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Abstract

There is growing evidence that body shape and regional body composition are strong indica-

tors of metabolic health. The purpose of this study was to develop statistical models that

accurately describe holistic body shape, thickness, and leanness. We hypothesized that

there are unique body shape features that are predictive of mortality beyond standard clini-

cal measures. We developed algorithms to process whole-body dual-energy X-ray absorpti-

ometry (DXA) scans into body thickness and leanness images. We performed statistical

appearance modeling (SAM) and principal component analysis (PCA) to efficiently encode

the variance of body shape, leanness, and thickness across sample of 400 older Americans

from the Health ABC study. The sample included 200 cases and 200 controls based on 6-

year mortality status, matched on sex, race and BMI. The final model contained 52 points

outlining the torso, upper arms, thighs, and bony landmarks. Correlation analyses were per-

formed on the PCA parameters to identify body shape features that vary across groups and

with metabolic risk. Stepwise logistic regression was performed to identify sex and race, and

predict mortality risk as a function of body shape parameters. These parameters are novel

body composition features that uniquely identify body phenotypes of different groups and

predict mortality risk. Three parameters from a SAM of body leanness and thickness accu-

rately identified sex (training AUC = 0.99) and six accurately identified race (training AUC =

0.91) in the sample dataset. Three parameters from a SAM of only body thickness predicted

mortality (training AUC = 0.66, validation AUC = 0.62). Further study is warranted to identify

specific shape/composition features that predict other health outcomes.
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Introduction

Global prevalence of diabetes has more than doubled over the past 30 years, affecting nearly 1

in 10 adults, and increasing numbers of children [1, 2]. The largest contributor is type 2 diabe-

tes, linked to dyslipidemia, hypertension, and insulin resistance, collectively referred to as

“metabolic syndrome.” Metabolic syndrome accounts for approximately 6–7% of all-cause

mortality, 12–17% of cardiovascular disease, and 30–52% of diabetes [3]. Higher Body Mass

Index (BMI), a measure of excess weight, was associated with mortality in early studies [4, 5]

but is now controversial [6, 7] because more recent work has shown that higher BMI at older

age is protective against mortality. However, measures of body shape and central adiposity

have been shown to be associated with increased mortality risk. Waist circumference (WC)

and its ratio to the hips are more closely related to adverse outcomes than BMI [8–13]. The

ratio of trunk-to-leg volume is a strong indicator of diabetes (fifth-to-first quintile odds ratio

6.8) and mortality risk (odds ratio 1.8), independent of BMI and WC [14], showing that more

advanced descriptors of body shape accurately indicate metabolic risk beyond traditional mea-

sures. We hypothesize that statistical models of the shape and thickness of the whole body will

better determine metabolic status and thus mortality risk than existing body shape measures.

Statistical appearance modeling (SAM) [15] has several successful applications including

manufacturing [16], handwriting recognition [17], facial recognition [18], and medical imag-

ing of the brain [19], heart [20], eye, liver, lung, kidney, prostate, knees [21], and proximal

femur [22, 23]. To date, this powerful technique has not been applied to quantitative DXA

body composition scans. We have developed SAM algorithms to analyze pixel-based shape

and composition from whole body dual-energy X-ray absorptiometry (DXA) scans [24, 25].

Statistical appearance models from reanalyzed DXA images provide dominant modes of vari-

ance of body shape and thickness across a population. The statistical appearance models can

be used to investigate associations of body shape and tissue density distribution and demo-

graphic (i.e. sex, race, etc.) and clinically-relevant disease outcomes (diabetes, sarcopenia, mor-

tality) to identify those at high disease risk.

In this study, we present the methods to prepare DXA data for analysis, the challenges asso-

ciated with image registration, and application of the resulting statistical appearance models to

estimate mortality risk as a function of body shape.

Methods

Here we detail the DXA acquisition and image processing algorithms, as well as the statistical

appearance modeling techniques. We then describe the statistical analysis of the models to

identify and visualize SAM modes strongly associated with clinical variables such as sex and

race, as well as mortality status in a sample of older adults.

