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Abstract

Background

In older adults (aged 70–74 years), African-Americans have 4-fold higher risk of developing

hypertension-attributed end-stage renal disease (ESRD) than European-Americans. A

hypothesized mechanism linking hypertension and progressive chronic kidney disease

(CKD) is the innate immune response and inflammation. Persons with CKD are also more

susceptible to infection. Gene expression in peripheral blood can provide a view of the

innate immune activation profile. We aimed to identify differentially expressed genes, micro-

RNAs, and pathways in peripheral blood between cases with CKD and high blood pressure

under hypertension treatment versus controls without CKD and with controlled blood pres-

sure in African Americans.

Methods

Case and control pairs (N = 15x2) were selected from those without diabetes and were

matched for age, sex, body mass index, APOL1 risk allele count, and hypertension medica-

tion use. High blood pressure under hypertension treatment was defined as hypertension

medication use and systolic blood pressure (SBP)� 145 mmHg. CKD was defined as esti-

mated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2. Cases were selected from

those with CKD and high blood pressure under hypertension treatment, and controls were

selected from those without CKD (eGFR: 75–120 mL/min/1.73m2 and urine albumin-to-cre-

atinine ratio < 30mg/g) and with blood pressure controlled by hypertension medication use

(SBP < 135 mmHg and D(diastolic)BP < 90 mm Hg). We perform RNA sequencing of
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mRNA and microRNA and conducted differential expression and co-expression network

analysis.

Results

Of 347 miRNAs included in the analysis, 14 were significantly associated with case status

(Benjamini-Hochberg adjusted p-value [BH p] < 0.05). Of these, ten were downregulated in

cases: three of each belong to the miR-17 and miR-15 families. In co-expression network

analysis of miRNA, one module, which included 13 of the 14 significant miRNAs, had signifi-

cant association with case status. Of the 14,488 genes and 41,739 transcripts included in

the analysis, none had significant association with case status. Gene co-expression network

analyses did not yield any significant associations for mRNA.

Conclusion

We have identified 14 differentially expressed miRNAs in the peripheral blood of CKD cases

with high blood pressure under hypertension treatment as compared to appropriate controls.

Most of the significant miRNAs were downregulated and have critical roles in immune cell

functions. Future studies are needed to replicate our findings and determine whether the

downregulation of these miRNAs in immune cells may influence CKD progression or

complications.

Introduction

About one-third of end-stage renal disease (ESRD) in the U.S. has been attributed to hyperten-

sion [1]. In older adults, African-Americans have 4-fold higher risk of developing hyperten-

sion-attributed ESRD than European-Americans, and the incidence of hypertension-attributed

ESRD increases with age [2]. A hypothesized mechanism linking hypertension and kidney

function decline is the innate immune response and inflammation [3]. Inflammation biomark-

ers in blood have been associated with kidney function decline and incident hypertension [4–

7]. Additionally, older adults with chronic kidney disease (CKD) have increased risk of infec-

tion-related hospitalization or bloodstream infection [8,9]. Although immune dysfunction in

persons with ESRD due to metabolic disorder and retention of uremic solute is well established

[10,11], the mechanisms underlying the links between immune function, hypertension, and

kidney function in earlier stages of CKD is not well understood. Gene expression analysis in

peripheral blood can provide a view of the innate immune activation profile and may lead to

insights into the pathophysiology of hypertension and CKD, and their complications.

Studies using immune cells have identified specific gene expression profiles of CKD

patients versus hemodialyzed patients, and of patients with essential hypertension versus con-

trols [12,13]. Recently microRNAs (miRNA) have been shown to have a potential role in influ-

encing blood pressure and kidney function through modulating the immune response [14–

16]. miRNAs are small noncoding RNAs (~22 nucleotides in length) with important post-tran-

scriptional regulatory functions and are an attractive target of investigations.

Given that African Americans have a strong predisposition for hypertension-attributed kid-

ney disease, we decided to study hypertension and kidney disease jointly in older African

Americans. We aimed to identify differentially expressed genes and miRNAs in the peripheral

blood to gain insights into the immune profile of hypertension and kidney disease. We used a
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matched case-control design (n = 15x2) in the African Americans cohort of the Atherosclerosis

Risk in Communities (ARIC) study [17]. We conducted RNA sequencing to quantify expres-

sion levels and performed differential expression and co-expression network analyses to iden-

tify gene expression profiles in the peripheral blood of hypertension and CKD cases.

