vulgaris) is an annual grain legume that was domesticated in

Mesoamerica (Central America) and the Andes. It is currently grown widely also on other

continents including Africa. We surveyed seedborne viruses in new common bean varieties

introduced to Nicaragua (Central America) and in landraces and improved varieties grown in

Tanzania (eastern Africa). Bean seeds, harvested from Nicaragua and Tanzania, were

grown in insect-controlled greenhouse or screenhouse, respectively, to obtain leaf material

for virus testing. Equal amounts of total RNA from different samples were pooled (30–36

samples per pool), and small RNAs were deep-sequenced (Illumina). Assembly of the reads

(21–24 nt) to contiguous sequences and searches for homologous viral sequences in data-

bases revealed Phaseolus vulgaris endornavirus 1 (PvEV-1) and PvEV-2 in the bean varie-

ties in Nicaragua and Tanzania. These viruses are not known to cause symptoms in common

bean and are considered non-pathogenic. The small-RNA reads from each pool of samples

were mapped to the previously characterized complete PvEV-1 and PvEV-2 sequences

(genome lengths ca. 14 kb and 15 kb, respectively). Coverage of the viral genomes was

87.9–99.9%, depending on the pool. Coverage per nucleotide ranged from 5 to 471, confirm-

ing virus identification. PvEV-1 and PvEV-2 are known to occur in Phaseolus spp. in Central

America, but there is little previous information about their occurrence in Nicaragua, and no

information about occurrence in Africa. Aside from Cowpea mild mosaic virus detected in

bean plants grown from been seeds harvested from one region in Tanzania, no other patho-

genic seedborne viruses were detected. The low incidence of infections caused by patho-

genic viruses transmitted via bean seeds may be attributable to new, virus-resistant CB

varieties released by breeding programs in Nicaragua and Tanzania.
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Introduction

Common bean (Phaseolus vulgaris L.; Fabaceae; referred to as CB here) is an annual legume

that was domesticated independently in Mesoamerica (Central America) and the Andes over

7000 years ago [1]. Today CB is grown worldwide and is a vital source of nutrition in many

developing countries. In Nicaragua (Central America) and Tanzania (eastern Africa), for

example, CB is the second most important source of dietary protein and starch after maize

[2,3,4,5]. However, in both countries the yields of CB are rather poor and can vary greatly

owing to pests, diseases, weeds, weather and edaphic constraints. In this regard, better-yielding

and well-adapted CB cultivars are being bred and introduced to improve yields [4,6,7,8].

Seedborne pathogens, including certain viruses, have great potential to reduce growth and

yield of food crops because they interfere with plant growth from the beginning [9,10]. The

seedborne viruses known to infect CB crops in Nicaragua include Bean common mosaic virus
(BCMV, genus Potyvirus; Potyviridae) [11] and Southern bean mosaic virus (genus Sobemovirus)
[12,13]. Other seedborne viruses of CB, such as Bean common mosaic necrosis virus (BCMNV;

genus Potyvirus) [14,15] and Cucumber mosaic virus (CMV) [16], have been reported elsewhere

in Mesoamerica. In Tanzania, BCMV and BCMNV occur in CB and forage legumes [17,18],

and CB is also sometimes infected with Cowpea mild mottle virus (CPMMV; genus Carlavirus)
[19]. Besides seeds, vectors such as aphids (e.g., BCMV, BCMNV, CMV), whiteflies (CPMMV)

and leaf beetles (Southern bean mosaic virus) transmit these viruses [20–23]. Wild plants and

weeds can act as virus reservoirs for transmission by vectors, as demonstrated by infection of

wild legume species with BCMV and BCMNV in Tanzania and Uganda [17,22]. Even low seed-

borne transmission rates of viruses may be sufficient to cause severe disease epidemics when

combined with efficient spread by vectors to susceptible crops [24].

CB can also be infected with Phaseolus vulgaris endornavirus 1 (PvEV-1) and Phaseolus
vulgaris endornavirus 2 (PvEV-2). The complete sequences of PvEV-1 and PvEV-2 were

characterized by Okada et al. [25] (NCBI sequence database accession nos. AB719397 and

AB719398, respectively). The country of origin of these isolates is mentioned to be Brazil.

We refer to them further on as PvEV-1-Okada and PvEV-2-Okada, respectively, in this

study. There are also two other PvEV sequences deposited in NCBI, named PvEV-1-Brazil

(KT456287) and PvEV-2-Brazil (KT456288) also characterized from the CB cultivar ‘Black

Turtle Soup’. Their sequences are 16 and 3 nucleotides shorter, respectively, than those

characterized by Okada et al. [25]. We refer to them as PvEV-1-Melo and PvEV-2-Melo

according to the first author. We are not aware of publications reporting on these latter

mentioned isolates.

Endornaviruses belong to the relatively newly established family Endornaviridae and

include virus species infecting plants, fungi or oomycetes [26,27,28,29]. The genomes of

endornaviruses consist of a single, single-stranded, linear, non-encapsidated RNA molecule

of 9.8–17.6 kb depending on the virus. In the host, however, endornaviruses are typically

found as double-stranded replicative intermediates [30]. Endornaviruses infecting plants

contain a single open reading frame that encodes a large protein containing conserved

domains for RNA helicase, glycosyltransferase and RNA-dependent RNA polymerase

(RdRp). Vertical transmission of endornaviruses occurs at a high rate through seeds, pollen

or fungal spores. Horizontal transmission by contact or vectors is not known to occur

[31,32,33]. The impact, if any, of endornaviruses on their hosts remains elusive in most

cases [25,34].