DXA scan analysis

In commercial DXA systems, the X-ray attenuation values are used to directly solve for the

mass of fat and lean soft tissue. We previously derived relationships from calibration phantom

X-ray attenuations to quantify tissue volume and mass at each pixel in whole-body DXA scans

[26]. Using custom software developed by the authors in MATLAB (MathWorks, Inc., Natick,

MA), we processed the raw low- and high-energy (HE) X-ray attenuation values from a Holo-

gic QDR 4500A densitometer (Hologic, Inc., Bedford, MA) to produce three types of images

for this study: (1) total thickness images, capturing the sum thicknesses all tissues in the body;

(2) leanness images, defined as the ratio of fat-free (i.e. lean + bone) tissue thickness to total tis-

sue thickness; and (3) R-value images, defined as the ratio of low-energy attenuation to high-

energy attenuation. R-value decreases as thickness increases [27] and is used to calculate soft
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tissue composition (i.e. percent fat). Note that we define thickness here as tissue thickness pro-

jected onto the image plane (tissue thickness = tissue mass / tissue density � pixel area) Total

thickness is thus generally the sum of the tissue thickness excluding air cavities. It is equivalent

to linear path length an X-ray takes through the body.

Raw X-ray attenuation images from the DXA scanner had a resolution of 327 x 150 pixels,

at 16-bit pixel depth. Each pixel had spatial dimensions of 2mm x 13mm. All images were

upscaled by a factor of 6.5 in the y-direction to have a resulting resolution of 327 x 975 square

(2mm x 2mm) pixels. Output thickness and R-value images were exported with 8-bit depth to

be compatible with some of the annotation software.

Image annotation

We defined 82 points on the skin edges as well as bony and soft tissue landmarks. A subset of

available images were used to build an semi-automated annotation algorithm based on Con-

strained Local Model (CLM) methods [28, 29]. The annotator was blinded to participant data.

This CLM was then run on each of the remaining R-file training images. Point placements by

the algorithm were manually reviewed and corrected by the human annotator where neces-

sary. Differences in patient positioning led to variations in the extremities, which are of limited

importance when examining body composition. Thus we created a 52-point extended torso

model, which includes the torso, the upper arms and upper legs, but not the forelimbs.

Statistical appearance modeling

Statistical shape and appearance models were constructed from the annotated images. Details

of the approach can be found in [15]. In summary: (1) A shape model is built by (i) translating

each set of annotation points so that they have a common center of gravity, (ii) applying Prin-

cipal Component Analysis (PCA) to vectors containing the 2D annotation point coordinates

that represent the aligned shapes for each image. (2) Shape variation is removed by warping

each image to a reference frame defined by the mean body shape. Specifically, each image is

deformed using a piece-wise affine transformation defined by a triangle mesh (see Figs 1 and

2). (3) A “texture” model is built by applying PCA to vectors defined by the pixel-by-pixel gray-

scale intensity of these warped images. Texture models contain no 2D (in-plane) shape varia-

tion—only grayscale intensity differences due to varying X-ray attenuation measurements for

each participant. (4) An “appearance” model is built by applying PCA to vectors formed by

concatenating the shape and texture parameters. Appearance models thus capture both shape

and texture information and reveal the ways in which shape and texture are correlated.

Concretely, a completed appearance model represents both (in-plane) shape and texture

using the linked linear models

x ¼ �x þ Qxc

g ¼ �g þ Qgc

where x is a vector containing the annotation point coordinates, �x is the mean shape vector, g is

a vector containing the grayscale pixel intensities in the mean shape reference frame, �g is the

mean grayscale intensity vector, the columns of Qx and Qg are the ordered eigenvectors that

span the variance in shape and texture across the images, and c is the vector of appearance

model parameters. We refer to each eigenvector as a mode of shape and texture variation. These

modes linearly map the compact parameter vector c to the shape and texture vectors x and g.
The appearance model allows new images with different shapes and textures to be gener-

ated by selecting new values for the parameters in c. Each image can then be compactly
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encoded by a vector of parameters,c, obtained by fitting a parameter vector c that synthesizes

an image as close as possible to the original [15].

Proof of concept sample

A total sample of 400 older adults (ages 70–79) was selected from the longitudinal Health,

Aging and Body Composition (Health ABC) study [30–32]. Two sets of 100 cases (participants

who died during the first six years of follow-up) and 100 BMI-, sex-, and age-matched controls

were selected. One set was used for model calibration and the other was used for validation.

Selection was stratified by sex and race (black and white). The Health ABC study was initiated

in 1997 by the National Institute on Aging to examine the impact of changes in body composi-

tion and health conditions on age-related physiologic and functional status. At baseline, each

participant received numerous clinical evaluations including whole body DXA scans acquired

using Hologic QDR 4500A systems (Hologic, Inc., Bedford, MA) and software version 9.03,

located at two study sites. Validity of fan-beam dual-energy X-ray absorptiometry for measur-

ing fat-free mass and leg muscle mass has been previously reported [33].

