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Abstract

Objectives

To investigate disease risk mechanisms of early-onset Parkinson’s disease (PD) associated

with the recurrent 22q11.2 deletion, a genetic risk factor for early-onset PD.

Methods

In a proof-of-principle study, we used whole-genome sequencing (WGS) to investigate

sequence variants in nine adults with 22q11.2DS, three with neuropathologically confirmed

early-onset PD and six without PD. Adopting an approach used recently to study schizo-

phrenia in 22q11.2DS, here we tested candidate gene-sets relevant to PD.

Results

No mutations common to the cases with PD were found in the intact 22q11.2 region. While

all were negative for rare mutations in a gene-set comprising PD disease-causing and risk

genes, another candidate gene-set of 1000 genes functionally relevant to PD presented a

nominally significant (P = 0.03) enrichment of rare putatively damaging missense variants in
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the PD cases. Polygenic score results, based on common variants associated with PD risk,

were non-significantly greater in those with PD.

Conclusions

The results of this first-ever pilot study of WGS in PD suggest that the cumulative burden of

genome-wide sequence variants may contribute to expression of early-onset PD in the pres-

ence of threshold-lowering dosage effects of a 22q11.2 deletion. We found no evidence that

expression of PD in 22q11.2DS is mediated by a recessive locus on the intact 22q11.2 chro-

mosome or mutations in known PD genes. These findings offer initial evidence of the poten-

tial effects of multiple within-individual rare variants on the expression of PD and the utility of

next generation sequencing for studying the etiology of PD.

Introduction

Over the past two decades new knowledge has elucidated a genetic basis for an increasing pro-

portion of patients with Parkinson’s disease (PD) [1]. We identified the hemizygous 22q11.2

microdeletion associated with 22q11.2 deletion syndrome (22q11.2DS; OMIM #192430,

#188400) as a novel genetic risk factor for neuropathologically confirmed, L-dopa responsive

early-onset PD [2]. This structural variant has since been found to be significantly enriched in

early-onset PD cohorts and may account for ~0.5% of cases [3]. Genetic variants on the intact

22q11.2 chromosome, or genome-wide outside of the deletion region, may influence the likeli-

hood of expression of PD in 22q11.2DS. Using this genetic model to identify such variants

could provide clues to variants that affect susceptibility to idiopathic forms of PD and general

disease mechanisms.

As a proof-of-principle to assess this model, we used whole-genome sequencing (WGS)

data, adapting a strategy successfully used to study expression of schizophrenia in 22q11.2DS

[4]. We compared variants from 22q11.2DS patients with early-onset PD [2] to those without

PD. To maximize statistical power in this initial study, we investigated rare variant burden for

gene-sets with higher a priori likelihood of contributing to PD risk. These included variants

affecting candidate genes in the 22q11.2 deletion region, such as COMT, SEPT5, and six mito-

chondrial function genes, as well as other genome-wide PD-relevant gene-sets. We also inves-

tigated common variant contribution using a polygenic risk score model. We found evidence

for rare variants outside the 22q11.2 region perturbing gene networks relevant to PD, support-

ing the utility of this genetic model for early-onset PD.

Methods

Subjects

We performed WGS using DNA from nine unrelated adults of European descent with chro-

mosome 22q11.2 deletions [4] (Table 1) selected from a cohort of Canadian adults with

22q11.2DS [2, 5–8]. Direct clinical assessments at multiple timepoints and review of compre-

hensive lifetime medical records and clinical histories provided deep phenotyping using our

established methods [2, 4–8]. The three subjects with early-onset PD (PD1-PD3) met United

Kingdom Parkinson’s Disease Society Brain Bank clinical diagnostic criteria and had con-

firmed PD neuropathology [2]. We had previously reported that these 22q11.2DS-PD patients
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had no known pathogenic point mutations in LRRK2, PARK2, DJ-I, PINK1, or SNCA, or copy

number variants in PARK2 or SNCA [2].

Informed consent was obtained in writing and the study was approved by research ethics

boards at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

Whole-genome sequencing

The overall WGS approach was based on methods used in recent studies of schizophrenia [4]

and autism [9]. Detailed laboratory and bioinformatics methods are described elsewhere [4].

In brief, genomic DNA was extracted from whole blood and sequenced using the Complete

Table 1. Clinical and 22q11.2 deletion-related characteristics of individuals with 22q11.2 deletion syndrome of European Ancestry with whole-

genome sequencing results.

