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Abstract

Rising sea levels increase the probability of future coastal flooding. Many decision-makers

use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These

analyses are often silent on potentially relevant uncertainties. For example, some previous

risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR.

Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can

bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance

probability) coastal flood height (storm surge including SLR) in the year 2100 in the San

Francisco Bay area. We find that accounting for uncertainty in future SLR increases the

return level (the height associated with a probability of occurrence) by half a meter from

roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this

uncertainty also changes the shape of the relationship between the return period (the

inverse probability that an event of interest will occur) and the return level. For instance,

incorporating uncertainties shortens the return period associated with the 2.2 m return level

from a 100-yr to roughly a 7-yr return period (*15% probability). Additionally, accounting for

this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain

height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the

method of accounting for future SLR can have considerable impacts on the design of flood

risk management strategies.

Introduction

The warming climate is causing sea levels to rise around the globe [1–4]. As sea levels rise, set-

tlements and ecosystems in low-lying coastal areas become more vulnerable to flooding. Cur-

rently, about 10% of the world’s population resides within 10 meters of present-day sea level

[5] and about 40 million people are exposed to a 100-yr (also known as the 1-in-100 year or

1% annual exceedance probability) storm surge [6]. Rising sea levels drive hazards for trans-

portation and energy facilities, tourism, agriculture, and human lives [7]. These hazards
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motivate the design and implementation of flood risk management strategies around the

world [8, 9]. The strategies and infrastructures that manage flood risks are often designed for

very low annual flooding probabilities, generally spanning the range from 1-in-50 to 1-in-

10,000 years [10, 11]. Designing these strategies requires information about both storm surge

and sea levels [10, 12].

Future projections of sea-level rise (SLR) are deeply uncertain [12–14]. Deep uncertainty in

this context means that, “the suite of all possible future events as well as their associated proba-

bility distributions are . . . uncertain,” [15]. Sea-level projections are deeply uncertain because

of the complex mechanisms controlling changes in sea level (i.e., thermal expansion of water,

inputs from glaciers and ice sheets, changes in land water storage, glacial isostatic adjustment,

vertical land motion from tectonics, and coastal erosion) [1, 16].

Many studies evaluate potential future flood risks (e.g., [7, 8, 17–23]). These studies provide

valuable insights, but are often silent on the effects of known uncertainties surrounding SLR

projections. For example, these studies often use the mean, best, or large quantile SLR estimate

[7, 17–24]. More recent studies [25–27] have incorporated SLR distributions. Here, we expand

on these studies by analyzing the question of how accounting for (an estimate of) the full distri-

bution of SLR can impact flood risks as well as the design of flood risk management strategies.

First, we explicitly show that neglecting uncertainty about SLR projections can result in con-

siderable underestimation of flood risks. Second, we demonstrate and quantify how account-

ing for the full distribution changes the shape of the survival function. The survival function,

also referred to as the exceedance probability, is one minus the cumulative frequency [28].

Last, but not least, we put these results into a coastal risk management perspective. We demon-

strate these effects for the San Francisco Bay (SFB) area using a previous study design [7, 17].

Methods

Choice of case study

We demonstrate the effect of accounting for uncertainty in the SFB area of California. We

choose California as an area of interest, because California has more than 2,000 miles of coast-

line with roughly 32 million people living in coastal watershed counties [7, 17, 29, 30]. In par-

ticular, the SFB area is a useful case study for three reasons. First, we can compare our results

to an existing analysis of the California coastline [7, 17]. More importantly, the SFB area has a

long and complete hourly tide record (>100 years with no missing data) and available, rela-

tively high-resolution digital elevation models. Lastly, SLR in the SFB area has changed about

as much as global mean sea level over the past 100 years (Fig 1).