Statistical appearance models were trained on the calibration dataset and validated on the

validation dataset. We investigated the bivariate association of the SAM parameter vectors to

continuous variables of BMI and age using general linear regression models (proc GLM), and

categorical variables of mortality status, sex, and race using logistic regression (proc LOGIS-

TIC). Stepwise selection for the most significant SAM parameters, i.e. the number the

Fig 1. Annotation schemes and triangulations for texture warping. A full-body shape model containing 82 annotation

points was initially developed. To eliminate spatial noise introduced by pose variation, a 52-point subset model was created that

excludes the forelimbs and head.

https://doi.org/10.1371/journal.pone.0175857.g001
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explained 95% of the variance, were used to select parameters at a significance of p� 0.05 to

estimate each outcome variable. All statistical analysis was done using SAS software, version

9.2 (SAS Institute, Inc., Cary, NC). This study and all included analyses were approved by

Health ABC and the UCSF Committee on Human Research.

Results

Statistical appearance model training

Fig 1(a) shows the 82 points used to describe the outline of the body and some key landmarks

on the skeleton. Fig 1(b) shows the associated triangulation scheme used to warp the image to

a reference frame. Fig 1(c) shows the 52-point subset that excludes the points associated with

the lower arms and legs. Fig 1(d) shows the associated triangles to the 52 points. Wherever pos-

sible, the triangles in the 52-point annotation are unchanged from the 82-point annotation.

This demonstrates how our algorithm can select how the image is warped by manually defin-

ing the triangle relationships.

Table 1 shows the relevant demographic and anthropometric markers for the sample partic-

ipants included in this study. Fig 2 shows the mean image of the 200 calibration participants

with progressively more sophisticated registration: (a) translating the images so that the cen-

tres of gravity coincide, (b) applying an affine transformation so that the bounding boxes coin-

cide, and (c) using the full piece-wise affine transformation from triangulated mesh. The final

Fig 2. Mean images created with the 200 R-value images. Images were calculated using alignment with

(a) translation, (b) translation, rotation, and scaling (affine), and (c) piecewise warping using the triangle model

in Fig 1. Each successive mean image is visually sharper than the last, indicating that the more advanced

alignment techniques are more effective at eliminating noise from shape and pose variation.

https://doi.org/10.1371/journal.pone.0175857.g002

Statistical appearance models of whole body DXA images

PLOS ONE | https://doi.org/10.1371/journal.pone.0175857 April 19, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0175857.g002
https://doi.org/10.1371/journal.pone.0175857


registration has corrected for a range of body positions and shapes to bring all the pixels into

approximate correspondence, allowing analysis of equivalent structures to be done easily. The

images are displayed using the histogram equalised R-images. The models are built from 200

examples and their reflections (400 samples in total).

We found that 23 shape modes explained 95% of the shape variance defined by our mark-

ers. The first 6 shape modes are shown in Fig 3. Furthermore, after registering all images to the

average shape, we found that 261 texture modes explained 95% of the variance in X-ray attenu-

ation (represented as greyscale.) Six texture modes are shown in Fig 4. Fig 5 shows the combi-

nation of the shape and texture variances to form the full statistical appearance model. The

first 237 SAM modes explained 95% of the combined shape and texture appearance. The

model is capable of synthesizing both in-plane shape changes and intensity changes, and

shows the main correlations between the two.

Table 1. Demographic characteristics of selected participants.

Variable White Men Black Men White Women Black Women P-value

Calibration set N = 51 N = 49 N = 50 N = 50

Age at baseline (yrs) 75.7 (3.0) 73.3 (2.7) 74.3 (3.0) 74.2 (3.1) <0.01

Height (cm) 172.8 (5.8) 172.1 (5.8) 158.9 (5.2) 158.9 (6.6) <0.01

Weight (kg) 80.7 (12.8) 77.5 (17.0) 66.0 (12.6) 71.6 (13.1) <0.01

BMI (kg/m2) 27.1 (4.3) 26.1 (5.3) 26.2 (5.0) 28.4 (4.9) 0.07

BMI Category (n)

Underweight 1 5 4 0

Normal 16 16 14 10

Overweight 22 16 26 26

Obese 12 12 6 14

6-year status (n)