PvEV-1 has been reported in CB in Spain at high incidence [35]. Furthermore, PvEV-1 and

PvEV-2 have been detected in a large number of CB accessions maintained in germplasm col-

lections in the United States (USA) [36]. These accessions include CB landraces and improved
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cultivars grown in the aforementioned CB domestication centers in South and Central Amer-

ica. Nicaragua is located in one of the CB domestication centers, but little information is avail-

able concerning occurrence of PvEV-1 and PvEV-2 or the known pathogenic seedborne

viruses in the CB varieties introduced to this country.

New, more virus-resistant CB varieties bred in USA, University of Samorano (Hondu-

ras), and International Center for Tropical Agriculture (CIAT) in Colombia have been

released in Nicaragua during the past decade [7,8,37]. Before registration as cultivars, the

new CB varieties introduced to Nicaragua are tested for adaptability and other important

characteristics in La Compañia, a research station situated in Carazo—the Pacific region of

Nicaragua. Also, the first seed generations of the new varieties are usually produced in La

Compañia for distribution to farmers. Therefore, good phytosanitary status in the fields of

La Compañia is of importance. The Tanzanian coast, in turn, is the area in eastern Africa

where CB was first introduced by the Portuguese in the 16th century and spread from there

to the inland areas by the Arab slave traders [3]. Today, the main CB growing areas in Tan-

zania are the highlands in the Arusha region (northern zone), the Great Lakes region (west-

ern zone), Southern Highlands, and some low- to mid-altitude areas such as the Morogoro

region (eastern zone). Many CB landraces are still grown in Tanzania, despite low yield,

because they perform predictably under the local conditions and meet peoples’ socio-eco-

nomic criteria [4]. Since the 1950s, CB improvement (breeding) programs in Tanzania have

been pursued to take advantage of the local landraces as well as CB germplasm maintained

in international gene banks, such as CIAT (Colombia) and USDA Plant Germplasm System

(USA) [4,38]. The breeding goals include resistance to viruses BCMV and BCMNV that

cause significant yield losses [4]. Little information is available about other seedborne

viruses in the CB crops in Tanzania.

Deep sequencing of virus-derived small interfering RNAs (vsiRNA) can be used to detect

viruses [39]. This approach exploits the fundamental antiviral defense mechanism of plants,

called RNA silencing or RNA interference (RNAi). It detects double-stranded RNA, such as

the replicative forms of RNA viruses and secondary structures in single-stranded RNA viruses

and the gene transcripts of DNA viruses [40–42]. The resulting 21, 22 and 24 nucleotide-long

vsiRNAs are subjected to deep-sequencing, assembled into longer contiguous sequences (con-

tigs) with bioinformatic tools and used as queries for searches in sequence databases [39]. Rela-

tive sequence identity of the contig(s) with previously described viral sequences identifies the

virus present in the sample. The analysis can be continued by mapping the small-RNA reads

from the sample to the homologous viral sequence(s) in the database, which confirms virus

identification and provides an estimate of relatedness. Unknown viruses can be detected, too,

as long as they show sufficient (>40%) sequence identity to regions of known viral genomes

[39]. The method is time-efficient, affordable, generic, and detects all types of RNA and DNA

viruses simultaneously in a single assay [39,43,44]. This detection method has been compared

with next-generation sequencing of encapsidated and double-stranded long viral sequences in

the recent study of Kutnjak et al. [45].

The aim of this study was to advance knowledge on the occurrence of seed-borne viruses

transmitted via bean seeds in CB varieties currently grown in Nicaragua and Tanzania. In Nic-

aragua, the focus was on recently released CB varieties in La Compañia, because those varieties

play or will play an important role in CB production in that country. In Africa, Tanzania is the

second biggest CB producer in sub-Saharan Africa after Kenya [5], but surveys on seedborne

viruses in CB crops have not been done recently. Therefore, CB seeds produced in three

important bean growing regions were tested for viruses in Tanzania.
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Materials and methods

Plant material

In Nicaragua, different CB varieties introduced to La Compañia for adaptability testing

were surveyed and sampled in the field during the cropping season May-August, 2011.

Plants displaying virus-like symptoms, if any, were marked. When mature, beans were har-

vested from four varieties (SEN46, SEN52, ‘CENTA Pipil’, MIB396). Three of these varieties

had been bred in Zamorano, Honduras (SEN46, SEN52, ‘CENTA Pipil’) and one in CIAT,

Colombia (MIB396). SEN46 and SEN52 have been released for cultivation under the names

‘INTA Caribe’ and ‘INTA Negro Precoz’, respectively, and MIB396 as ‘INTA Nutritivo’ [7].

One-hundred ten, 70, 60 and 10 bean seeds of ‘INTA Caribe’, ‘INTA Negro Precoz’, ‘INTA

Nutritivo’ and CENTA Pipil, respectively, were shipped to University of Helsinki, Finland,

under an import permit (no. 1605/0614/2010) obtained from the Finnish Food Safety

Authority, Evira. Ten bean seeds per plant were sown in autoclaved soil in a greenhouse

(temperature 18/27˚C during day and night, respectively; photoperiod 12 h) in Helsinki.

Prior to planting, the bean seeds were treated with fungicide (Topsin M, Berner, Finland) to

eliminate possible seedborne fungi. Plants were grown for a month, leaves were sampled

and samples were stored at –80˚C.

