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Abstract

Genome-wide association studies (GWAS) have linked dozens of single nucleotide poly-

morphisms (SNPs) with Parkinson’s disease (PD) risk. Ascertaining the functional and

eventual causal mechanisms underlying these relationships has proven difficult. The major-

ity of risk SNPs, and nearby SNPs in linkage disequilibrium (LD), are found in intergenic or

intronic regions and confer risk through allele-dependent expression of multiple unknown

target genes. Combining GWAS results with publicly available GTEx data, generated

through eQTL (expression quantitative trait loci) identification studies, enables a direct asso-

ciation of SNPs to gene expression levels and aids in narrowing the large population of

potential genetic targets for hypothesis-driven experimental cell biology. Separately, over-

lapping of SNPs with putative enhancer segmentations can strengthen target filtering. We

report here the results of analyzing 7,607 PD risk SNPs along with an additional 23,759 high

linkage disequilibrium-associated variants paired with eQTL gene expression. We found

that enrichment analysis on the set of genes following target filtering pointed to a single

large LD block at 6p21 that contained multiple HLA-MHC-II genes. These MHC-II genes

remain associated with PD when the genes were filtered for correlation between GWAS sig-

nificance and eQTL levels, strongly indicating a direct effect on PD etiology.

Introduction

Parkinson’s disease [MIM 168600] is an age-associated, incurable neurodegenerative disorder

with a cumulative lifetime risk of close to 10% [1]. Most cases are genetically complex and spo-

radic, though twin studies indicate heritability is around 34–60% [2]. In addition to 7 autoso-

mal and recessive monogenic causal genes, at least 24 loci have been associated by GWAS with

an increased risk of developing Parkinson’s [3, 4]. Depending on the method of association,

these loci link Parkinson’s disease etiology with a set of between 24 and 800 genes having spe-

cific activity in a multitude of tissues.

Recently, some progress has been made in experimentally linking specific risk polymorphisms

with allele-specific regulatory activity and corresponding neighboring gene activity [5]. However,

even in this best-studied case, the exact impact of altered expression to the neighboring gene,
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SNCA [MIM 163890], on PD remains unclear. For the majority of risk loci, the specific dis-

rupted-regulatory element and related gene expression changes are unknown, preventing experi-

mental manipulation of the sort seen in [5].

Previously, we examined the nonrandom distribution of PD risk SNPs overlapping tissue-

specific putative regulatory elements (REs) [6]. That analysis indicated the tissue or tissues in

which an allele-specific effect was most likely to be causal. Surprisingly, most RE enrichment

was not seen in brain tissue, indicating that these loci may confer a predisposition to PD

through biological effects that are remote from the eventual symptomatic tissues. One draw-

back of this method, however, is that it did not link risk to specific gene sets but only to tissue-

specific active regions generally. Furthermore, the specifics of the enrichment excluded several

major loci from analysis. In the present study, we examine different sets of genes potentially

associated with PD risk loci in order to identify common functional pathways. In order to find

experimental genetic targets, we linked genes to nearby super-enhancers by SNPs in a compre-

hensive genome-wide screen.

Materials and methods

PD risk variants

Genetic polymorphisms, which have been associated directly or by imputation with PD, were

obtained from pdgene.org (p. value <0.0001), PheGenI, and GWAS catalog on 7/2016 provid-

ing 7,607 significant risk index sites. Finding further proxy variants in linkage disequilibrium

(LD), r2 > 0.8 in using rAggr added an additional 23,759 variants (the majority of which were

single nucleotide polymorphisms (SNPs). For convenience, we referred to all as risk SNPs. Off-

spring LD-SNPs were risk-annotated according to the most significant parent GWAS p-value

when multiple linked SNPs were present.