Living 26 24 25 25

Deceased 25 25 25 25

Sagittal diameter (cm) 22.8 (3.2) 21.9 (3.7) 21.1 (2.8) 22.7 (2.8) 0.03

Abdominal circ. (cm) 101.1 (10.7) 96.4 (14.8) 96.4 (11.2) 97.7 (12.3) 0.18

Validation set N = 50 N = 50 N = 50 N = 50

Age at baseline (yrs) 74.7 (3.2) 72.4 (2.6) 74.0 (2.5) 74.1 (2.8) <0.01

Height (cm) 172.2 (5.4) 172.7 (7.3) 159.8 (5.4) 159.8 (6.2) <0.01

Weight (kg) 76.6 (9.8) 78.7 (14.7) 65.4 (13.5) 72.6 (11.9) <0.01

BMI (kg/m2) 25.8 (2.9) 26.3 (4.3) 25.7 (5.6) 28.5 (4.9) 0.08

BMI Category (n)

Underweight 0 0 2 0

Normal 24 20 22 14

Overweight 20 22 16 20

Obese 6 8 10 16

6-year status (n)

Living 25 25 25 25

Deceased 25 25 25 25

Sagittal diameter (cm) 21.8 (2.6) 22.2 (3.3) 20.6 (3.4) 22.4 (3.3) 0.02

Abdominal circ. (cm) 98.9 (9.2) 97.1 (12.5) 97.2 (14.7) 97.1 (11.9) 0.86

400 total participants in a stratified case-control design were split evenly into training and validation sets. Continuous variables are reported as [mean

(standard deviation)]. P-values reported are for overall group differences (one-way ANOVA).

https://doi.org/10.1371/journal.pone.0175857.t001
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Alternative representations of the statistical appearance model

Several examples are given of how different appearance models can be created from different

texture information found in the DXA images. Fig 5 shows the first 6 modes of the R-value

images where white represents higher density. Fig 6 shows the first 8 modes of an appearance

model of shape and body thickness, using a 52-point annotation excluding the forelimbs. Fig 7

shows a combined appearance model of shape, thickness, and leanness, where thickness is

encoded as green and leanness is encoded as red in an RGB image. Linear scaling was applied

to ensure the data range was in 0 to 255 range. The blue channel was not used.

Fig 3. Shape only modes (first 6). For each mode, the -/+ 3 standard deviation (left and right respectively) images are shown. 23

modes were required to explain 95% of shape variance. At a high level, we see that body height is captured in Mode 1, width in Mode 5,

and android/gynoid shape variation in Mode 2. Note that several modes capture variation in subject pose.

https://doi.org/10.1371/journal.pone.0175857.g003
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Descriptive models

Bivariate correlation coefficients between demographic and anthropometric variables and

shape modes are found in Table 2. Of these variables, we found that only height predicted sex

(AUC = 0.95). Body thickness and leanness, however, was more strongly predictive of sex—

the final logistic model includes three shape modes (Table 3) and achieved AUC = 0.99. No

combination of the following anthropometric or demographic variables (of sex, BMI, height,

weight, sagittal diameter, nor abdominal circumference) predicted race even though this may

not be universally true in all datasets. However, body thickness and leanness was a strong

Fig 4. Texture only modes (first 6). For each mode, the -/+ 3 standard deviation (left and right respectively) images are shown. 261

modes explained 99% of the variance. Since this model captures only texture information, all images have the same shape, but differing

grayscale intensity indicating different distributions of tissues throughout the regions of the body.

https://doi.org/10.1371/journal.pone.0175857.g004
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predictor of race—the final logistic model includes six shape modes (Table 3) and achieved

AUC = 0.91. Visualizations of sex and race models are shown in Fig 8. Using a statistical

appearance model of body thickness on the calibration dataset, we found that a logistic model

with three SAM parameters predicted mortality with AUC = 0.66. Example images of low- and

high-risk body appearances are shown in Fig 9. Note that the primary differences between the

low and high risk were the apparent lung volume and waist shape. The mortality model had an

AUC = 0.62 when applied to the validation dataset. Regression equations for sex, race, and

mortality are provided in Table 3.