Also, leaf samples were collected from some newly released CB varieties grown in La Com-

pañia, including ‘INTA Cárdenas’, ‘INTA Rojo’, ‘INTA Seda 2’ (breeding line code NIC-704),

‘INTA Fuerta Sequia’ (RS-811-22), ‘INTA Frijol Norte’ (628-SM-22-2) [7], and the breeding

line XRAV-404. The collected leaf samples were dried on silica gel, airmailed in sealed paper

bags to the University of Helsinki, Finland, under the aforementioned import permit, and

tested for begomoviruses (genus Begomovirus; Geminiviridae) that are not seed-transmitted

but can cause symptoms and yield losses in CB [46].

In Tanzania, bean seeds of a total of 38 CB landraces or improved varieties grown in three

agro-ecological zones (Southern Highland, eastern and northern zones) were purchased from

farmers in 15 administrative districts in 2015–2016. Landraces are varieties that were intro-

duced to Tanzania at least 50 years ago. Their origin is not always known. Improved varieties

have been developed by hybridization or selection processes to improve some of their traits.

Bean seeds were planted in pots in insect-controlled screenhouses at Sokoine University of

Agriculture or at Mikocheni Agricultural Research Institute. The soil used for planting bean

seeds was heat-treated to kill any living organisms. The plants were sprayed with an insecticide

(abamectin) regularly [47]. Screenhouses were visited daily for watering plants and confirming

the absence of aphids and other insects. When close to flowering, leaf samples were taken from

30 CB plants per zone and immediately subjected to RNA isolation.

RNA isolation

Total RNA was isolated from leaves of CB plants grown from 90 and 102 bean seeds harvested

from Tanzania and Nicaragua, respectively, as described above. Leaves were ground with

Geno/Grinder (SPEX SamplePrep, Metuchen, NJ, USA), or in liquid nitrogen in a mortar with

a pestle, and 0.3 g leaf powder was quickly transferred into a 1.5-ml Eppendorf tube that was

placed in liquid nitrogen. At University of Helsinki, total RNA was extracted from leaf samples

using the Trizol protocol [48]. After precipitation, samples were centrifuged, supernatant was

removed, and pellets were dissolved in 200 μl of nuclease-free water. At Mikocheni Agricul-

tural Research Institute, total RNA was extracted using the CTAB method [49], and pellets

were dissolved in 40 μl of nuclease-free water. RNA concentration and purity were determined

with a Nanodrop 2000c UV–vis Spectrophotometer (Thermo Scientific, Wilmington, DE,
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USA). The quality of RNA in the samples was assessed visually by agarose gel electrophoresis

with staining using ethidium bromide.

Virus detection by siRNA sequencing and data analysis

An equal amount (1 μg) of total RNA from each leaf sample was combined to obtain six pools.

As the samples from Nicaragua are concerned, the pools were based on the CB variety ‘INTA

Caribe’ (36 samples) (GEN11), ‘INTA Negro Precoz’ (33 samples) (GEN12), and 33 RNA sam-

ples of ‘INTA Nutritivo’ (28 plants) and Centa Pipil (5 plants) (GEN13). RNA of the samples

from the three agroecological zones in Tanzania were combined to form three pools of 30 sam-

ples each (HXH8-HXH10). From each RNA pool, 10 μg (Nicaragua) or 7 μg (Tanzania) of

total RNA was sent to Fasteris SA (Plan-les-Outes, Switzerland) for deep sequencing. In Fas-

teris, samples were subjected to electrophoresis through an acrylamide gel, and the small

RNAs of 1–43 (Nicaragua) or 1–44 nt (Tanzania) were purified from the gel. Single-stranded

3’ adapters and bar-coded 5’ adapters were ligated to the small-RNA oligonucleotides, reverse

transcribed, and amplified by PCR to generate DNA colony template libraries. The libraries

were purified and diluted to 10 nM concentration. Illumina Genome Analyzer was used for

high-throughput DNA sequencing.

Initially, data were analyzed by GA pipeline (Broad Institute, USA) to convert images into

sequences. Velvet software [50] was used to produce contigs by assembling the reads of 21–24

nt from high-throughput DNA sequencing data and sequences homologous to the contigs

were searched in databases. Mapping of siRNA reads to the viral sequences identified by

BLAST was carried out by MAQ (http://maq.sourceforge.net/index.shtml) or Bowtie (http://

bowtie-bio.sourceforge.net/manual.shtml). However, since the VirusDetect pipeline became

available, it was used to carry out the aforementioned analyses. VirusDetect is a new bioinfor-

matics pipeline for efficient large-scale analysis of small-RNA datasets based on the aforemen-

tioned principles and algorithms [51]. VirusDetect is freely available at http://bioinfo.bti.

cornell.edu/tool/VirusDetect/.

The small-RNA sequencing libraries and assembled contigs of viral sequences were depos-

ited in European Nucleotide Archive (ENA) under the project (study accession) PRJEB19286

(S1 Table).

Virus detection by RT-PCR

siRNA-based detection of viruses was confirmed by testing the total RNA in sample pools with

reverse transcription–coupled PCR (RT-PCR). For RT, 1 μg of total RNA was treated with

DNase (Promega, Madison, WI, USA). RT was carried out using Moloney murine leukemia
virus reverse transcriptase (M-MLV RT) (Promega). DNase-treated RNA and 0.4 μg of ran-

dom hexamer primers were mixed and heated at 70˚C for 10 min. Each reaction was cooled

immediately on ice, and 9 μl of a master mix was added. It contained 4 μl M-MLV RT 5× reac-

tion buffer (Promega), 2 μl of 0.1 M DTT, 1 μl of 10 mM dNTP mix; 0.5 μl of 40 U/μl ribonu-

clease inhibitor (RNasin, Promega), and 1.5 μl of 200 U/μl M-MLV RT. The master mix was

mixed well, and incubated at room temperature for 10 min and at 37˚C for 1 h. Reactions were

stopped by heating at 70˚C for 10 min. Finally, 100 μl of nuclease-free water was added, and

the samples were stored at –20˚C.