Projecting sea-level rise

To demonstrate the effect of representing SLR uncertainty, we approximate the methods

found in an existing analysis of the California coastline [7]. This previous analysis [7] uses

global mean SLR as a proxy for local SLR. As shown in Fig 1, this assumption seems reasonable

for the SFB area. Following this previous study design [7], we hindcast and project SLR using a

global mean sea-level model [1]. However, we do not adapt SLR estimates to account for future

changes in water stored behind dams and in reservoirs (see S8–S11 Figs which account for this

change in land water storage). The global mean sea-level model [1] predicts global mean SLR

on an annual time step using estimated global mean sea-level anomalies [32] and global mean

surface air temperatures T (˚C). Historical temperatures are based on observations of merged

sea surface and land-near surface temperature anomalies [33, 34]. Projections are based on the

CNRM-CM5 simulation of the RCP8.5 scenario from the CMIP5 multi-model ensemble;

http://cmip-pcmdi.llnl.gov/cmip5/. In the model, the rate of global mean SLR H at time t, t
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from 1880 to the year 2300, is approximated as the sensitivity of sea level to global mean tem-

perature α times the difference between temperature at time t and the temperature when the

sea-level anomaly equals zero T0,

dHt

dt
¼ aðTt � T0Þ: ð1Þ

Following a Bayesian approach (as described in detail in [35]), we fit the model to global

sea-level anomalies with respect to the average sea level in 2000 [32] using a Markov chain

Monte Carlo method accounting for interdependent (autocorrelated) residuals and time-vary-

ing (heteroskedastic) observation error [36–38]. Using this method, we approximate the noisy

observations yt as the sum of the semi-empirical model simulations Ht, residuals Rt (i.e.,

approximating the effects of unresolved internal variability and model error), and observation

errors �t,

yt ¼ Ht þ Rt þ �t; ð2Þ

Rt ¼ r� Rt� 1 þ dt; ð3Þ

R1 � N 0;
s2

AR1

1 � r2

� �

; dt � Nð0; s2
AR1
Þ; �t � Nð0; s2

�;tÞ; ð4Þ

Fig 1. Comparison of historical sea-level anomalies in San Francisco Bay (SFB) to global mean sea-

level anomalies and projections. The black dots represent the monthly mean sea level at the SFB tide

gauge [31]. Note that the SFB tide gauge observations are not used in the global mean sea level modeling

process. The green line represents synthesized global mean sea-level anomalies relative to the mean sea

level in the year 2000 [32], where the gray envelope is the 90% credible interval and the blue line is the

projected mean fitted to those anomalies.

https://doi.org/10.1371/journal.pone.0174666.g001
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where Rt is a stationary first-order autoregressive process. It is characterized by an annual

autoregression coefficient ρ and a white noise process δt with zero mean and constant variance

s2
AR1

. �t represents the observation errors (also known as measurement errors) with time-vary-

ing known variance s2
�;t . We estimate the posterior density of the model parameters (α, T0, and

H0) and the statistical parameters (ρ and σAR1) with uniform prior distributions using the Mar-

kov chain Monte Carlo method and the Metropolis Hastings algorithm [37–40]. In this

method, the likelihood function incorporates the variance of the autocorrelation process

(accounting for the autocorrelated structure of the residuals) and the heteroskedastic observa-

tion error. We choose this implementation process because ignoring known observational

properties (i.e., accounting for autocorrelated residuals and heteroskedastic errors) could lead

to overconfident projections [35]. The observation errors are set as the reported measurement

error values [32]. We use 2.5 × 107 iterations. We assess convergence using visual inspection

and the potential scale reduction factor [41], remove a 1% initial “burn-in” from the Markov

chains, and thin the chains to subsets of 2 × 104 for the analysis [38].

Estimating current and future flood heights

We approximate the baseline (current) 100-yr (i.e., the 1-in-100 year) storm surge for the SFB

area using a Generalized Extreme Value (GEV) analysis [42] and analyzing hourly data from

1914 to 2014 for the San Francisco tide gauge [31] (the location of the tide gauge is shown in

S1 Fig). We remove the longer-term signal (SLR) by subtracting the annual means from the

record. The detrended values represent the impacts of day-to-day weather, tides, and seasons

[43]. These detrended values are then grouped into non-overlapping annual observation peri-

ods. This process focuses the attention to the maximum observation in each year, the annual

block maxima. We fit the annual block maxima to the GEV distribution for parameter estima-

tion,

Fðx; m; s; xÞ ¼ exp � 1þ x
x � m

s

� �h i� 1=x
� �

; ð5Þ

where the parameters μ, σ, and ξ control the location, scale, and shape of the distribution [42,