22q11.2DS-Parkinson’s disease 22q11.2DS-No Parkinson’s disease

Subject identifier PD1 PD2 PD3 NPD1 NPD2 NPD3 NPD4 NPD5 NPD6

Demographic features and PD phenotype

Sex Female Male Male Female Male Female Male Male Female

Age (y)

At last follow-up or at

death

56 58 61 21 38 48 44 53 52

PD motor symptom

onset

45 48 43 - - - - - -

PD diagnosis 55 54 44 - - - - - -

Family history of PD No No No No No No No Father, late-

onset

No

Neuropathologya Nigral cell

death, LBs [2]

Nigral cell

death, LBs [2]

Nigral cell

death

[2]

Living Living Living No PD

pathology [10]

Living Living

Other 22q11.2DS

features

Congenital heart

defect

No Yesb No Yesb No No Yesb No Yesb

Intellectual disability Borderline None None Mild Mild Borderline Borderline Borderline Borderline

Schizophrenia (age at

onset, y)

Yes (17) Yes (22) No Yes (12) Yes (15) Yes (18) Yes (21) No No

Other psychiatric

disorderc
No No No Yes No No No Yes Yes

Seizuresd Single No No Recurrent Recurrent Recurrent Single No No

22q11.2 deletion

region

Deletion typee Nested–

proximal

Typical Typical Typical Typical Typical Typical Typical Typical

De novo 22q11.2

deletion

Probable Probable Probable Probable Yes Yes Probable Yes Probable

Abbreviations: 22q11.2DS, 22q11.2 deletion syndrome; LBs, Lewy bodies; NPD, No Parkinson’s disease; PD, Parkinson’s disease; VPI, velopharyngeal

insufficiency; y, year
aDetailed phenotypic reports published previously for PD1-PD3 [2] and NPD4 [10]
bTetralogy of Fallot (PD2); ventricular septal defect (NPD1); ventricular septal defect and atrial septal defect (NPD4, NPD6)
cLifetime history; Other psychiatric disorders were obsessive compulsive disorder (NPD1), generalized anxiety disorder (NPD5, NPD6)
dLifetime history; Note all subjects had a lifetime history of hypocalcemia
eAge at molecular diagnosis of 22q11.2 deletion was 44, 52, 53 years for subjects with Parkinson’s disease and 4, 21, 27, 39, 41, 42 years for subjects

without Parkinson’s disease

https://doi.org/10.1371/journal.pone.0173944.t001
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Genomics platform (pipeline and assembly version 2.2). On average, 99.0% of the genome was

covered with at least 5x sequence depth relative to the NCBI build 37 human genome reference

sequence. Of the exome, 94.4% and 72.3% was covered with at least 20x and 40x sequence depth,

respectively. Only high-quality variants, defined as those with Complete Genomics “highquality”

variant call scores and that also met stringent in-house quality criteria [4, 9] were included. The

effects (e.g., nonsense, missense, or frameshift mutations) and classifications (e.g., in exonic, intro-

nic, or intergenic regions) of variants across the genome were annotated using ANNOVAR

(November 2014) software [11]. Rarity was annotated using the three major publicly-available

reference datasets based on WGS and whole exome sequencing, i.e., 1000 Genomes [12], NHLBI-

Exome Sequencing Project [13] and Exome Aggregation Consortium [14], and two in-house plat-

form-matched whole-genome reference data-sets. We defined rare variants using a standard rar-

ity threshold of those not exceeding the 1% alternate allele frequency threshold (minor allele

frequency [MAF]<0.01) in all datasets, including specific ethnic subgroups.

Non-synonymous and structural variants

We examined rare single-nucleotide sequence variants (SNVs) and in/dels affecting coding

genes that included loss-of-function (stop-gain/nonsense, frameshift, and core splice site alter-

ations) and missense mutations categorized as deleterious using standard variant impact pre-

dictor tools and genomic conservation indexes, as reported previously [4, 9]. Missense variants

were predicted damaging (deleterious) when they met at least four of seven criteria: high con-

servation by PhyloP placental mammal (�2.3) and PhyloP 100vertebrate (�4) [15] and pre-

dicted damaging by SIFT�0.05 [16], PolyPhen2�0.90 [17], Mutation Assessor�1.9 [18],

CADD Phred score�15 [19], and MutationTaster score >0.5 [20]. We restricted the analyses

to diploid regions of the genome with the exception of the 22q11.2 deletion to help manage the

risk of false positives.

Copy number variant and other structural variants detected by Complete Genomics pipe-

line and assembly version 2.2 were annotated and filtered as described elsewhere [4, 9]. We

considered only high-quality rare variants that overlapped a coding gene exon of a RefSeq

gene [4, 9]. 22q11.2 deletions were confirmed in all patients (Table 1).

Gene-set analyses

The analysis was restricted to a candidate gene approach of rare variants involving coding

regions of the genome. Rare coding sequence variants are enriched for those that are deleteri-

ous and have a moderate to large effect on disease risk. We have previously shown that this

approach, even for the small sample selected for our pilot WGS study of 22q11.2DS, can yield

substantial effect sizes for a neuropsychiatric phenotype [4]. Three hypothesis-driven gene-sets

were selected a priori for testing based on proposed possible PD mechanisms in 22q11.2DS [2,

21]: (1) 22q11.2 deletion region genes (n = 46) [22]; (2) known causative and PD risk candidate

genes (n = 43); and (3) genes identified as functionally-relevant to PD (n = 1000) based on

physical protein interactions and co-expression with known PD gene candidates, excluding

the 22q11.2 region and the known causative and risk PD genes that were examined as separate

gene-sets.