PvEV-1 was detected with primers designed according to the conserved helicase-encoding

region, as described by Segundo et al. [35]: forward primer PV3Up: 5’-GAATAATGGCATGT
GAAGAC-3’, reverse primer PV4D: 5’-CAAAACCTGCTGGACCTA-3’; melting temperature

56˚C; product size 374 bp. The consensus sequences recovered by MAQ and sequences from

the NCBI database were aligned with MEGA5.1 [52] to design primers for amplification of the
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helicase-encoding region of PvEV-2 (forward primer P2-N2F2: 5’-GACTGTACTTGCTGT
GGGCT-3’, reverse primer P2-N2R2: 5’-CGTCGGCAGAGAATTCCGTT-3’; melting temper-

ature 60˚C; product size 766 nt). Besides the RNA pools, single RNA samples (plants) included

in the pools were tested by RT-PCR using the aforementioned primers. Phusion High-Fidelity

DNA polymerase (Finnzymes, Espoo, Finland; or New England Biolabs Ltd., UK) was used

according to the manufacturers’ instructions. PCR amplifications were carried out with for-

ward and reverse primers (100 ng each) in GC buffer (Finnzymes) that improves the perfor-

mance of Phusion DNA polymerase in amplification of GC-rich and long templates that

might contain complex secondary structures. The PCR program for PvEV-1 was: 98˚C for 1

min, followed by 30 cycles of 98˚C for 10 s, 56˚C for 30 s, and 72˚C for 30 s, with a final step at

72˚C for 5 min. The PCR program for PvEV-2 was similar to PvEV-1, except that an annealing

temperature of 60˚C was used. PCR products were analyzed by agarose gel electrophoresis (1%

agarose; 140 V, 45 min), stained with ethidium bromide and visualized under UV light.

PCR products were purified using the E.Z.N.A. Gel Purification kit (Omega BioTech Inc.,

Norcross GA, USA) and sequenced at the Haartman Institute, University of Helsinki.

DNA isolation for detection of begomoviruses by PCR

DNA was extracted from the dried leaf samples from Nicaragua using the quick method

described by Wyatt & Brown [53]. Dried leaf tissue (0.05 g) was frozen in liquid nitrogen and

ground in 2 ml of extraction buffer containing 50 mM Tris and 10 mM EDTA (pH 8). The

extract was transferred to an Eppendorf tube and centrifuged in a tabletop centrifuge at full

speed for 10 min. The supernatant (50 μl) was transferred to a new, sterile PCR tube and incu-

bated on ice for 30 min. Subsequently, the extract was removed, the tube washed twice with

150 μl of 10 mM Tris and air dried for 40 min at room temperature. As a positive control,

DNA was extracted from the leaves of Abutilon pictum ‘Thompsonii’ (Gillies) Walp. infected

with Abutilon mosaic virus [54] and maintained at the Department of Agricultural Sciences,

UH. The pair of degenerate primers PAL1v1978/PAR1c496 [55] designed for detection of

geminiviruses was used to amplify a product of 1.1 kb covering the common region (CR) in

DNA-A and DNA-B and parts of AC1 (encodes the replication-associated protein) and AV1
(encodes the coat protein), which corresponds to nucleotides 496–1978 in Bean golden yellow
mosaic Guatemala virus (NCBI accession no. M91604) [56].

For direct PCR, DNA was not extracted but leaf sap was incubated in an Eppendorf tube, as

described [53]. Fragments of viral DNA-A were amplified using two pairs of degenerate primers.

Primers AV494 and AC1048 amplify a fragment of 576 bp that includes the coat protein gene

[53]. The second pair of primers (PAL1v1978 and PAR1c496) amplified a region of begomovirus

comprising the common region and the AC1 and AV1 open reading frames. The size of the

amplified region varies from ca. 1.1 to 1.2 kb, depending on the begomovirus [55]. As a negative

control, PCR was run in tubes not pre-incubated with a CB leaf extract. The PCR reaction mix

(25 μl) contained 5 μl of 5× Phusion High-Fidelity reaction buffer, 0.5 μl dNTPs (10 mM), 1 μl

MgCl2 (25 mM), 1 μl primers (10 μM), 0.5 U of Phusion High-Fidelity DNA polymerase, and

MilliQ water to reach the final volume. DNA was amplified with a thermal cycler (Eppendorf

Master Cycler Gradient). The program was: 1 min at 98˚C, followed by 33 cycles of 10 s at 98˚C,

30 s at 57 or 67˚C (depending on the degenerate primers), and 30 s at 72˚C, followed by 10 min

at 72˚C and cooling to 4˚C. PCR products were analyzed by agarose gel electrophoresis (1.5%)

using 1× TAE buffer [57]. Ethidium bromide was added to visualize DNA under UV light.

The PCR products of expected size were purified using the GeneJET Gel Extraction kit

(Thermo Fisher) and sequenced at Macrogen Inc. (Seoul, Korea) or at the Institute for Molec-

ular Medicine Finland (Helsinki, Finland), using the forward and reverse PCR primers.
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Results

Viruses detected by small-RNA sequencing

Deep sequencing of the small RNAs in the different RNA pools from Nicaragua (1–43 nt) or

Tanzania (1–44 nt) resulted in 6.1–13.3 million reads of 21–24 nt per pool. PvEV-1 and PvEV-

2 were detected in all three sample pools from Nicaragua and two pools from Tanzania using

the VirusDetect pipeline. PvEV-2, but not PvEV-1, was detected in one sample pool (HXH10)

from Tanzania (Table 1).