44–46]. Using the maximum likelihood estimate of the GEV parameters and a range of proba-

bilities [44–46], we approximate the flood return levels (the height associated with a probabil-

ity of occurrence) with a 95% confidence interval out to the 100,000-yr return period (the

inverse probability that an event of interest will occur). We use the maximum likelihood esti-

mate of the flood return levels as our baseline survival function (Fig 2; please see the discussion

of this point in the Caveats section).

We approximate the potential future 100-yr flood height (storm surge including SLR) by

accounting for the mean sea-level anomaly and SLR uncertainty in the year 2100. For the

100-yr flood height accounting for mean SLR, we add the mean sea-level anomaly (compared

to the year 2000) to the baseline 100-yr storm surge. We use several steps to approximate the

effects of future SLR uncertainty, extrapolate a flood survival function, and approximate the

100-yr flood height accounting for SLR uncertainty. First, we add each SLR estimate from the

distribution for the year 2100 to the baseline survival function. This results in 2 × 104 simula-

tions of the future flood survival function (shown as the gray lines in Fig 3b). We then estimate

the probability of a specific flood height occurring for each survival function simulation. If the

probability falls in between two known values, we linearly interpolate the probability from the

surrounding values. This results in 2 × 104 probability estimates for a specific flood height. We

then average the 2 × 104 probability estimates for a specific flood height to approximate the

actual probability for that return level. We replicate this process of estimating the return period

Uncertain sea-level rise and future flood risk
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Fig 2. Storm surge analysis for San Francisco Bay area. Shown are (panel a) the maximum recorded sea-

level anomaly in a year, the annual block maxima, and (panel b) the return levels for the San Francisco Bay

tide gauge (in meters).

https://doi.org/10.1371/journal.pone.0174666.g002
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Fig 3. Estimated (panel a) probability density function of global mean sea-level rise in 2100 and (panel

b) flood survival functions for San Francisco Bay. In panel a, the dark red line represents the sea-level

distribution in the year 2100, whereas, the orange and red points display the mean and Heberger et al. [7] (not

accounting for land storage changes) sea-level estimate. In panel b, the baseline survival function for San

Francisco Bay (yellow) is shifted relative to increases in global mean sea level by the mean sea-level

projection (orange), the Heberger et al. [7] estimate (0.8 m; red), and each individual sea-level projection from

Uncertain sea-level rise and future flood risk
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for a range of flood heights from 1.1–3.3 m (see Caveats). This method produces a new flood

survival function where the return level corresponding to a 1% probability of occurring in the

year 2100 is taken to be the 100-yr flood height accounting for SLR uncertainty (the dark red

curve and point in Fig 3b).

Estimating flood inundation areas

We assess the area at risk of flooding (the area to be flooded under a certain height; e.g., the

100-yr flood height) with a geographic information system (ESRI ArcGIS Desktop) using 1/

9-arc second (nominal resolution of *3 m) topobathy digital elevation models [47]. We use

the mosaicked elevation data as inputs for a simple bathtub inundation model [22, 48]. The

elevation data is adjusted to the 1983–2001 local tidal datum mean sea level [31]. Hence, any

elevation below 0 m is considered to be current standing water (i.e., ocean, lakes, rivers, and

reservoirs). We generate the 100-yr flood risk area by reclassifying the elevation values from 0

m to the estimated baseline storm surge or future flood height. The reclassified values are then

extracted and converted from raster datasets to polygons. Using county subdivision shapefiles

from the U.S. Census Bureau [49], we estimate the area at risk of flooding for San Francisco,

Oakland, and Alameda. We replicate this process for each assumption about future flood

height in the year 2100 (i.e., the 100-yr flood height accounting for mean SLR, the 100-yr flood

height accounting for the Heberger et al. [7] sea-level estimate, and the 100-yr flood height

accounting for SLR uncertainty). All of the data is set to the NAD 1983 California Zone 3 pro-

jection. We use the State plane coordinate system to minimize distance and area distortions

[50].