Methods

Ethics statement

Written informed consent was obtained from all ARIC study participants, and approval was

granted from the relevant institutional review boards (IRB) for the participating study centers

(University of North Carolina, University of Minnesota, University of Mississippi Medical

Center, and Johns Hopkins University). JHSPH IRB No. H.34.99.07.02.A1, study title “Athero-

sclerosis Risk in Communities (ARIC) Study—Morbidity/Mortality Follow-up Field Center.”

This research was conducted in accordance with the principles described in the Declaration of

Helsinki.

Study design

The ARIC Study is an ongoing prospective cohort study in four US communities [17]. A total

of 15,792 participants aged 45–64 years were recruited from Forsyth County, North Carolina;

Jackson, Mississippi; suburban Minneapolis, Minnesota; and Washington County, Maryland

between 1987 and 1989 (Visit 1). Four follow-up examinations (visits 2–5) have been con-

ducted. Blood samples preserved for RNA analysis using PAXgene blood tubes were available

from visit 5 (2011–13).

Case and control pairs (N = 15 pairs) were selected from those individuals without diabetes

but on hypertension treatment and they were matched by age, sex, body mass index, APOL1
renal risk allele count, and hypertension medications (ACE inhibitor, angiotensin receptor

blocker, and calcium channel blocker) to reduce heterogeneity. The use of hypertension medi-

cation was included in the selection criteria because a high proportion (>60%) of older African

Americans were on hypertension treatment [18], and some hypertension medications have

been reported to influence gene expression in peripheral blood [19]. In the ARIC study, hyper-

tension medication use was determined by inspection of medication bottles at study visit.

High blood pressure under hypertension treatment was defined as systolic blood pressure

(SBP)� 145 mmHg with hypertension medication use. CKD was defined as estimated glomer-

ular filtration rate (eGFR) < 60 mL/min/1.73m2. Cases were selected from those with CKD

and high blood pressure under hypertension treatment. Controls were selected from those

with blood pressure controlled by hypertensive medications (SBP < 135 mmHg and D(dia-

stolic)BP < 90 mm Hg) and without CKD (eGFR: 75–120 mL/min/1.73m2 and urine albu-

min-to-creatinine ratio [UACR] < 30mg/g). The APOL1 renal risk variants are strongly

associated with CKD progression [20], thus matching by APOL1 risk variants provided the

opportunity to identify differential expressed genes that were independent of APOL1. The

characteristics of the cases and controls were compared using the t-test, Kruskal-Wallis, or

Fisher’s exact test, as appropriate.

mRNA and miRNA library preparation, sequencing, processing, alignment, and quantitation
methods are described in S1 Text.

Surrogate variable generation

Surrogate variables (SVs) representing unknown confounders were estimated using the svaseq

function from the R package sva [21], with the null model absent of variables, and case-status
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as the variable of interest in the full model. SVs were included as covariates in models in all

subsequent expression analyses as expanded upon in the Differential Expression Analyses

Methods sections.

mRNA differential expression analyses

The mRNA analyses were conducted on genes and transcripts from a list of 20,377 genes

tagged as “protein-coding” in the GENCODE V19 annotation files. Results were adjusted

within each analysis using the Benjamini-Hochberg [22] procedure for multiple testing.

The R package DESeq2 [23] was used to conduct gene-level analyses, with the null hypothe-

sis of a zero log2-fold change. As DESeq2 incorporates normalization and default outlier

replacement procedures, SVs were generated on DESeq2 outlier-replaced, normalized counts

and included as covariates for these analyses. Gene-level analyses were carried out on14,488

genes with a normalized count�1 in at least 14 out of 29 samples (~50% as one sample failed

library preparation, see Results), with a target FDR of alpha = 0.05 used for independent filter-

ing. SVs were generated using 10,524 genes with a minimum normalized count of 10 in all 29

samples.

Gene-level kidney-focused analyses were also conducted, in which 397 kidney-expressed

proteins from the Human Protein Atlas [24] (v14) (http://www.proteinatlas.org/

humanproteome/kidney) were examined. Of these, 392 were available in our data; four were

not available in the ENSEMBL GRCh37 assembly, and one was not in our final GTF of pro-

tein-coding genes. Genes meeting the normalized count threshold defined as above for expres-

sion were subset to produce the final kidney-specific results.