Mapping of the vsiRNA reads to the PvEV genomes showed high coverage and depth of

coverage of the genomes (Table 1). Many contigs based on the reads of the three sample pools

were nearly identical to the sequences of PvEV-1-Okada (AB719397) or PvEV-2-Okada

(AB719398) characterized from the CB cultivar ‘Black Turtle Soup’ [25] and almost fully cov-

ered the genomes of PvEV-1 (13908 nt) and PvEV-2 (14820 nt). The longest single contig was

14061 nt (PvEV-1) (Table 1).

The sample pool HXH8 from Tanzania contained 13 and 17 samples from improved varie-

ties and landraces, respectively, collected in the Southern Highlands of Tanzania. Analysis by

VirusDetect of the 21- to 24-nt reads identified PvEV-1 and PvEV-2. Sequences of contigs

were nearly identical to PvEV-1-Melo or PvEV-2-Okada (Table 1). Forty contigs covered the

genome of PvEV-1-Melo (97.5–100% identity), whereas three large contigs (3708–6277 nt)

were sufficient to almost fully cover the genome of PvEV-2-Brazil (97–98% identity), as visual-

ized using the MISIS program [58] in Fig 1.

Pool HXH9 contained 19 samples from improved CB varieties and 11 samples from landra-

ces grown in the Arusha, Kilimanjaro or Manyara regions in northern Tanzania. PvEV-1 and

PvEV-2 were detected, and the sequences of PvEV-1-Melo and PvEV-2-Okada were covered

with 63 and 99 short contigs, respectively (S1 Table). Pool HXH10 included 12 samples from

improved CB varieties and 18 samples from landraces grown in Morogoro in eastern Tanzania.

PvEV-2 was readily detected and almost 90% of the genome of PvEV-2-Okada (AB719398) was

covered with 77 contigs (97–100% identity) derived from the HXH10 pool. The largest and

Table 1. Viruses detected in the pools of common bean samples from Nicaragua (NI) and Tanzania (TZ) by VirusDetect.

Sample pool Reference genome Virusa Coverage (%)b Average depthc Number of contigs Size range of contigts (nt)

GEN11 (NI) KT456287 PvEV-1 99.9 206.6 6 116–4526

AB719398 PvEV-2 99.4 357.0 21 49–3008

GEN12 (NI) KT456287 PvEV-1 99.9 352.6 4 78–12919

AB719398 PvEV-2 98.5 252.4 28 50–2842

GEN13 (NI) KT456287 PvEV-1 99.9 148.8 5 52–14061

AB719398 PvEV-2 98.0 101.2 29 52–2842

HXH8 (TZ) KT456287 PvEV-1 97.2 34.7 40 44–1000

AB719398 PvEV-2 99.9 471.5 8 43–6277

HXH9 (TZ) KT456287 PvEV-1 94.2 86.2 63 41–928

AB719398 PvEV-2 87.9 119.6 99 39–722

KJ534277 CPMMV 31.0 6.9 7 44–66

HXH10 (TZ) KT456287 PvEV-1 ND - - -

AB719398 PvEV-2 88.9 14.1 77 38–978

a PvEV-1 and PvEV-2, Phaseolus vulgaris endornavirus 1 and 2, respectively; CPMMV, Cowpea mild mottle virus.
b Coverage of the full-length viral reference sequence.
c The average number of times the nucleotides in the reference genome were covered by the small-RNA reads of the sample.

https://doi.org/10.1371/journal.pone.0178242.t001
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smallest contigs analyzed were 978 nt and 38 nt, with 98% and 100% identity, respectively, to

PvEV-2-Okada. However, the contigs homologous to PvEV-1 were few and short.

The total of 17,863, 16,547 and 1,116 small-RNA reads obtained from the pools HXH8,

HXH9 and HXH10 from Tanzania, respectively, aligned with the genome of PvEV-1-Melo.

The coverage of PvEV-1-Melo was 97.2% (average depth 34.7) and 94.2% (average depth 86.2)

for HXH8 and HXH9, respectively, whereas the number of vsiRNAs in HXH10 was too low

for meaningful analysis. On the other hand, the numbers of small-RNA reads mapped to the

genome of PvEV-2-Okada were 224,034 (HXH8), 18,844 (HXH9) and 6584 (HXH10). The

coverage of the PvEV-2-Okada genome was 99.9% (average depth 472) in HXH8, 94% (aver-

age depth 86) in HXH9, and 89% (average depth 14) in HXH10. Only the first 2 nt (5’-end),

last 6 nt (3’end) and 10 nt elsewhere in the genome could not be resolved (S1 Fig).

Fig 1. Identification of PvEV-2 in the sample pool HXH8 from the Southern Highland zone of Tanzania

based on small-RNA deep sequencing. (a), Viral contigs (red bars) mapped to the sequence of PvEV-

2-Okada (AB719398) [25] using VirusDetect [51]. Each nucleotide in the contigs was covered by siRNA reads

at least 5 times. (b) The 21- to 24-nt reads mapped to the sequence of PvEV-2. The x axis and the scale below

the figure depict the viral genome and nucleotide positions, respectively. The y axis indicates the number of

siRNA reads derived from the coding strand (blue bars above the x axis) and complementary strand (red bars

below the x axis).

https://doi.org/10.1371/journal.pone.0178242.g001
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The similarity of the PvEV-1 and PvEV-2 sequences detected in Nicaragua and Tanzania

with the previously determined PvEV-1-Okada and PvEV-2-Okada was confirmed by mapping

the siRNA reads (21–24 nt) directly to the reference sequence. The numbers of reads mapped to