Results and discussion

Future sea-level rise and flood height

Future changes in sea level increase the return level for the 100-yr flood height in the SFB area.

Our application of the global mean sea-level model [1] suggests that sea level will rise by

roughly 0.6 m by the year 2100, or between 0.3 and 1.1 m (mean and 90% credible interval)

above the average sea level in 2000 (Fig 1). Currently, the baseline 100-yr storm surge in the

SFB area is roughly 1.6 m (Fig 2). If sea level is assumed to rise by the mean estimate or the

90% estimate in 2100, then the 100-yr flood height would increase to a return level of roughly

2.2 m or 2.5 m, respectively (Fig 3 and S2 Fig). Accounting for sea-level uncertainty further

increases this return level to roughly 2.7 m (Fig 3). Hence, projections that assume sea level

will remain constant or will rise by the mean or 90% estimate, underestimate the return level

associated with a 100-yr flood height by roughly 1.1 m, 0.5 m, and 0.2 m in the year 2100,

respectively (Fig 3 and S2 Fig).

Accounting for sea-level rise uncertainty can increase the probability of

flood occurrence

Accounting for mean SLR underestimates the probability of flood occurrence in this specific

case study. When we consider just the mean SLR, the 100-yr return period occurs at 2.2 m. If

the distribution of Markov chain Monte Carlo samples (gray) for the year 2100. Accounting for sea-level

uncertainty produces the survival function in dark red. The associated return period is displayed on the right

axis. The distance between the points on the dashed line (100-yr return period) to the same color point on the

dark red curve display the flood risk underestimation.

https://doi.org/10.1371/journal.pone.0174666.g003
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we account for the 90% SLR, the 100-yr return period occurs at 2.5 m (S2 Fig). Yet, when we

account for sea-level uncertainty, the 100-yr return period increases to 2.7 m. By accounting

for sea-level uncertainty, the return level of 2.2 m no longer has a 100-year return period.

Instead, the probability of occurrence is higher as a 7-yr return period (*15% probability) in

the year 2100 (Fig 3). Additionally, the return level of 2.5 m moves from a 100-yr return period

(for the 90% SLR assumption) to a roughly 33-yr return period (*3% probability) in the year

2100 (S2 Fig).

Our results are broadly consistent with some previous findings (e.g., [26, 43, 51]). A simple

calculation can demonstrate how we account for uncertainty and why accounting for uncer-

tainty can increase the probability of flood occurrence for a return level (S3 Fig). For a very

simple illustrative example, we describe how to estimate the probability associated with a flood

height using three values from the SLR distribution. Note that for the analysis we use the entire

distribution (2 × 104 values) and repeat the process for multiple flood heights to produce a new

survival function accounting for uncertainty. For the example, consider using three samples

from the SLR distribution (i.e., the mean SLR—1 standard deviation, the mean SLR, and the

mean SLR + 1 standard deviation). Adding those sea-level values to the baseline storm surge

survival function results in three new survival functions with 100-yr flood heights of roughly

2.0, 2.2, and 2.5 m (S3b Fig). We can then estimate the expected probability of the 2.2 m flood

height by averaging the probability of the 2.2 m flood height from each of the three new sur-

vival functions. The 2.2 m flood height has a probability of roughly 4 × 10−6 (mean SLR—1

standard deviation), 0.01 (mean SLR) and 0.4 (mean SLR + 1 standard deviation). The results

from averaging the three samples produces a higher return period for a specific flood height

when compared to estimates that neglect uncertainty (i.e., accounting for the mean estimate).

In this specific case, the probability of flood occurrence at the 2.2 m flood height when consid-

ering uncertainty shortens the return period from a 100-yr to a roughly 7-yr return period

(S3b Fig).