Analysis

Significant eQTLs were downloaded from GTEx July 2016, version 6. Intersection with risk

SNPs was determined using custom Perl scripts to generate matched gene/SNP eQTLs accord-

ing to rsID. Tissue source for eQTL values were annotated. Cleaned txt files were then ana-

lyzed using the statistical package, R. Correlation between GWAS significance and eQTL

expression was calculated and subset accordingly. Custom Perl scripts were used to find over-

lap between dbSUPER defined enhancer regions and risk SNPs. Gene set enrichment analysis

on egenes associated with risk SNPs was performed using a variety of GSEA software, includ-

ing DAVID, Metacore from Thomson Reuters, Gorilla, PANTHER, which all gave broadly

similar results. Query sets were compared against a background of all significant egenes in

GTEx when possible during GSEA. TF binding motif-disruption was found via the R package

MotifBreakR, for Factorbook motifs, searched against the dbSNP build 142 and dbSNP build

144. Directional associations for pdgene.org risk SNPs and eQTLs at the HLA locus were ori-

ented according to the GTEx measured minor allele frequency, correlated according to gene

by GWAS OR vs. eQTL beta value, and averaged across tissues.

Results

We obtained 7,607 PD risk SNPs along with an additional 23,759 surrogate polymorphisms at

r2 > 0.8 occupying at least 26 loci (Fig 1A–1C, Methods). It is obvious that the resulting 31,366

SNPs needed to be reduced to a more manageable number for hypotheses generation, as well

as to associate risk with specific genes and regulatory elements.

Parkinson’s disease eQTL
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We first reduced the set of potential PD risk SNPs by removing those which were not asso-

ciated with known gene expression changes. The most direct way to link SNPs with gene

expression is through variant-RNA expression association known as expression quantitative

trait loci (eQTL) screens [7]. This is achieved by associating significant risk SNPs plus surro-

gates to genes by searching across GTEx-significant eQTLs and combining the results from

each of 53 tissues; this generated a total of 795 genes (Fig 1D). Some risk loci queries (chromo-

somes 8, 18, 19) resulted in no eQTLs in the GTEx database, while other loci show association

with a large number of genes. Large signals were seen at several regions, including chromo-

some 6 and 17. The largest number of eQTL genes (egenes) as well as the strongest change in

expression were seen at chromosome 17q21. This locus, as well as that at chromosome 6p21, is

located in a region with a great many polymorphisms in high LD.

We compared the set of 795 SNP/gene associations based on GTEx eQTLs with other asso-

ciations based on the nearest transcription start site (TSS); on all TSS located within 1Mb at

the gene locus given by the database (typically but not always the closest gene body). We used

gene set enrichment to compare the sets produced by the different methods. In order to exam-

ine whether any functional pathways were over-represented in these gene sets, we used
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https://doi.org/10.1371/journal.pone.0175882.g001
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pathway enrichment and found that nearly all gene sets showed a similar functional

enrichment of antigen-related processes (data not shown). Upon further examination, it

became obvious that the 6p21.32 locus which contain a large linkage disequilibrium (LD)

block that includes many of the HLA-MHC class I and class II protein coding genes—over-

whelmed other enrichment signals. Although some non-HLA-related processes were

enriched, in nearly every PD risk-SNP/gene set we examined, antigen presentation path-

ways predominated.

Although, neuorinflammation generally, and the HLA MHC genes specifically, have been

related to Parkinson’s disease [8–11], it is still possible that the functional enrichment is spuri-

ous. The HLA locus is a highly polymorphic site having a large number of variants in high LD

and containing genes with related function, any PD risk variants within will be indirectly asso-

ciated with HLA genes due to linkage with surrogate polymorphisms. In order to test whether

the measured eQTL associations, including those at 6p21, directly impact PD risk we measured

and found strong correlation between associated eQTL expression changes and PD GWAS sig-

nificance of variants for individual genes (Fig 2). Filtering by these correlations reduced the

PD risk associated genes to 189. Again, GSEA implicated MHC II genes, and to a lesser degree,

MHC I genes.

Because most risk variants lie in noncoding DNA regions, we have reasonable confidence

that variants affect phenotype by altering gene transcription, most likely by disrupting regula-

tory elements (REs). A particularly active subset of REs is situated in super-enhancers (SEs).