PvEV-1-Okada and PvEV-2-Okada were 224,427 and 171,576, respectively, from pool GEN11

(‘INTA Caribe’), 131,834 and 244,122, respectively, from pool ‘INTA Negro Precoz’ (GEN12),

and 95,201 and 71,208, respectively, from the pool of combined samples from ‘INTA Nutritivo’

(MIB396) and ‘Centa Pipil’ (GEN13). The coverage of PvEV-1 and PvEV-2 genomes with the

small-RNA reads was 99.9% and 98.0–99.4%, respectively, depending on the sample pool. The

average depth of coverage of the genomes of PvEV-1-Melo and PvEV-2-Okada was 149–353

and 101–357, respectively. Only the first 8 (5’-end) and last 8 (3’-end) nucleotides of PvEV-

1-Nicaragua were not resolved. Similarly, the first 8 and last 11 nucleotides, and a few short

regions (4–6 nt) elsewhere in the genome, could not be solved in PvEV-2-Nicaragua (S1 Fig).

No contig based on small-RNA data from samples of Nicaragua matched any sequence of

pathogenic viruses. However, seven short contigs (44–66 nt) assembled from small-RNA reads

of the pool HXH9 (Arusha, northern zone of Tanzania) were highly similar (95–98%) to

CPMMV (NCBI accession no. KJ534277) and the vsiRNA reads of pool HXH9 covered 31% of

the CPMMV genome. Studies on CPMMV are ongoing.

Relatedness of the detected endornaviruses

Endornaviruses differ in their genomic organization and conserved domains of the viral poly-

protein [34]. The genomes of PvEV-1 and PvEV-2 encode a polyprotein of 4496 and 4851

amino acid residues, respectively, containing conserved domains such as the RNA helicase (Hel-

1), UDP-glycosyltransferase (UGT) and RdRp domain. Furthermore, PvEV-2 contains a methyl-

transferase domain (MTR), whereas PvEV-1 contains a putative capsular polysaccharide

synthase (CPS)-like domain [25]. The expected conserved domains were detected in the deduced

polyprotein sequences of PvEV-1 and PvEV-2 detected in Nicaragua (Fig 2) and Tanzania.

The relatedness of PvEV-1 and PvEV-2 from Brazil, Nicaragua and Tanzania was compared

using deduced amino acid sequences of the viral Hel-1 region assembled from small-RNA

reads by VirusDetect. Hel-1 of PvEV-1-Okada was 98.9% identical to Hel-1 of PvEV-1 from

Nicaragua and Tanzania. The Hel-1 sequences of PvEV-1 from Nicaragua was 99.2% identical

to Hel-1 of PvEV-1 from Tanzania. On the other hand, Hel-1 of PvEV-2-Okada was 98.8%

identical with PvEV-1 from Nicaragua and Tanzania. The Hel-1 of PvEV-2 from Nicaragua

was 99.2% identical to Hel-1 of PvEV-2 from Tanzania.

Detection of viruses by PCR

Different improved CB varieties and landraces from the eastern and northern zones and

Southern Highlands of Tanzania were tested for PvEV-1 by RT-PCR using primers designed

Fig 2. Conserved domains in the polyprotein encoded by PvEV-1 and PvEV-2 from Nicaragua. Numbers indicate the residues defining the

conserved domains. Hel-1, helicase; CPS, putative capsular polysaccharide synthase; UGT, UDP-glycosyltransferase; RdRp, RNA-dependant RNA

polymerase; and MTR, methyltransferase.

https://doi.org/10.1371/journal.pone.0178242.g002
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to amplify the Hel-1-encoding sequence. PvEV-1 was detected in the randomly picked plants

of CB landraces and improved varieties, as judged based on the expected size of PCR products

assessed with agarose gel electrophoresis (Fig 3).

Concerning samples from Nicaragua, two plants each of the varieties ‘INTA Nutritivo’ and

‘Centa Pipil’ and four plants each of the varieties ‘INTA Caribe’ and ‘INTA Negro Precoz’

grown from bean seads in the greenhouse were tested for PvEV-1 and PvEV-2 by RT-PCR as

above. The PCR products were of the expected size, as assessed with agarose gel electrophore-

sis. Comparison of the sequenced PCR products with consensus sequences built by MAQ and

the sequences of PvEV-1-Okada and PvEV-2-Okada revealed that all tested plants of the four

CB varieties from Nicaragua were positive for both endornaviruses. Furthermore, leaf samples

were collected from six additional CB varieties showing virus-like symptoms in La Compañia

(Fig 4) and tested by PCR using two pairs of universal primers designed for detection of bego-

moviruses [53,55]. All the tested 72 CB leaf samples were PCR negative. In contrast, both

primer pairs amplified a product of the expected size in the positive control (Abutilon pictum
infected with Abutilon mosaic virus). The authenticity of the PCR products was confirmed by

sequencing.

Symptoms and their association with viruses

Plants of CB varieties in Nicaragua and Tanzania showed many similar symptoms in the field

(Fig 4). However, it was unlikely that the symptoms were associated with known pathogenic

viruses transmitted in bean seeds, because the plants grown from seeds of such symptomatic

plants produced virus-free plants–with exception of CPMMV in sample pool HXH9 from

Arusha, Tanzania. Also the CB leaves sampled in Nicaragua and tested for begomoviruses

using universal primers were virus-negative. The CB plants, which grew from bean seeds har-

vested in La Compañia, displayed no severe symptoms in the greenhouse in Helsinki. How-

ever, a few plants of the four varieties developed mild epinasty and vein reversion resembling

the stronger symptoms observed in the fields of Nicaragua (Fig 4B and 4D) and Tanzania.