The effects of accounting for sea-level rise are dependent on the sea-

level rise distribution characteristics

These underestimated flood occurrences are due to the fact that accounting for the full distri-

bution changes the shape of the survival function. We create a simple test to further investigate

how incorporating the full distribution affects the survival function. For instance, we compare

how the shape and characteristics of the SLR distribution impact the results by comparing our

SLR distribution to a normal, log normal, and Pareto distribution (S4a Fig). Specifically, we

approximate the data from a normal, log normal, and Pareto distribution using the mean and

standard deviation estimates from our SLR distribution. As perhaps expected, the shape of the

distribution impacts the resulting expected return level. The result shows that as the upper tail

becomes fatter the return level increases and the shape of the survival function increases com-

pared to the baseline survival function (S4b Fig). Hence, approximating the full distribution

can cut off important tails which can lead to underestimating the return periods (Fig 3, S2 and

S4 Figs).

Accounting for uncertainties can impact adaptation strategies

Relatively small changes in the return level can impact adaptation strategies [7]. An increase in

the return level expands the area at risk of flooding (the area analyzed is shown in S5 Fig). This

expansion hinges on the change of elevation along the coast. For example, roughly 15% more

of the area between -2–8 m elevation in San Francisco County has an elevation of up to 2.7 m

(2.7 m refers to the 100-yr flood height accounting for uncertain SLR) versus up to 2.2 m (2.2

Uncertain sea-level rise and future flood risk
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m refers to the 100-yr flood height accounting for mean SLR) (Fig 4). Additionally, the upper

tail is—in this specific case—of primary importance, because an area is flooded if the water is

above a certain limit (e.g., an opening in a house). The probability that the water level is above

a certain threshold is the probability in the upper tail (see Fig 5). In this specific case, the area

susceptible to flooding increases when we account for the tails in the SLR distribution. For

example, in San Francisco County, the baseline 100-yr storm surge places roughly 1.6 km2 at

risk of flooding (Fig 5 and Table 1). Accounting for SLR in 2100 expands the area at risk of

flooding to roughly 3.9 km2 (using the mean SLR estimate) and roughly 8.0 km2 (accounting

for uncertain SLR). In comparison, accounting for SLR uncertainty increases the mean SLR

flood risk area by roughly a factor of 2 (Fig 5). In Oakland (S6 Fig) and Alameda (S7 Fig),

accounting for SLR uncertainty increases the mean SLR flood risk area by roughly 65% and

75%, respectively. As the area at risk of flooding increases, more people and assets are exposed

Fig 4. Hypsometric curve covering the elevations between -2 and 8 m in San Francisco County. The

gray area within the inset plot displays the area analyzed in this curve. The area in blue is water, whereas the

area in tan is land. The dashed lines represent the elevation associated with the mean sea level (black), the

baseline 100-yr storm surge (yellow), and the future 100-yr flood height (orange and dark red). The black

curve displays the cumulative density or percentage of the area analyzed at elevations between -2–8 m. For

example, *42% of the area analyzed has an elevation of 2.7 m (100-yr flood height accounting for uncertain

sea-level rise) or lower.

https://doi.org/10.1371/journal.pone.0174666.g004
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Fig 5. Sequential zoom in of the baseline and future 100-yr flood risk area in San Francisco. The maps display the baseline 100-yr

flood risk area in yellow. In the year 2100, the potential 100-yr flood height includes accounting for the mean sea-level projection (orange),

the Heberger et al. [7] (not accounting for land storage changes) sea-level projection (red), and accounting for sea-level rise uncertainty

(dark red). The star is the location of the tide gauge.

https://doi.org/10.1371/journal.pone.0174666.g005
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to the hazard. This increased exposure has implications for the design of flood risk manage-

ment strategies.

Caveats and future research needs

We use relatively simple models and statistical methods to make a simple point. This simplicity

is chosen to provide a hopefully transparent analysis. Yet, this simplicity requires us to make

several approximations that lead to caveats and future research needs. For example, we neglect

uncertainty associated with the GEV parameters. Additionally, we use a simple interpolation

method to estimate the inverse of the survival function using the surrounding values when

accounting for SLR uncertainty. If the return level value does not exist, then a value of zero is

returned as the probability of flood occurrence. Due to the tight shape, the return level values

with probabilities of flood occurrence below the 100,000-yr return period are assigned to have

a zero probability of flood occurrence. A simple test suggests the impact of this approximation