Fig 5. Combined appearance modes (first 6). For each mode, the -/+ 3 standard deviation (left and right respectively) images are

shown. 237 modes explained 99% of the variance. This model captures dominant modes of variation in both texture and shape.

https://doi.org/10.1371/journal.pone.0175857.g005
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Discussion

We have developed methods to describe and analyze the rich regional body shape and compo-

sition information captured in whole-body DXA images. We applied statistical appearance

modeling techniques to body thickness and leanness images derived from raw DXA attenua-

tion data. The resulting SAM principal components describing holistic body shape were

shown to be highly predictive of race and sex, indicating that this technique is capable of dis-

tinguishing the unique shape characteristics of each group. Importantly, appearance modes of

Fig 6. The first 8 appearance modes for a SAM of solid body thickness (lean + fat thickness) and 52-point annotation. (-/+ 3 SD).

We see significant differences in body shape roughly corresponding to weight, height, and sex in Modes 1, 2, and 3, respectively. Again,

pose variation is captured in multiple modes.

https://doi.org/10.1371/journal.pone.0175857.g006

Fig 7. Hybrid model of shape, thickness, and leanness including bone. Total thickness is represented by green intensity and %

lean by red intensity. (-/+ 3 SD). Mode 1 captures dramatic body shape and composition variance ranging from a high-lean, low-

thickness (thin) phenotype to a low-lean, high-thickness phenotype.

https://doi.org/10.1371/journal.pone.0175857.g007
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body thickness were predictive of mortality status. Inspection of the body shape differences

captured by the appearance model (Fig 9) reveals interesting features such as apparent lung

volume that differ by mortality status. These results suggest that this technique could be used

to elucidate body shape and composition phenotypes that may be strongly associated with

health status, provide new metrics for risk assessment in individuals, and reveal body features

worthy of further research.

Previous work in this area was performed by Wilson in his PhD dissertation [34]. Wilson

created whole body principal component models that used only rigid affine-aligned thickness

images. This work did not include piecewise registration, or other image types. The prelimi-

nary models had a blurry appearance, similar to Fig 2(b), due to the lack of precise registration.

Nonetheless, Wilson was still able to show strong correlations to patient demographic vari-

ables. Later, Wilson showed that body shape was related to mortality using trunk to leg volume

ratios from DXA images [35]. In his fully adjusted models for mortality, he demonstrated

strong AUC values of 0.83. Besides the representation of body shape, the Wilson study design

differed from our design in population (Wilson: NHANES 1999–2004, ages 20 to 85 years;

Health ABC: 75 years at baseline) and adjustments (Wilson: Age, gender, race, BMI, waist cir-

cumference, activity level, poverty index; Health ABC: none). Further future evaluations are

planned in the NHANES population Wilson used to directly compare the SAM methods

directly to simple measures like trunk to leg volume ratio.

Shape and appearance modeling has been applied to proximal femur DXA scans with suc-

cess [22, 36, 37]. Goodyear et al. [37] showed that the combination of shape and appearance

models with bone density produced the best AUC = 0.65 compared to any single measure for

Table 2. Correlation coefficients for each principal component of the shape model versus demographic and anthropometric variables.

PC1 PC2 PC3 PC4 PC5 PC6 PC9 PC10

Age

Sex -0.19 0.69 -0.39 0.35

Race 0.23 0.37 0.22 -0.21 -0.26

BMI 0.93 0.27

Height 0.22 -0.89 0.29

Weight 0.95 -0.24 0.18

Sagittal diameter 0.89 0.16 -0.16 -0.16

Abdominal circ. 0.86 -0.24

These components correspond to the images in Fig 3. Only correlations with P� 0.05 are shown. Bold denotes P� 0.01 and shading denotes P� 0.01.

https://doi.org/10.1371/journal.pone.0175857.t002

Table 3. Logistic regression equations for sex, race, and mortality.

Model Type Outcome Equation α Train AUC

Thickness

+ leanness*
Sex P(male) = (1+e-α)-1 -0.178–0.0026pc1 + 0.0041pc2 + 0.0027pc3 0.99

Race P(white) = (1+e-α)-1 0.130–0.0019pc3–0.0008pc4–0.0019pc6–0.0009pc7–0.0013pc8

+ 0.0042pc16

0.91

Thickness** Mortality P(deceased) = (1+e-α)-

1
0.0336–0.0015pc10 + 0.0014pc11–0.0026pc23 0.66

Parameters for each model were selected using stepwise regression with a required P-value of 0.05 to stay in the model.

*Visual representations of the first 8 thickness + leanness appearance modes are shown in Fig 8.

** Fig 7 shows the first 8 thickness appearance modes.

https://doi.org/10.1371/journal.pone.0175857.t003
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predicting hip fracture risk. To our knowledge, this is the first application of SAM techniques

to whole body DXA images. The models for sex, race, and mortality risk derived herein dem-

onstrate the potential of this approach to provide novel and significant image features from

standard DXA data.