Discussion

Beans were harvested from four new CB cultivars introduced to Nicaragua and a large number

of CB landraces and improved varieties grown in three agricultural zones of Tanzania and

Fig 3. Detection of PvEV-1 by RT-PCR in common beans in Tanzania. In the list below, landraces are

marked with asterisk (*). Other samples represent improved varieties (origin of samples shown in parenthesis).

Lane labelled ‘M’ represents a O’GeneRuler 1 kb Plus DNA ladder. The expected size of PCR products was

374 bp. Lanes 1, ‘Njugu’* (Southern Highlands zone); 2, ‘pooled RNA’ (Southern Highlands zone); 3, ‘pooled

RNA’ (Eastern zone); 4, ‘pooled RNA’ (Northern zone); 5, ‘Rosekoko’/’Lyamungu 85’ (Eastern zone); 6,

‘Salundi’ (Southern Highlands zone); 7, ‘E 36’ (Southern Highlands zone); 8, ‘Msafiri’* (Southern Highlands

zone); 9, ‘Msafiri’* (Eastern zone); and 10, ‘Mshindi’ (Eastern zone).

https://doi.org/10.1371/journal.pone.0178242.g003
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used as seeds that were planted and grown under controlled conditions. Leaves of the plants

were tested for seedborne viruses by small-RNA deep sequencing. In both countries, CB seeds

were found to carry PvEV-1 and PvEV-2 that were vertically transmitted to the plants grown

from the seeds. The small-RNA reads in the sample pools covered 14–471 fold the nucleotides

in the previously characterized sequences of PvEV-1 and PvEV-2 [25], depending on the pool.

Therefore, analysis of the new isolates by Sanger sequencing would have provided little value

in terms of virus identification. A similar approach has been used to detect Bell pepper endor-
navirus in pepper (Capsicum annuum L.) [59]. However, other studies on endornaviruses,

including PvEV-1 and PvEV-2 [25], have relied on isolation of viral double-stranded RNA

from infected tissue, followed by RT to yield DNA, with subsequent analysis by next-genera-

tion sequencing ([28,60] and refs. therein). Comparison of our results with those of Okada

et al. [25] suggests that both methods provide similar results. The modular arrangement of

endornavirus genomes suggests that these viruses evolved via exchange of genomic domains

Fig 4. Symptoms observed in common bean plants in La Compañia, Nicaragua. (a), Stunting of the plant, malformation and blistering of leaves. (b),

Mild epinasty and vein reversion. (c), Green-yellow chlorosis. (d), Green-yellow mosaic.

https://doi.org/10.1371/journal.pone.0178242.g004
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[34]. According to our results and those of Okada et al. [25], the major difference in genome

organization of PvEV-1 and PvEV-2 is the putative CPS domain found exclusively in PvEV-1

and the methyltransferase domain found only in PvEV-2.

A recent comprehensive survey for PvEV-1 and PvEV-2 in the Andes and Mesoamerica

using RT-PCR for virus detection revealed that both viruses occur in CB cultivars and breed-

ing lines in both domestication centers [36]. The single CB sample from Nicaragua included in

that study was negative for PvEV-1 and PvEV-2. Their results showed that the incidence of

both viruses is much higher in Mesoamerica than the Andes. Of 68 breeding lines/cultivars

with Mesoamerican origin, 63 were co-infected with both viruses (the remaining 5 plants con-

tained neither virus), whereas only 3 of 42 breeding lines/cultivars with Andean origin were

infected with one or both viruses [36]. In our study, the four tested, modern CB cultivars

grown in Nicaragua carried PvEV-1 and PvEV-2. ‘INTA Pipil’ has been bred in Samorano,

Honduras, whereas the other cultivars have been bred in CIAT, Colombia. Some of these culti-

vars have common ancestors [7]. It is therefore challenging to categorize the four CB cultivars

according to the domestication center. This is also the case with CBs in Tanzania, where large

numbers of CB varieties are grown, but the origin of most of them is unknown [3,4,38]. Test-

ing 30 CB plants grown from bean seeds harvested from each of the three surveyed zones

important for CB production in Tanzania revealed that PvEV-2 exist in all the three zones, and

PvEV-1 in at least two of them. Only few short contigs homologous to PvEV-1 were detected

in the pool of samples from Morogoro, suggesting that PvEV-1 is not common there for rea-

sons that could be interesting to elucidate. In Spain, an extensive survey of viruses in green

beans (P. vulgaris) revealed that all 422 tested crops carried PvEV [35], more specifically

PvEV-1 based on the studies of Okada et al. [25]. Vertical spread of endornaviruses via pollina-

tion [34] might facilitate spread of PvEV-1 and PvEV-2 among the CB varieties, elite breeding

lines and new cultivars growing nearby. Hence, PvEVs may be more common in CB crops

than currently known, which is pointed out by the findings made in Nicaragua and Tanzania

in our present study.