The Ballgown [25] R package was used to analyze 41,739 transcripts with fragments per

kilobase of transcript per million mapped reads (FPKM)� 0.3 in at least 14 samples, and

SVs were generated on transcripts with FPKM� 0.5 in at least 26 samples (90%) (17,085

transcripts).

miRNA differential expression analyses

The miRNA analyses were conducted on mature miRNAs from miRBase [26] v20 and novel

miRNAs, detected as described in S1 Text. Similar to the mRNA analyses, the R package

DESeq2 was used for miRNA analyses with the null hypothesis of a zero log2-fold change, and

SVs were generated on the outlier-replaced normalized counts and included as covariates in

the model. These analyses were carried out on 347 miRNAs with a normalized count� 1 in at

least 15 out of 30 samples (50%) with target FDR of alpha = 0.05 used for independent filtering,

and SVs were generated using 270 miRNAs with a minimum normalized count of 3 in at least

27 samples (90%). Counts were summed across all precursors for each mature miRNA. Results

were adjusted using the Benjamini-Hochberg procedure for multiple testing. We performed

hierarchical clustering of the normalized counts of the miRNAs with nominal p-value < 0.01

to visualize the expression levels of these miRNAs between cases and controls.

Co-expression network analysis

We used the Weighted Gene Co-Expression Network Analysis (WGCNA) R package to con-

struct correlated signed network and tested for associations between the eigengene (the first

principal component) of each module and case status [27]. The genes, transcripts, and miR-

NAs used for co-expression network analysis and the generation of surrogate variables was the

same as those for differential expression analyses. The gene and miRNA counts were first nor-

malized by the size factor with outlier replacement using DESeq2 [23]. The transcript counts

were normalized to FPKM using Ballgown [25]. Next, the gene, transcript, or miRNA
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expression levels were transformed using natural logs after adding 1. Residuals of the log trans-

formed expression levels were generated with adjustment for surrogate variables. These residu-

als were used as input for co-expression analysis. In network construction, we used bi-weight

mid-correlation as a measure of co-expression to minimize the influence from outliers. For

soft thresholding power, we used the first power with adjusted R square for linear fit> 0.8.

The minimum module size was set as 25, 30, and 8 for genes, transcripts, and miRNA, respec-

tively. The significant threshold for module association was defined as 0.05 divided by the

number of correlated modules in each specific analysis.

miRNA target prediction and gene ontology analyses

The procedure for miRNA target prediction and gene ontology analyses of differentially

expressed miRNAs is similar to the procedure described by the authors of the empiricalGO

[28] software in Bleazard et al. 2015. Briefly, miRanda [29] v3.3a was used for miRNA target

prediction with parameters free energy < −20 kcal/mol and score> 155 [28]. The 3’UTR

sequences for target prediction were obtained from GRCh37 ENSEMBL BioMart [30]. Subse-

quently, gene ontology (GO) annotations were obtained from GRCh37 ENSEMBL BioMart,

and the empiricalGO python script was used in “basic” mode to produce a list of GO terms

with a one-tailed permutated p-value for each term. The final results were subset to include

only terms with a minimum size of 10, and the Benjamini-Hochberg multiple testing correc-

tion was applied to adjust for the number of GO terms in each list.

Results

Study population characteristics

The mean age of the cases and controls was 77 years, and 67% were female. No significant dif-

ferences were detected between cases and controls for all of the matching characteristics

(Table 1). The cases had significantly lower eGFR (mean of 46 min/mL/1.73m2 vs 88 min/mL/

1.73m2, p< 0.0001) and higher SBP (mean of 156 mm Hg vs. 115 mm Hg, p< 0.0001). UACR

was higher in cases (median of 13.7mg/g vs 7.8mg/g), but the difference was not significant

(p = 0.13). On hypertension medications, none of the participants were on both angiotensin-

converting-enzyme (ACE) inhibitor and angiotensin receptor blocker while two participants

were on ACE inhibitor and beta blocker, and four participants were on ACE inhibitor and

calcium channel blocker. These participants were split evenly between the case and control

groups. Since gene expression levels were measured in whole blood, we also compared cases

and controls for white blood cell count and percentage of lymphocyte, monocyte, and granulo-

cyte, and did not observe significant differences.