SEs are large clusters of enhancer elements which show high association for Mediator occu-

pancy and histone H3K27Ac modifications, and they show more tissue specific activity than

enhancers in general [12–14]. As we and others have reported, we found that candidate risk

SNPs often overlap SEs, and may especially affect disease predisposition. By further sub-classi-

fication of the risk SNPs according to overlap with dbSUPER defined superenhancers, we

reduced the number of risk variants to 3685 and of risk genes to 100, with chromosome 6 and

chromosome 17 having 1063 and 1322 variants, respectively.

Finally, we have previously shown that locating putative transcription factor (TF) binding

motif disruption is an effective way to identify possible functional risk SNPs [15]. We filtered

the SE SNP set for TF motif disruption and found that the associated gene sets changed little,

falling to 95 genes (S3 File), and indicating that the previous subsetting by super-enhancer

overlap had enriched for TF binding motifs. Correspondingly the significant GSEA signals

related to the locus at chromosome 6p21.32. The most significant gene ontology categories

were by Panther, “MHC class II receptor activity” (p = 5.8e-4), MetaCore from Thomson Reu-

ters: “peptide antigen binding” (p = 4.906e-112), and David, “interferon-gamma-mediated sig-

naling pathway” (p = 1.97E-7) [16, 17].

Discussion

Pdgene currently curates the most comprehensive GWAS of PD risk, having imputed associa-

tion scores for 7.9 million variants [18]. To maximize the possible network of associated risk

genes we used a low (0.001) p-value to obtain 7267 SNPs from pdgene.org and added to that

risk SNPs from the NIH GWAS Catalog and NCBI PheGenI databases. Associating risk SNPs

and LD SNPs to genes from the GTEx eQTL data gave a total of 795 genes (527 protein coding

genes) across all 53 tissues. The median number of significant egenes per variant was 4 genes

per tissue (max 18). Brain specific eQTLs consisted of 175 genes. This much smaller gene set

may better predict influential genes, but non-brain tissues may have also a role in PD develop-

ment and progression [6]. The smaller subset of brain-tissue egenes included 20 genes at the

HLA locus (chromsome 6) and 28 genes at the MAPT locus (chromosome 17). This agrees

Parkinson’s disease eQTL
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with results from a similar study that examined 67 PD SNPs in a small number of PD and con-

trol brain cortical samples and found cis eQTLs at the same two regions [19].

GTEx gene expression data can be oriented by allele frequency and it is worth noting that

some signals are directional in this presentation, indicating that the variants which show a pos-

itive expression changes are primarily the major or minor population alleles, and that LD vari-

ants all affect the same gene or genes. For instance, the signal on chromosome 12 for LRRK2
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[MIM 609007] is primarily in the positive direction, indicating all significant nearby alleles are

the low-frequency, minor alleles (in this case the minor alleles are the risk alleles) and these

correlate with higher LRRK2 expression relative to the major allele. This is made more obvious

by multiplying the GWAS–log(p. value) by eQTL expression (S1 Fig). The minor risk alleles

are associated with increased LRRK2, which may indicate that a slightly elevated LRRK2 level

leads to a small but cumulative relative PD risk. This is consistent with findings that overex-

pression of wild-type or mutant LRRK2 induces neural toxicity and elevated protein levels or

activity that possibly contribute to Parkinson’s disease [20–22]. In other regions, the signal is

more complex, and in these cases, a single allele may be associated with an increase in one

gene transcript but a decrease in another.