The surveys of Segundo et al. [35] for a large number of viruses in green beans grown in

greenhouses in Spain over several years detected no pathogenic virus in 61% of the plants dis-

playing virus-like symptoms, regardless of whether serological or PCR-based methods were

used. Examples of symptoms not associated with pathogenic viruses were illustrated and

closely resembled some of the symptoms we observed in the CBs grown in La Compañia (Fig

4) and in Tanzania. Leaves of CB cultivars grown in the field and sampled in Nicaragua were

tested for begomoviruses by PCR using universal primers, and results were negative, which

excludes begomoviruses as the cause of the observed symptoms. Bacterial and fungal patho-

gens infecting roots and vascular tissues may cause chlorosis and growth disorders resembling

symptoms of viruses, as illustrated by Hall [61]. Furthermore, symptoms may be associated

with genetic disorders, problems with application of fertilizers, pesticides or herbicides and/or

non-optimal growth conditions. For example, the mild physiological and phenotypic changes

observed in the greenhouse in Finland might have been associated with lower temperature and

light intensity than in the field in Nicaragua. On the other hand, it is also possible that some of

the symptoms were associated with unknown viruses that are too distinct from the known

viruses to be detected with the methods used in our study. Finally, symptoms may have been

caused by a combination of several of the aforementioned factors.

The CB plants were grown from harvested, dry beans in vector-proof greenhouses or

screenhouses in our study and only seedborne viruses, if any, were expected to occur in them.

Besides PvEVs—and CPMMV in one sample pool in Tanzania—no other seedborne viruses

were detected. Nevertheless, a few plants developed very mild epinasty and vein reversion on

leaves, as also noticed in a few plants grown in the fields of Nicaragua and Tanzania.
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Contribution of PvEVs to the symptoms cannot be fully excluded because PvEV-free controls

of the same CB varieties were not available for comparison. In general, the impact, if any, of

endornaviruses on their hosts remains elusive in most cases [25,34]. Considering the efficient

replication of PvEV genome in host cells, reflected by accumulation of high amounts of PvEV-

derived small-RNAs, it seems plausible that PvEV-infected plants suffer a loss of energy and

metabolites needed for its own physiology. Furthermore, endornaviruses are obviously not

eliminated by the antiviral defense but seem to persist in plants over generations, which

implies that endornaviruses interfere with or partially circumvent RNAi-based antiviral

defense in the host–an intriguing issue for future study on endornaviruses. Interference with

RNAi by viruses can interfere also with cellular RNAi-mediated gene regulation, which causes

physiological disturbance and symptoms often displayed by virus-infected plants ([62]; and

refs. therein) and, possibly, endornavirus-infected plants.

Indeed, there is evidence that endornaviruses can disturb physiology of the host plant.

Cytoplasmic male sterility in faba bean (Vicia faba L.) is associated with Vicia faba endorna-
virus (VfEV). VfEV was originally referred to as a cytoplasmic male sterility–associated high-

molecular-weight RNA. When Grill and Garger [63] transmitted VfEV to fertile faba beans

using dodder (Cuscuta subinclusa Durand & Hilg.) as a bridge, the recipient plants maintained

the VfEV RNA and became male-sterile. The virus-like features of the cytoplasmic male steril-

ity–associated RNA became established later [64]. Because studies of VfEV have shown that

endornaviruses can affect host physiology, it should be possible to observe changes in gene

expression in the infected plants. Indeed, during preparation of this paper, Khankhum et al.
[65] reported that expression of 84 genes is downregulated and 48 genes upregulated in the

plants of CB cultivar ‘Black turtle soup’ co-infected with PvEV-1 and PvEV-2, as compared

with ‘Black turtle soup’ free of the two endornaviruses. The genes affected were mainly associ-

ated with oxidation-reduction (redox) processes involved, e.g., in plant response to pathogen

infection.

The rate of seed transmission of the pathogenic viruses BCMV, BCMNV, CMV, CPMMV

and Southern bean mosaic virus can vary greatly depending on the CB cultivar, e.g., from 1% to

54% with BCMV [66]. Seed transmission depends on many physiological and developmental

functions of the host plant. In general, transfer of virus from seed to seedling requires infection

of the embryo, for which the physiological ‘window’ remains open only for a short time [9].

Furthermore, meristematic tissues and seed primordia mount a strong antiviral defense,

which may eliminate the virus [67,68]. These bottlenecks could be tightened by plant breeding

to further limit seedborne transmission. The resistance genes introgressed to the CB cultivars

tested in the present study include i) the recessive gene bgm-1 for resistance to Bean golden yel-
low mosaic virus (BGYMV; previously type II bean golden mosaic virus) [69–71], ii) a quantita-

tive trait locus that controls resistance to BGYMV and can be selected using the sequence-

characterized amplified region marker SW12 [72], and iii) the dominant gene I for hypersensi-

tive resistance to BCMV, which can be selected using the sequence-characterized amplified

region marker SW13 [73,74]. According to Ferrufino [7], cultivars ‘INTA Caribe’, ‘INTA Rojo’

and the breeding line X-RAV-404 carry all three resistance factors. Cultivars ‘INTA Frijol

Norte’, ‘INTA Fuerte Sequı́a’, ‘INTA Pipil’ and ‘INTA Seda 2’ contain the resistance genes I
and bgm-1. ‘INTA Cárdenas’ carries the gene I and the quantitative trait locus SW12. ‘INTA

Negro Precoz’ contains bgm-1, whereas ‘INTA Nutritivo’ carries the gene I [7]. Progress in

improving CB varieties in Tanzania by breeding for virus resistance includes combining the

recessive resistance gene bc-12 and the dominant gene I to protect CB against BCMV and

BCMNV and circumvent the temperature-sensitive systemic vascular necrosis (black root)

response caused by BCMNV in CB varieties varying the gene I [4,38]. The low incidence of

Survey of seedborne viruses in common bean

PLOS ONE | https://doi.org/10.1371/journal.pone.0178242 May 25, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0178242


seedborne infections of CB plants by pathogenic viruses in Nicaragua and Tanzania may be

attributable to new, virus-resistant CB varieties released by breeding programs [75].
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