This study had notable strengths. First, there was a similar number of men and women, and

black and white participants. This is important because the models derived are equally

weighted by sex and ethnicity. Second, because of our case and control design, we were able to

increase the signal present in the model for mortality over what would be expected in a pro-

spective study of the same number of participants. However, this study had some limitations.

First, the DXA data was acquired on one make of DXA system (Hologic). Our statistical

appearance models would not be applicable to other makes without further validation. Addi-

tionally, the study population was limited to a narrow age range. A more complete analysis of

body shape and appearance in a broader, representative sample of adults is warranted to

ensure generalizability. Another issue was the limited data available for training the

Fig 8. Linear regression models of sex and ethnicity using the combined appearance model of

leanness + thickness images (±3 S.D.s). There were 3 appearance modes used in the sex model that

achieved an AUROC of 0.99. There were 6 appearance modes used in the Race model that achieved an

AUROC of 0.91. These models show that statistical appearance of body shape, thickness, and leanness

accurately identifies sex and race differences in the sample population.

https://doi.org/10.1371/journal.pone.0175857.g008

Fig 9. Linear regression model of mortality status using the combined appearance model of

thickness images (±3 S.D.s). There were three appearance modes used in the model that achieved training

AUC of 0.66 and validation AUC of 0.62. In the difference image, green indicates greater thickness in the low-

risk image and red indicates greater thickness in the high-risk image.

https://doi.org/10.1371/journal.pone.0175857.g009
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constrained local model for automatic annotation of the DXA images. All images required

some degree of manual annotation point adjustment where the automated placement algo-

rithm did not accurately detect body landmarks. Given sufficient high-quality training data,

though, the automated CLM technique has been shown to achieve very good accuracy [28].

We expect that a large training dataset of DXA images across a wide range of body shapes and

compositions would yield a precise and accurate active appearance model for fully-automated

annotation.

Detailed models of the body shape and tissue distribution offer significantly more informa-

tion than standard DXA analyses. This study demonstrates a method for describing holistic

body shape, thickness, and leanness that reveals unique features by sex, race, and also predicts

mortality risk. Further study is warranted to investigate body shape associations to other out-

come variables of interest, across different populations. As this technique utilizes standard

whole body DXA image data, it is readily applicable to several existing study databases of DXA

scans. In addition, supervised methods of feature selection beyond principal component analy-

sis may yield more sensitive and specific predictors for clinical outcomes.

Acknowledgments

J. A. Shepherd thanks Eleanor Simonsick, Fran Tylavsky, and Susan Rubin for their extensive

contributions to acquiring the Health ABC data.

Author Contributions

Conceptualization: JAS TFC.

Data curation: JAS BF BKN.

Formal analysis: JAS BF.

Funding acquisition: JAS BKN BF.

Investigation: JAS BKN BF TFC.

Methodology: JAS BKN BF TFC.

Project administration: JAS.

Resources: JAS.

Software: TFC BKN.

Supervision: JAS.

Validation: JAS TFC BKN BF.

Visualization: TFC.

Writing – original draft: JAS.

Writing – review & editing: JAS BKN BF AVS PC SRC SK MN AS TFC.

References
1. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, et al. National, regional, and

global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys

and epidemiological studies with 786 country-years and 5.4 million participants. Lancet. 2011; 377

(9765):568–77. Epub 2011/02/08. https://doi.org/10.1016/S0140-6736(10)62036-3 PMID: 21295844

Statistical appearance models of whole body DXA images

PLOS ONE | https://doi.org/10.1371/journal.pone.0175857 April 19, 2017 13 / 15

https://doi.org/10.1016/S0140-6736(10)62036-3
http://www.ncbi.nlm.nih.gov/pubmed/21295844
https://doi.org/10.1371/journal.pone.0175857


2. Basu S, Yoffe P, Hills N, Lustig RH. The Relationship of Sugar to Population-Level Diabetes Preva-

lence: An Econometric Analysis of Repeated Cross-Sectional Data. PLoS One. 2013; 8(2):e57873.

https://doi.org/10.1371/journal.pone.0057873 PMID: 23460912

3. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the meta-

bolic syndrome: a summary of the evidence. Diabetes Care. 2005; 28(7):1769–78. Epub 2005/06/29.