is relatively small, but can potentially lead to conservative estimates (S3b and S3c Fig). It is also

important to note that future mean SLR for the SFB area may differ from projections in this

study. This is because our SLR model may potentially neglect effects such as the melting ice

sheets (including marine ice sheet instability and cliff instability [16, 52]), glacial isostatic

adjustment, vertical land motion from tectonics, or coastal erosion. Additionally, we do not

address the possibility that future storm patterns could change in frequency or severity because

of climate change. As a last example, this study assumes that no actions are taken to protect the

coast. These caveats imply that this illustrative analysis is not to be used to assess actual coastal

hazards.

Conclusion

As sea levels rise, flood risks are projected to increase. Studies evaluating future flood risks are

often silent on the impact of uncertainty in sea-level projections and instead consider the

mean, best, or large quantile (i.e., 90%) estimate. We show how accounting for sea-level rise

uncertainty can increase the area at risk of flooding and can increase the probability of flood

occurrence. Using the San Francisco Bay area as an example, we demonstrate that these effects

can be sizable. Specifically, we show how accounting for uncertainty increases the 100-yr

return level by 0.5 m, shortens the return period from a 100-yr to a roughly 7-yr return period,

changes the shape of the survival function, and roughly doubles the area at risk of flooding in

San Francisco over using the mean sea-level rise estimate. Although, we use the San Francisco

Bay area as an example the overall results are transferable to many regions and indicate that

the method of accounting for sea-level rise can have considerable impacts on the design of

flood risk management strategies.

Table 1. Comparison of flood risk area by the potential future 100-yr flood height accounting for different estimates of sea-level rise (SLR).

100-yr Flood risk area in county subdivisions (sq.km)

County

subdivisions

Baseline storm

surge

Flood height accounting for

mean SLR

Flood height accounting for Heberger

et al. 2009 SLR

Flood height accounting for SLR

uncertainty

San Francisco 1.6 3.9 5.5 8.0

Oakland 6.3 10.9 13.7 18.0

Alameda 1.9 6.4 8.4 11.2

https://doi.org/10.1371/journal.pone.0174666.t001
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Supporting information

S1 Fig. Proximity of tide gauge 9414290 to San Francisco, CA. Photograph of the tide gauge

(bottom left corner) used in this study. Photograph by KL Ruckert on July 14, 2011.

(TIF)

S2 Fig. Re-plot of Fig 3 including the 90% sea-level rise estimate and flood survival func-

tion for San Francisco Bay. As in Fig 3, panel a is the probability distribution of global mean

sea-level rise in 2100 and panel b is the flood survival functions for San Francisco Bay.

(TIFF)

S3 Fig. Illustrative example (panel a and b) of how accounting for uncertainty increases

the probability of flood occurrence and (panel b and c) the impact of approximating prob-

abilities of occurrence below the 100,000-yr return period. Panel a displays the probability

density function of global mean sea-level rise in the year 2100 along with the mean ±1 standard

deviation projections (green lines). In panel b, the baseline storm surge (light blue) is shifted

by sea-level projections of 0.4 m (-1 standard deviation; light green), 0.6 m (mean; green), and

0.9 m (+1 standard deviation; dark green) to represent potential future flood height. The aver-

age of the three return periods at 2.2 m is represented as the black square. The pink star is pro-

duced when the return period below the 100,000-yr return period is approximated as zero and

then averaged with the two other return periods at 2.2 m. Note that (panel b and c) the approx-

imation method for the return period at 2.2 m produces the same return period value as the

result from accounting for the return periods below 100,000 years and hence displays little to

no flood risk over-or-underestimation.

(TIFF)

S4 Fig. Test of the impact that sea-level distribution characteristics have on the survival

function. Panel a displays the probability density function (pdf) of our global mean sea-level

rise in the year 2100 (dark red) along with the normal (light blue), log normal (blue), and

Pareto (dark blue) distribution approximations of global mean sea-level rise in the year 2100.

In panel b, the survival function accounting for each sea-level rise approximation (light to dark

blue) is shown for comparison to the baseline storm surge (yellow) and the survival function

accounting for our estimated empirical sea-level rise pdf (dark red).