Because eQTL studies produce a quantitative association between gene expression and mul-

tiple polymorphisms it may be possible to prioritize SNPs by comparing the expression level

changes. A large change in gene expression may be more tractable experimentally and so can

be used to prioritize targets. A corollary and proof of principle is that SNPs which alter the

same genes by different amounts should show a corresponding difference in GWAS signifi-

cance. Indeed, we see more positive correlation and less negative correlation than expected by

chance in pairwise SNP comparisons of the difference in eQTL effect sizes and GWAS mea-

sured significance (S2 Fig). This principle is noisier (due to fewer values) but more direct by

searching for genes that show a positive correlation between GWAS significance and eQTL

expression. GWAS significance has been previously positively correlated with eQTL effect size

[23]. We used this method to reduce the PD-associated genes from 795 to 189. However, for

many genes the number of SNPs with relevant measurement is low and so correlation is inac-

curate. Furthermore, we only consider significant p-values and significant eQTLs further

increasing the accuracy of correlation. For these reasons, we chose a correlation cutoff of 0.4 to

increase the sensitivity. We believe this set of genes includes those for which there is the great-

est evidence for involvement with PD etiology, although some important genes, including

SNCA, were removed.

We hypothesize that some GWAS signals are due to complex haplotypes containing multi-

ple linked SNPs, which confer risk through synergistic disruption of multiple TF binding sites

simultaneously. To maximize the identification of these cases and to identify specific regula-

tory elements we sub-classified the set of risk SNPs by overlap with super-enhancers, the large

enhancer regions showing unusually high active histone signals. In this way, we reduced the

number of risk gene candidates to 100. After further filtering SNPs for those that disrupt TF-

binding protein motifs, the median number of egenes per SNP per tissue was 2 (max 14). This

set of 95 genes is functionally enriched for antigen presentation processes.

In general, gene set enrichment for functionally related genes following our filtering of PD

risk associations, pointed to fewer underlying processes than expected. For instance, the set of

genes curated by the Parkinson’s Disease Gene Ontology Annotation Initiative displays

broader biological functions [24]. This disparity may reflect inadequate power or unsuccessful

subgrouping in the underlying GWAS studies. The functional enrichment seen here is due to a

single locus containing multiple HLA genes. However, one must be careful over-interpreting

GSEA for locations where closely spaced genes share similar functions. GSEA typically

assumes multiple independent random variables. However, this assumption is not valid when

a single variant can affect multiple related genes such as at the HLA region, which has previ-

ously shown strong correlation in MHC gene expression [25]. Furthermore, the density of var-

iants near the HLA genes is high, making it more likely that noise alone will provide signals in

these regions. Never-the-less, the strong GSEA for MHC-II genes (and significant enrichment

for MHC-I genes) does indicate that variants in these regions can strongly affect multiple

genes in a single pathway. Furthermore, in a previous study that linked genes to risk SNPs by

Parkinson’s disease eQTL
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proximity rather than by eQTLs, an enrichment for immunological gene categories remained

even when the HLA locus was treated as a single signal [26].

The 6p21.32 risk locus contains approximately 3300 risk SNPs in LD (r2>0.8) and spans

close to 2Mb and 121 genes. Cis eQTL analyses indicate that allele specific expression may be

altered in up to 60 genes in this region, providing associated allele-specific differences in many

traits and disorders. Indeed, the GWAS catalog links this locus with some 175 traits, approxi-

mately 10% of studied parameters [4]. Removing associations with genes that show lower PD

correlation coefficients than overlapping variants associated with an eQTL in any tissue with

dbSUPER super-enhancers, reduced the number of variants to 1063 with associated expression

changes in 15 genes. We analyzed these with MotifbreakR [15] to find variants which alter

putative TF-binding motifs; 595 risk polymorphisms strongly disrupted 79 Factorbook bind-

ing motifs (chromosome 6 summarized as a tract in Fig 3 and disrupted TFs listed in S1 File).

We realize that this shorter list of variant/gene associations is by no means comprehensive, but

it does represent the strongest indication of PD etiology.

A high GWAS significance may indicate one of three things. Firstly, the expression of a

very central protein can be affected, perhaps only slightly. SNCA is a likely candidate for this

type of risk. Secondly, a peripheral process may be affected, but to a very high degree. The

large eQTL signals at the HLA and MAPT loci point to such relationships. Lastly, multiple

peripheral processes may be affected simultaneously. This is particularly likely in large LD

blocks where multiple correlated variants can have distinct effects. Again, both the MAPT and

HLA may fall in this category.