PMID: 15983333

4. Garrison RJ, Castelli WP. Weight and thirty-year mortality of men in the Framingham Study. Ann Intern

Med. 1985; 103(6 (Pt 2)):1006–9. Epub 1985/12/01.

5. Rabkin SW, Mathewson FA, Hsu PH. Relation of body weight to development of ischemic heart disease

in a cohort of young North American men after a 26 year observation period: the Manitoba Study. Am J

Cardiol. 1977; 39(3):452–8. Epub 1977/03/01. PMID: 842466

6. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of

bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic

review of cohort studies. Lancet. 2006; 368(9536):666–78. Epub 2006/08/22. https://doi.org/10.1016/

S0140-6736(06)69251-9 PMID: 16920472

7. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact

of weight loss. J Am Coll Cardiol. 2009; 53(21):1925–32. Epub 2009/05/23. https://doi.org/10.1016/j.

jacc.2008.12.068 PMID: 19460605

8. Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardio-

vascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008; 117

(13):1658–67. Epub 2008/03/26. https://doi.org/10.1161/CIRCULATIONAHA.107.739714 PMID:

18362231

9. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-

related health risk. Am J Clin Nutr. 2004; 79(3):379–84. Epub 2004/02/27. PMID: 14985210

10. Coutinho T, Goel K, Correa de Sa D, Kragelund C, Kanaya AM, Zeller M, et al. Central obesity and sur-

vival in subjects with coronary artery disease: a systematic review of the literature and collaborative

analysis with individual subject data. J Am Coll Cardiol. 2011; 57(19):1877–86. Epub 2011/05/07.

https://doi.org/10.1016/j.jacc.2010.11.058 PMID: 21545944

11. Alissa R, Esposito M, Horner K, Oliver R. The influence of platelet-rich plasma on the healing of extrac-

tion sockets: an explorative randomised clinical trial. Eur J Oral Implantol. 2010; 3(2):121–34. Epub

2010/07/14. PMID: 20623037

12. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predic-

tors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007; 28

(7):850–6. Epub 2007/04/04. https://doi.org/10.1093/eurheartj/ehm026 PMID: 17403720

13. Price GM, Uauy R, Breeze E, Bulpitt CJ, Fletcher AE. Weight, shape, and mortality risk in older persons:

elevated waist-hip ratio, not high body mass index, is associated with a greater risk of death. Am J Clin

Nutr. 2006; 84(2):449–60. Epub 2006/08/10. PMID: 16895897

14. Wilson JP, Kanaya AM, Fan B, Shepherd JA. Ratio of Trunk to Leg Volume as a New Body Shape Met-

ric for Diabetes and Mortality. PLoS One. 2013; 8(7):e68716. https://doi.org/10.1371/journal.pone.

0068716 PMID: 23874736

15. Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on. 2001; 23(6):681–5.

16. Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models-their training and application. Com-

puter vision and image understanding. 1995; 61(1):38–59.

17. Shi D, Gunn SR, Damper RI. Handwritten Chinese radical recognition using nonlinear active shape

models. IEEE transactions on pattern analysis and machine intelligence. 2003; 25(2):277–80.

18. Edwards GJ, Cootes TF, Taylor CJ. Face recognition using active appearance models. Computer

Vision—ECCV’98: Springer; 1998. p. 581–95.

19. Van Ginneken B, Frangi AF, Staal JJ, ter Haar Romeny BM, Viergever MA. Active shape model seg-

mentation with optimal features. medical Imaging, IEEE Transactions on. 2002; 21(8):924–33.

20. Beymer D, Syeda-Mahmood T, editors. Cardiac disease recognition in echocardiograms using spatio-

temporal statistical models. Engineering in Medicine and Biology Society, 2008 EMBS 2008 30th

Annual International Conference of the IEEE; 2008: IEEE.

21. Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thick-

ness measurements of articular cartilage from MR images. Magnetic Resonance in Medicine. 1997; 37

(6):943–52. PMID: 9178247

22. Whitmarsh T, Fritscher KD, Humbert L, Del Rio Barquero LM, Roth T, Kammerlander C, et al. A statisti-

cal model of shape and bone mineral density distribution of the proximal femur for fracture risk