Sequencing and processing of mRNAs and miRNAs

Sequencing of mRNA was successful for 29 out of 30 samples; one sample (case) failed library

preparation. All 30 samples were successfully sequenced for miRNA. Quality control (QC) and

mapping statistics for the 29 samples with mRNA data (depth: 18.7M-45.1M paired-end reads)

and the 30 samples with miRNA data (depth: 6.2M-11.5M single-end reads) are listed in S1

and S2 Tables, respectively. As S1 Table indicates, External RNA Controls Consortium

(ERCC) transcripts were poorly detected in one sample, but this individual was retained for

analysis because the distribution of counts in other genomic features aligned with those of the

other samples, indicating a possible issue with the ERCC spike-in itself.
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Differential expression analysis of genes, transcripts, and miRNAs

The gene-level differential expression analysis of 14,448 protein-coding genes considered

“expressed” (normalized count� 1 in�50% of samples) produced no significant genome-

wide results after Benjamini-Hochberg (BH) multiple testing correction (S3 Table). The rele-

vance of the kidney to both hypertension and CKD led us to examine a set of 154 genes meet-

ing our expression threshold and expressed in the kidney, based on data available from the

Human Protein Atlas [24], which contains protein expression data from four kidney samples,

with proteins in the glomeruli, proximal tubules, distal tubules and the collecting ducts. In this

subset of genes, none were significant after BH correction. The gene with the lowest p-value

was SMIM24 (unadjusted p = 5.67x10-4, BH p = 0.087).

Transcript-level analyses were conducted on 41,739 transcripts with FPKM� 0.3 in� 50%

of samples. After BH correction, there were no differentially expressed transcripts identified;

results with p< 10−3 are presented in S4 Table.

We tested 347 miRNAs, including 12 novel miRNAs, for differential expression. We

detected 14 significant miRNAs. Four were upregulated, and 10 were downregulated in the

cases as compared to the controls (Table 2). The most significant miRNA was miR-17-5p

Table 1. Study population characteristics.

Variable Case Control p

Selection variables

eGFR, mL/min/m2, mean (SD) 46 (12) 88 (10) N/A

SBP, mm Hg, mean (SD) 156 (12) 115 (33) N/A

Matching variables

Age, year, mean (SD) 77 (4.5) 77 (5.4) 0.97

Female, % (n) 67 (10) 67 (10) 1.00

BMI, kg/m2, mean (SD) 28 (3.5) 30 (3.3) 0.09

APOL1 high-risk, % (n) 33 (5) 33 (5) 1.00

Hypertension medications

ACE inhibitor, % (n) 53.3 (8) 60 (9) 1.00

Angiotensin receptor blocker, % (n) 27 (4) 27 (4) 1.00

Beta blocker, % (n) 33.3 (5) 33.3 (5) 1.00

Calcium channel blocker, % (n) 47 (7) 60 (9) 0.71

Blood cell type variables

White blood cell count, 1000 per mm3, median (1st, 3rd

quartile)

5.4 (4.1, 6.2) 4.8 (4.4, 5.9) 0.80

Lymphocyte, %, median (1st, 3rd quartile) 33.6 (29.1,

39.0)

30.4 (27.8, 40) 0.72

Monocyte, %, median (1st, 3rd quartile) 13.8 (12.8,

17.2)

13.4 (12.5,

16.0)

0.48

Granulocyte, %, median (1st, 3rd quartile) 50.9 (45.1,

57.4)

54.8 (46.3,

59.8)

0.48

Other variables

DBP, mm Hg, mean (SD) 76 (12) 70 (19) 0.31

Albuminuria, median (1st, 3rd quartile) 13.7 (5.9, 66.7) 7.8 (5.7, 13.3) 0.13

High sensitive C-reactive Protein, 1.4 (1.01, 6.87) 5.3 (2.5, 6.3) 0.31

Serum creatinine, mg/dL 1.6 (0.9) 0.8 (0.1) 0.003

Diuretic use, % (n) 73.3 (11) 64.3 (9) 0.70

p, p-value, N/A, not applicable

https://doi.org/10.1371/journal.pone.0176734.t001
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(log2 fold change = -0.77, BH p = 6.7E-4). Two other miRNAs in the miR-17 family (miR-

106a-5p, miR-106b-3p) were also significantly downregulated. The miR-15 family has three

members that were significantly downregulated in the cases (miR-15a-5p, miR-15b-5p, and

miR-16-5p). Twenty members of the miR-17 and miR-15 families were found in our data and

all, but two, were downregulated in cases, although the associations of some were not signifi-

cant (S5 Table). S1 Fig presents a heat map of the normalized count of the 32 miRNAs with

nominal p-value < 0.01.

Experimentally validated targets in humans were available for 11 of the 14 significant miR-

NAs in miRTarBase [31] 6.0 (S6 Table). The number of validated target genes for each signifi-

cant miRNA ranged from 4 (miR-1285-3p) to 134 (miR-17-5p), with a median of 56.