We expect that multiple variants near the MHC-II genes and which overlap one of several

super-enhancer regions (Fig 3), independently affect tissue-specific MHC-II gene expression

levels and likely act to synergistically alter adaptive immunity-related processes. By comparing

Fig 3. UCSC browser view of MHC-II HLA locus. GWAS p values are from Nalls et. al [3]. A total of 595 PD risk SNPs that overlap

dbSUPER defined super-enhancers, show eQTLs, and disrupt a TF binding motif (labeled disrupt eQTL SNPs, S1 File) are shown.

https://doi.org/10.1371/journal.pone.0175882.g003
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the associated eQTL signals across tissues we found that PD risk alleles at this locus are associ-

ated with increased expression of 7 HLA-genes (HLA-B, HLA-C, HLA-DQA1, HLA-DQB1,

HLA-DQB1-AS1, HLA-DRB1, HLA-DRB5) and decreased expression of 4 genes (HLA-DOB,

HLA-DQA2, HLA-DQB2, HLA-DRB6). MHC-II genes are expressed by antigen presenting

cells, including microglia. The number of MHC-II-expressing cells increases with neuroin-

flammation and PD patients show more activated microglia then controls [27–29]. Activated

microglia help clear debris, both foreign and native (including dying neurons), and produce

pro-inflammatory factors. In addition, it was shown that microglial MHC-II plays a central

role in the activation of both the innate and adaptive immune responses to alpha-synuclein

expression, a hallmark in PD progression [30]. Altered antigen presentation pathways associ-

ated with risk alleles may contribute to prolonged neuro-inflammation or otherwise increase

the loss of dopaminergic neurons in PD and as such be related to the microbiome in the gut

[31]. The large number of variants in this region may relate to a highly complex regulation

coupled with selective pressure on these genes and imply an importance of the MHC-II pro-

cesses for many disorders including Parkinson’s disease. However, we cannot rule out a signif-

icant role for MHC-I pathways in PD. Interestingly the density of overall GWAS catalog risk

SNPs aligns well with super-enhancer-located PD SNPs (Fig 3) suggesting that a relatively

small number of SNPs may have diverse and complex effects on a variety of disorders and that

examining a single index SNP is not a good model for causality.

Supporting information

S1 Fig. LRRK2 eQTL associated variants. GWAS significance multiplied by 100 + eQTL beta

and plotted by chromosome position for each variant.

(EPS)

S2 Fig. Greater positive correlation exists between GWAS significance and eQTL in

SNP-SNP pairwise comparisons then expected by chance. (A) Plot of correlation per tissue

per gene for all SNP-SNP pairwise comparisons. (B) Q-Q plot for correlation scores for tissue-

gene sets with greater than 100 SNP-SNP comparisons.

(EPS)

S1 File. GWAS PD SNPs. 2,441 SNPs which disrupt putative binding motifs.

(TXT)

S2 File. SNP locations. Chromosomal locations of SNPs which disrupt binding motifs.

(BED)

S3 File. Integrated GWAS and eQTL PD data. 795 egenes associated with PD risk with anno-

tations indicating each additional filtering step.

(TXT)

Acknowledgments

We acknowledge the Center for Neurodegenerative Science at the Van Andel Research Insti-

tute for financial support and Drs. Patrik Brunden and Darrel Moore for helpful discussion.

Simon Coetzee (Cedar-Sinai, Los Angeles) provided help with motifbreakR analyses. We

acknowledge edits by Dr. David Nadziejka (VARI).

Author Contributions

Conceptualization: SP GAC.

Parkinson’s disease eQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0175882 April 13, 2017 8 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175882.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175882.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175882.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175882.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175882.s005
https://doi.org/10.1371/journal.pone.0175882


Data curation: SP.

Formal analysis: SP.

Funding acquisition: GAC.

Investigation: SP.

Methodology: SP.

Project administration: GAC.

Resources: SP GAC.

Software: SP.

Supervision: GAC.

Validation: SP.

Visualization: SP.

Writing – original draft: SP.

Writing – review & editing: SP GAC.