Statistical appearance models of whole body DXA images

PLOS ONE | https://doi.org/10.1371/journal.pone.0175857 April 19, 2017 14 / 15

https://doi.org/10.1371/journal.pone.0057873
http://www.ncbi.nlm.nih.gov/pubmed/23460912
http://www.ncbi.nlm.nih.gov/pubmed/15983333
http://www.ncbi.nlm.nih.gov/pubmed/842466
https://doi.org/10.1016/S0140-6736(06)69251-9
https://doi.org/10.1016/S0140-6736(06)69251-9
http://www.ncbi.nlm.nih.gov/pubmed/16920472
https://doi.org/10.1016/j.jacc.2008.12.068
https://doi.org/10.1016/j.jacc.2008.12.068
http://www.ncbi.nlm.nih.gov/pubmed/19460605
https://doi.org/10.1161/CIRCULATIONAHA.107.739714
http://www.ncbi.nlm.nih.gov/pubmed/18362231
http://www.ncbi.nlm.nih.gov/pubmed/14985210
https://doi.org/10.1016/j.jacc.2010.11.058
http://www.ncbi.nlm.nih.gov/pubmed/21545944
http://www.ncbi.nlm.nih.gov/pubmed/20623037
https://doi.org/10.1093/eurheartj/ehm026
http://www.ncbi.nlm.nih.gov/pubmed/17403720
http://www.ncbi.nlm.nih.gov/pubmed/16895897
https://doi.org/10.1371/journal.pone.0068716
https://doi.org/10.1371/journal.pone.0068716
http://www.ncbi.nlm.nih.gov/pubmed/23874736
http://www.ncbi.nlm.nih.gov/pubmed/9178247
https://doi.org/10.1371/journal.pone.0175857


assessment. Med Image Comput Comput Assist Interv. 2011; 14(Pt 2):393–400. Epub 2011/10/15.

PMID: 21995053

23. Baker-Lepain JC, Nakamura MC, Shepherd J, von Scheven E. Assessment of bone remodelling in

childhood-onset systemic lupus erythematosus. Rheumatology (Oxford). 2010. Epub 2010/11/26.

24. Wilson JP, Mulligan K, Fan B, Sherman JL, Murphy EJ, Tai VW, et al. Dual-energy X-ray absorptiome-

try-based body volume measurement for 4-compartment body composition. American Journal of Clini-

cal Nutrition. 2012; 95(1):25–31. https://doi.org/10.3945/ajcn.111.019273 PMID: 22134952

25. Wilson JP, Fan B, Shepherd JA. Total and Regional Body Volumes Derived From Dual-Energy X-Ray

Absorptiometry Output. J Clin Densitom. 2013. Epub 2013/01/17.

26. Wilson JP, Mulligan K, Fan B, Sherman JL, Murphy EJ, Tai VW, et al. Dual-energy X-ray absorptiome-

try-based body volume measurement for 4-compartment body composition. Am J Clin Nutr. 2012; 95

(1):25–31. Epub 2011/12/03. https://doi.org/10.3945/ajcn.111.019273 PMID: 22134952

27. Blake GM, Wahner HW, Fogelman I. The evaluation of osteoporosis: Dual energy X-ray absorptiometry

and ultrasound in clinical practice. 2nd ed. London: Martin Dunitz; 1999.

28. Cootes TF, Ionita MC, Lindner C, Sauer P. Robust and accurate shape model fitting using random for-

est regression voting. Computer Vision—ECCV 2012: Springer; 2012. p. 278–91.

29. Cristinacce D, Cootes T. Automatic feature localisation with constrained local models. Pattern Recogni-

tion. 2008; 41(10):3054–67.

30. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but

not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J

Gerontol a-Biol. 2006; 61(1):72–7.

31. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, mus-

cle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning

older persons. J Gerontol a-Biol. 2005; 60(3):324–33.

32. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal

muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Ger-

ontol A Biol Sci Med Sci. 2006; 61(10):1059–64. PMID: 17077199

33. Visser M, Fuerst T, Lang T, Salamone L, Harris TB, Study HABC. Validity of fan-beam dual-energy X-

ray absorptiometry for measuring fat-free mass and leg muscle mass. Journal of Applied Physiology.

1999; 87(4):1513–20. PMID: 10517786

34. Wilson JP. The search for advanced imaging descriptors of human body shape and their association to

diabetes and other metabolic disorders: University of California, San Francisco; 2013.

35. Wilson JP, Kanaya AM, Fan B, Shepherd JA. Ratio of Trunk to Leg Volume as a New Body Shape Met-

ric for Diabetes and Mortality. PLoS ONE. 2013; 8:e68716. https://doi.org/10.1371/journal.pone.

0068716 PMID: 23874736
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