Altogether 272 unique genes have experimental evidence of being regulated by the 11 signifi-

cant miRNAs. Of these, 239 were detected in our data, and 8 were associated with case status

at p< 0.05 (S7 Table).

Co-expression network analysis of genes and transcripts

To investigate whether patterns in gene co-expression may be related to case-status, we con-

ducted gene co-expression analysis. Of the 14,488 genes included in the analysis, 178 were

assigned into four co-expression modules (S8 Table). The rest were pruned by WGCNA due

to low correlation (< 0.3) with the eigengene in each module. The association between the

eigengene of the brown module (consisting of 35 genes) and case status was nominally signifi-

cant (p = 0.03, S9 Table). Of the 41,739 transcripts included in the analysis, no correlated mod-

ules were detected.

Co-expression network analysis of miRNAs

Of the 347 miRNA included in co-expression analysis, 182 were assigned into five co-expres-

sion modules with correlated miRNAs (S10 Table). The rest (n = 165) were pruned due to low

correlation with the eigengene in each module. The eigengene of the turquoise module (108

miRNAs) was significantly associated with case status (p = 0.005, Table 3). The eigengene of

the blue module (29 miRNAs) was nominally associated with case status (p = 0.03). For both

Table 2. Differentially expressed miRNAs (BH p<0.05).

miRNA Mean of normalized count Log2 Fold Change SE p BH p

hsa-miR-17-5p 71.97 -0.77 0.16 1.94x10-6 6.76x10-4

hsa-miR-130a-3p 492.19 -0.60 0.15 4.31x10-5 7.47x10-3

hsa-miR-15b-5p 215.32 -0.72 0.19 1.24x10-4 1.17x10-2

hsa-miR-106b-3p 1425.98 -0.65 0.17 1.35x10-4 1.17x10-2

hsa-miR-106a-5p 5.46 -1.03 0.28 2.12x10-4 1.34x10-2

hsa-miR-16-5p 6983.54 -0.64 0.17 2.33x10-4 1.34x10-2

hsa-miR-181a-5p 15301.70 -0.59 0.16 2.80x10-4 1.39x10-2

hsa-miR-1285-3p 561.01 -0.44 0.13 4.92x10-4 2.14x10-2

hsa-miR-15a-5p 430.52 -0.76 0.23 8.36x10-4 3.18x10-2

hsa-miR-29c-5p 73.85 0.55 0.17 9.18x10-4 3.18x10-2

hsa-miR-345-5p 715.07 0.60 0.18 1.04x10-3 3.27x10-2

hsa-miR-142-3p 89.46 0.65 0.20 1.23x10-3 3.52x10-2

hsa-miR-339-3p 507.26 0.36 0.11 1.32x10-3 3.52x10-2

hsa-miR-210-3p 440.49 -0.39 0.12 1.50x10-3 3.72x10-2

SE, standard error; p, p-value; BH p, Benjamini-Hochberg adjusted p-value

https://doi.org/10.1371/journal.pone.0176734.t002
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modules, case status was associated with lower eigengene values suggesting an association with

lower miRNA expression in these modules. The turquoise module included 13 of the 14 miR-

NAs that were significantly downregulated in the cases (Table 2).

Gene ontology analysis of significant miRNAs

We then proceeded to predict target genes of the significant miRNAs using miRanda. The pre-

dicted targets were analyzed for enrichment of gene ontology annotations using empiricalGO

with all predicted targets of the 347 expressed miRNAs as the “universe.” empiricalGO

counted 5,576 targets for the 14 differentially expressed miRNAs from the target genes, of

which 4,431 had associated GO terms. No GO terms with minimum size of 10 genes in our

data were significant after Benjamini-Hochberg multiple test correction, while 25 terms had a

one-tailed permutated p< 0.05 (S11 Table). All results for mRNA and miRNA analyses are

summarized in S2 Fig.

Discussion

Main findings

We have identified 14 miRNAs that were significantly associated with CKD and high blood

pressure under hypertension treatment. Ten of these miRNAs were downregulated in the

cases, and 13 were grouped in one module in co-expression network analysis. Three of the 14

miRNAs belong to the miR-17 family, and three belong to the miR-15 family.