References

1. Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson dis-

ease in advanced age. Neurology. 2009; 72(5):432–8. PubMed Central PMCID: PMCPMC2676726.

https://doi.org/10.1212/01.wnl.0000341769.50075.bb PMID: 19188574

2. Labbe C, Lorenzo-Betancor O, Ross OA. Epigenetic regulation in Parkinson’s disease. Acta Neuro-

pathol. 2016; 132(4):515–30. PubMed Central PMCID: PMCPMC5026906. https://doi.org/10.1007/

s00401-016-1590-9 PMID: 27358065

3. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of

genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014; 46

(9):989–93. PubMed Central PMCID: PMCPMC4146673. https://doi.org/10.1038/ng.3043 PMID:

25064009

4. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a

curated resource of SNP-trait associations. Nucleic Acids Res. 2014; 42(Database issue):D1001–6.

PubMed Central PMCID: PMCPMC3965119. https://doi.org/10.1093/nar/gkt1229 PMID: 24316577

5. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, et al. Parkinson-associated

risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature. 2016; 533

(7601):95–9. PubMed Central PMCID: PMCPMC5042324. https://doi.org/10.1038/nature17939 PMID:

27096366

6. Coetzee SG, Pierce S, Brundin P, Brundin L, Hazelett DJ, Coetzee GA. Enrichment of risk SNPs in reg-

ulatory regions implicate diverse tissues in Parkinson’s disease etiology. Sci Rep. 2016; 6:30509.

PubMed Central PMCID: PMCPMC4962314. https://doi.org/10.1038/srep30509 PMID: 27461410

7. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45(6):580–5.

PubMed Central PMCID: PMCPMC4010069. https://doi.org/10.1038/ng.2653 PMID: 23715323

8. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, et al. Common genetic var-

iation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010;

42(9):781–5. PubMed Central PMCID: PMCPMC2930111. https://doi.org/10.1038/ng.642 PMID:

20711177

9. International Parkinson Disease Genomics C, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin

UM, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a

meta-analysis of genome-wide association studies. Lancet. 2011; 377(9766):641–9. PubMed Central

PMCID: PMCPMC3696507. https://doi.org/10.1016/S0140-6736(10)62345-8 PMID: 21292315

10. Kannarkat GT, Cook DA, Lee JK, Chang J, Chung J, Sandy E, et al. Common Genetic Variant Associa-

tion with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson’s Disease:

An Observational and Case-Control Study. NPJ Parkinsons Dis. 2015; 1. PubMed Central PMCID:

PMCPMC4853162.

Parkinson’s disease eQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0175882 April 13, 2017 9 / 11

https://doi.org/10.1212/01.wnl.0000341769.50075.bb
http://www.ncbi.nlm.nih.gov/pubmed/19188574
https://doi.org/10.1007/s00401-016-1590-9
https://doi.org/10.1007/s00401-016-1590-9
http://www.ncbi.nlm.nih.gov/pubmed/27358065
https://doi.org/10.1038/ng.3043
http://www.ncbi.nlm.nih.gov/pubmed/25064009
https://doi.org/10.1093/nar/gkt1229
http://www.ncbi.nlm.nih.gov/pubmed/24316577
https://doi.org/10.1038/nature17939
http://www.ncbi.nlm.nih.gov/pubmed/27096366
https://doi.org/10.1038/srep30509
http://www.ncbi.nlm.nih.gov/pubmed/27461410
https://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
https://doi.org/10.1038/ng.642
http://www.ncbi.nlm.nih.gov/pubmed/20711177
https://doi.org/10.1016/S0140-6736(10)62345-8
http://www.ncbi.nlm.nih.gov/pubmed/21292315
https://doi.org/10.1371/journal.pone.0175882


11. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic tar-

get. Transl Neurodegener. 2015; 4:19. PubMed Central PMCID: PMCPMC4603346. https://doi.org/10.

1186/s40035-015-0042-0 PMID: 26464797

12. Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic

Acids Res. 2016; 44(D1):D164–71. PubMed Central PMCID: PMCPMC4702767. https://doi.org/10.