(TIFF)

S5 Fig. Extent of county subdivisions within the area analyzed. Each county subdivision

(outlined in brown) is located within the analysis extent. In the analyzed area, the 100-yr flood

risk area is displayed in yellow (baseline), orange (flood height accounting for the mean sea-

level projection), red (flood height accounting for the Heberger et al. [7] sea-level projection;

not accounting for land storage changes), and dark red (flood height accounting for sea-level

rise uncertainty). The star represents the location of the tide gauge.

(TIFF)

S6 Fig. Sequential zoom in of baseline and future 100-yr flood risk areas in Oakland, CA.

The maps display the baseline 100-yr flood risk area in yellow. In the year 2100, the potential

100-yr flood height includes the addition of sea-level projections. The future 100-yr flood risk

area based on the mean sea-level projection is in orange, based on the Heberger et al. [7] (not

accounting for land storage changes) sea-level projection in red, and based on accounting for

sea-level rise uncertainty is in dark red. The location of the tide gauge is displayed as a star.

(TIFF)
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S7 Fig. Sequential zoom in of baseline and future 100-yr flood risk areas in Alameda, CA.

The maps display the baseline 100-yr flood risk area in yellow. In the year 2100, the potential

100-yr flood height includes the addition of sea-level projections based on the mean sea-level

projection (orange), the Heberger et al. [7] (not accounting for land storage changes) sea-level

projection (red), and accounting for sea-level rise uncertainty in dark red. The location of the

tide gauge is displayed as a star.

(TIFF)

S8 Fig. Re-plot of Fig 3 where we adapt our sea-level rise estimates to account for future

changes in water stored behind dams and in reservoirs. As in Fig 3, panel a is the probability

distribution of global mean sea-level rise in 2100 and panel b is the flood survival functions for

San Francisco Bay. However, in this figure we adapt our sea-level rise estimates in the year

2100 by adding roughly *0.55 m. This increase is roughly comparable to the increase used in

Heberger et al. [7]. Ultimately, adapting sea-level estimates to this change does not change the

main conclusions of this analysis.

(TIFF)

S9 Fig. Re-plot of Fig 5 where we adapt our sea-level rise estimates to account for future

changes in water stored behind dams and in reservoirs. As in Fig 5, this figure shows a

sequential zoom in of the baseline and future 100-yr flood risk areas in San Francisco. How-

ever, in this figure we account for changes in land water storage in the year 2100 by adding

roughly 0.55 m to the sea-level estimates [7].

(TIFF)

S10 Fig. Re-plot of S6 Fig where we adapt our sea-level rise estimates to account for future

changes in water stored behind dams and in reservoirs. The maps of Oakland, CA display

the baseline 100-yr flood risk area in yellow. In the year 2100, the potential 100-yr flood height

includes the addition of sea-level projections. The future 100-yr flood risk area based on the

mean sea-level projection is in orange, based on the Heberger et al. [7] sea-level projection in

red, and based on accounting for sea-level rise uncertainty is in dark red. The location of the

tide gauge is displayed as a star. However, in this figure we account for changes in land water

storage in the year 2100 by adding roughly 0.55 m to the sea-level estimates [7].

(TIFF)

S11 Fig. Re-plot of S7 Fig where we adapt our sea-level rise estimates to account for future

changes in water stored behind dams and in reservoirs. The maps of Alameda, CA display

the baseline 100-yr flood risk area in yellow. In the year 2100, the potential 100-yr flood height

includes the addition of sea-level projections based on the mean sea-level projection (orange),

the Heberger et al. [7] sea-level projection (red), and accounting for sea-level rise uncertainty

in dark red. The location of the tide gauge is displayed as a star. However, in this figure we

account for changes in land water storage in the year 2100 by adding roughly 0.55 m to the

sea-level estimates [7].

(TIFF)

S1 Table. The CMIP modeling group whose model output we used in this study (archived

at http://cmip-pcmdi.llnl.gov/cmip5/). This table was accessed and modified on 13 June 2016

from http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.docx.

(PDF)
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