The miRNAs that were significantly associated with case status have critical roles in

immune cell function. First, miR-17-5p, the most significantly downregulated miRNA,

belongs to a cluster of miRNAs located in intron 3 of C13orf25 at chromosome 13 [32]. This

cluster of miRNAs (miR-17/92) has a wide range of functions in immune cell development

and differentiation [32]. Specifically, the miR-17 cluster has been found to promote T cell

survival, regulate Th1 response, and interleukin 10 (IL10) production in regulatory T cells

[33,34]. Members of two other clusters (miR-106a/363 and miR-106b/25) of the miR-17 family

were also significantly downregulated in cases. miR-106a on the X chromosome has been

shown to downregulate IL10 expression [35], and all three miR-17 family members differen-

tially expressed in our study (106a, 106b, 17-5p) are known to be upregulated in activated T

lymphocytes [36]. Second, three members of the miR-15 family (miR-15a-5p, miR-15b-5p,

miR-16-5p) were also significantly downregulated in cases. Expression of miR-15 has been

found to enhance the induction of regulatory T cells from naïve CD4+ T cells [37]. Addition-

ally, miR-210 suppresses proinflammatory cytokines in murine macrophages [38]. Finally, in

Table 3. Association between the eigengene of each miRNA co-expression module and case status.

Module Betab SE pa Number of miRNAs

Turquoisec -0.97 0.32 5.38x10-3 108

Blue -0.80 0.34 2.63x10-2 29

Green -0.06 0.37 8.63x10-1 11

Brown 0.03 0.37 9.32x10-1 23

Yellow -0.01 0.37 9.84x10-1 11

SE, standard error; p, p-value
a p-values represent association of the module eigengenes, the first principal component of expression levels of a module, with case status.
b Beta values are in log expression level units.
c 13 out of 14 differentially expressed miRNAs (excluding hsa-miR-339-3p), belong to the turquoise module.

https://doi.org/10.1371/journal.pone.0176734.t003
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considering experimentally verified targets of the differentially expressed miRNAs in this

study, the BCL2,CCND1, and VEGFA genes are each targeted by five miRNAs from at least

two miRNA families. These genes are known factors in apoptosis and cell survival, having pre-

viously been studied in the context of cancer pathways [39,40]. Taken together, the downregu-

lation of the above miRNAs in cases suggests a lower immune activation state. Whether this

lower activation state has implications for CKD progression or complications requires further

investigation.

Population-based studies have reported increased risk of infection among persons with

early stages of CKD. In older adults (age� 65 years), reduced kidney function (eGFR< 60

mL/min/1.73m2) is associated with increased risk of infection-related hospitalization or blood-

stream infection [8,9]. In persons with ESRD, immune dysfunction due to metabolic disorder

and retention of uremic solute is well established [10,11]. The decline in kidney function

occurs in a continuum. Thus, immune dysfunction may play a role in earlier stages of CKD.

The increased risk of infection in persons with earlier stages of CKD is consistent with our

findings of the downregulation of some miRNAs that are critical for immune cell function.

On kidney disease, the plasma levels of miR-15b were found to be 2-fold lower in hemodial-

ysis patients versus non-CKD controls [41]. This result is consistent with our study. The asso-

ciations between levels of miR-15b and miR-17 in kidney tissues and acute kidney injury in

human and in animal models have been reported [42]. Since gene expression levels are highly

tissue specific, it is uncertain whether studies of gene expression in one tissue may be general-

izable to a different tissue [43–47].

Strengths and limitations

One of the strengths of this study is its design. The cases and controls were carefully selected

and matched for important potential confounders of gene expression, including hypertension

medication use. In addition, we performed deep sequencing of the miRNA pool that allowed

the discovery of novel miRNAs. However, our study has some limitations as well. First, the dif-

ferentially expressed miRNAs need to be replicated in an independent study and validated by

alternate laboratory methods, such as real-time polymerase chain reaction. Second, gene

expression levels were measured in whole blood and not in specific types of immune cells.

Thus, although cases and controls did not differ in major white blood cell types, and we used

surrogate variables to control for unmeasured confounders, we cannot exclude the possibility

that the differentially expressed miRNAs arise from differences in the distributions of white

blood cell subpopulations. Third, our study is a cross-sectional study. We cannot distinguish

whether the differential expression of miRNAs might have influenced disease development or

was a consequence of the disease condition. Fourth, in contrast to miRNA co-expression net-

work analysis, mRNA co-expression network analysis did not detect any significant modules

although one module was nominally significant. This suggests larger sample size may be

required for mRNA differential expression analysis. Finally, our cases and controls were under

hypertension treatment, therefore our results cannot be generalized to persons without hyper-

tension. Since the majority (>60%) of older adults in the U.S. are hypertensive [18], our results

are, however, relevant to a large proportion of older adults.
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