1093/nar/gkv1002 PMID: 26438538

13. Niederriter AR, Varshney A, Parker SC, Martin DM. Super Enhancers in Cancers, Complex Disease,

and Developmental Disorders. Genes (Basel). 2015; 6(4):1183–200. PubMed Central PMCID:

PMCPMC4690034.

14. Quang DX, Erdos MR, Parker SC, Collins FS. Motif signatures in stretch enhancers are enriched for dis-

ease-associated genetic variants. Epigenetics Chromatin. 2015; 8:23. PubMed Central PMCID:

PMCPMC4502539. https://doi.org/10.1186/s13072-015-0015-7 PMID: 26180553

15. Coetzee SG, Coetzee GA, Hazelett DJ. motifbreakR: an R/Bioconductor package for predicting variant

effects at transcription factor binding sites. Bioinformatics. 2015; 31(23):3847–9. PubMed Central

PMCID: PMCPMC4653394. https://doi.org/10.1093/bioinformatics/btv470 PMID: 26272984

16. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using

DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

PMID: 19131956

17. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein

families and functions, and analysis tools. Nucleic Acids Res. 2016; 44(D1):D336–42. PubMed Central

PMCID: PMCPMC4702852. https://doi.org/10.1093/nar/gkv1194 PMID: 26578592

18. Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, et al. Comprehensive

research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene data-

base. PLoS Genet. 2012; 8(3):e1002548. PubMed Central PMCID: PMCPMC3305333. https://doi.org/

10.1371/journal.pgen.1002548 PMID: 22438815

19. Latourelle JC, Dumitriu A, Hadzi TC, Beach TG, Myers RH. Evaluation of Parkinson disease risk vari-

ants as expression-QTLs. PLoS One. 2012; 7(10):e46199. PubMed Central PMCID:

PMCPMC3465315. https://doi.org/10.1371/journal.pone.0046199 PMID: 23071545

20. Li JQ, Tan L, Yu JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener. 2014; 9:47.

PubMed Central PMCID: PMCPMC4246469. https://doi.org/10.1186/1750-1326-9-47 PMID: 25391693

21. Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. Mutant LRRK2 toxicity in neurons depends on

LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci. 2014; 34(2):418–33.

PubMed Central PMCID: PMCPMC3870929. https://doi.org/10.1523/JNEUROSCI.2712-13.2014

PMID: 24403142

22. Tsika E, Moore DJ. Mechanisms of LRRK2-mediated neurodegeneration. Curr Neurol Neurosci Rep.

2012; 12(3):251–60. https://doi.org/10.1007/s11910-012-0265-8 PMID: 22441981

23. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016; 48(5):481–7. https://

doi.org/10.1038/ng.3538 PMID: 27019110

24. Foulger RE, Denny P, Hardy J, Martin MJ, Sawford T, Lovering RC. Using the Gene Ontology to Anno-

tate Key Players in Parkinson’s Disease. Neuroinformatics. 2016; 14(3):297–304. PubMed Central

PMCID: PMCPMC4896971. https://doi.org/10.1007/s12021-015-9293-2 PMID: 26825309

25. Michalopoulos I, Pavlopoulos GA, Malatras A, Karelas A, Kostadima MA, Schneider R, et al. Human

gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

BMC Res Notes. 2012; 5:265. PubMed Central PMCID: PMCPMC3441226. https://doi.org/10.1186/

1756-0500-5-265 PMID: 22672625

26. Holmans P, Moskvina V, Jones L, Sharma M, International Parkinson’s Disease Genomics C, Vederni-

kov A, et al. A pathway-based analysis provides additional support for an immune-related genetic sus-

ceptibility to Parkinson’s disease. Hum Mol Genet. 2013; 22(5):1039–49. PubMed Central PMCID:

PMCPMC3561909. https://doi.org/10.1093/hmg/dds492 PMID: 23223016

27. Zhao Y, Forst CV, Sayegh CE, Wang IM, Yang X, Zhang B. Molecular and genetic inflammation net-

works in major human diseases. Mol Biosyst. 2016; 12(8):2318–41. PubMed Central PMCID:

PMCPMC4955784. https://doi.org/10.1039/c6mb00240d PMID: 27303926

28. Rocha NP, de Miranda AS, Teixeira AL. Insights into Neuroinflammation in Parkinson’s Disease: From

Biomarkers to Anti-Inflammatory Based Therapies. Biomed Res Int. 2015; 2015:628192. PubMed Cen-

tral PMCID: PMCPMC4532803. https://doi.org/10.1155/2015/628192 PMID: 26295044

29. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord.

2012; 18 Suppl 1:S210–2.

Parkinson’s disease eQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0175882 April 13, 2017 10 / 11

https://doi.org/10.1186/s40035-015-0042-0
https://doi.org/10.1186/s40035-015-0042-0
http://www.ncbi.nlm.nih.gov/pubmed/26464797
https://doi.org/10.1093/nar/gkv1002
https://doi.org/10.1093/nar/gkv1002
http://www.ncbi.nlm.nih.gov/pubmed/26438538
https://doi.org/10.1186/s13072-015-0015-7
http://www.ncbi.nlm.nih.gov/pubmed/26180553
https://doi.org/10.1093/bioinformatics/btv470
http://www.ncbi.nlm.nih.gov/pubmed/26272984
https://doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
https://doi.org/10.1093/nar/gkv1194
http://www.ncbi.nlm.nih.gov/pubmed/26578592
https://doi.org/10.1371/journal.pgen.1002548
https://doi.org/10.1371/journal.pgen.1002548
http://www.ncbi.nlm.nih.gov/pubmed/22438815
https://doi.org/10.1371/journal.pone.0046199
http://www.ncbi.nlm.nih.gov/pubmed/23071545
https://doi.org/10.1186/1750-1326-9-47
http://www.ncbi.nlm.nih.gov/pubmed/25391693
https://doi.org/10.1523/JNEUROSCI.2712-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24403142
https://doi.org/10.1007/s11910-012-0265-8
http://www.ncbi.nlm.nih.gov/pubmed/22441981
https://doi.org/10.1038/ng.3538
https://doi.org/10.1038/ng.3538
http://www.ncbi.nlm.nih.gov/pubmed/27019110
https://doi.org/10.1007/s12021-015-9293-2
http://www.ncbi.nlm.nih.gov/pubmed/26825309
https://doi.org/10.1186/1756-0500-5-265
https://doi.org/10.1186/1756-0500-5-265
http://www.ncbi.nlm.nih.gov/pubmed/22672625
https://doi.org/10.1093/hmg/dds492
http://www.ncbi.nlm.nih.gov/pubmed/23223016
https://doi.org/10.1039/c6mb00240d
http://www.ncbi.nlm.nih.gov/pubmed/27303926
https://doi.org/10.1155/2015/628192
http://www.ncbi.nlm.nih.gov/pubmed/26295044
https://doi.org/10.1371/journal.pone.0175882


30. Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, et al. MHCII is required for alpha-synu-

clein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J

Neurosci. 2013; 33(23):9592–600. PubMed Central PMCID: PMCPMC3903980. https://doi.org/10.

1523/JNEUROSCI.5610-12.2013 PMID: 23739956

31. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The Central Nervous System and the Gut

Microbiome. Cell. 2016; 167(4):915–32. PubMed Central PMCID: PMCPMC5127403. https://doi.org/

10.1016/j.cell.2016.10.027 PMID: 27814521

Parkinson’s disease eQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0175882 April 13, 2017 11 / 11

https://doi.org/10.1523/JNEUROSCI.5610-12.2013
https://doi.org/10.1523/JNEUROSCI.5610-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23739956
https://doi.org/10.1016/j.cell.2016.10.027
https://doi.org/10.1016/j.cell.2016.10.027
http://www.ncbi.nlm.nih.gov/pubmed/27814521
https://doi.org/10.1371/journal.pone.0175882