The known candidate PD gene-set (S1 Table) included genes described in the scientific lit-

erature and/or, OMIM entries for Parkinson’s disease (#168600), and from the PDgene data-

base of genome-wide association study common variant findings (www.pdgene.org; accessed

October 2015) [23, 24]. We used this approach [25] because rare and common variants can

involve the same PD risk gene (e.g., SNCA) [1, 23, 24]. We opted to assess all genes (e.g., con-

firmed, unconfirmed, and rarely) reported to be involved in Parkinson’s disease in order to

22q11.2 deletion-associated PD mechanisms
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limit the possibility of a false negative with respect to susceptibility to Parkinson’s disease in

patients with 22q11.2DS.

The gene-set of 1000 “PD-relevant” genes was generated using the genome-wide candidate

gene prioritization tool, Endeavour [26]. Endeavour prioritizes genes by assessing how similar

they are to genes already known to be involved in the process of interest [26–28]. To generate

a genome-wide ranked list of candidate “PD-relevant” genes, the 43 genes comprising the

known PD gene-set (S1 Table) were used as input training genes with data imported from

standard annotation databases (Gene Ontology, Kegg, SwissProt), protein-protein interaction

databases (BIND, BioGRID, Hprd, InNetDb, Intact, Mint), and a human gene expression data-

base [29]. This yielded 1561 ranked genes mapped to current unique HGNC gene symbols (S2

Table). We a priori restricted the PD-relevant gene-set to the highest-ranked 1000 genes (“top

1000 genes”; S2 Table) to help prevent the inclusion of genes with weak evidence for involve-

ment in PD-related function, while including a sufficient number of genes to perform a proof-

of-principle genome-wide burden analysis [4]. As a negative control, we generated 10 000 ran-

dom gene-sets composed of 1000 “non-PD relevant” genes each from a set of 14 489 genes that

met the following criteria: (1) at least one Gene Ontology [30] annotation with� 500 genes, to

ensure that the genes were annotated with a functional term that was sufficiently specific, and

(2) were not in the known candidate PD gene-set or the PD-relevant gene-set (top 1000).

Common variant polygenic risk score

We calculated the polygenic score using the approach previously described for 22q11.2DS-

associated schizophrenia [4] and the International Schizophrenia Consortium [31]. Our analy-

sis was restricted to the top 10 000 most significant SNPs with original nominal association p-

values and odds-ratios that are publicly available from PDgene [23, 24]. Of these, 3534 SNPs

were mapped to variants passing quality filters in all nine genomes assessed in this study. Allele

counts were computed as the number of alleles that matched to the allele used for association

analysis. The SNP-wise risk score was calculated as the product of the allele count and the log

(odds-ratio). The polygenic risk score [4] for each 22q11.2DS subject was calculated as the

sum of all respective SNP-wise risk scores using nominal association p-value thresholds�1e-3

and�1e-5, as well as one more stringent (�1e-7) corresponding to 3410, 1315, and 388 SNPs

each.

Statistical analyses

We used one-sided independent t-tests in these exploratory analyses to assess rare variant bur-

den count and common variant polygenic risk score between groups, performed with SAS ver-

sion 9.4 software. Statistical significance was defined using nominal uncorrected p<0.05. The

false discovery rate (FDR) was calculated using the Benjamini-Hochberg procedure.

Results

Table 1 summarizes the demographic, clinical, and 22q11.2 deletion data for the subjects stud-

ied. No feature of 22q11.2DS, apart from the presence of neuropathologically-confirmed PD,

was unique to the 22q11.2DS-PD cases. The clinical heterogeneity among the subjects was typ-

ical for 22q11.2DS [32–34]. Expression of schizophrenia was similarly common (66.6%) in

both groups. Among the subjects with PD, there was a history of borderline intellectual disabil-

ity and an isolated seizure in one subject and a congenital heart defect in another. Major co-

morbid conditions among the patients without PD included intellectual disability (n = 2 mild;

n = 4 borderline), seizures (n = 3 recurrent; n = 1 single), congenital heart defects (n = 3), and

other psychiatric disorders including obsessive compulsive disorder (n = 1) and generalized

22q11.2 deletion-associated PD mechanisms
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anxiety disorder (n = 2). Patients in the PD group were diagnosed with 22q11.2DS at an older

mean age (49.6±4.9 years) than those without PD (29±14.9 years, p = 0.048). One subject with

PD had a 1.4 Mb nested proximal 22q11.2 deletion (S3 Table). The deletion breakpoints were

consistent with typical deletions in the other eight subjects (n = 7, 2.6 Mb deletion including

two with PD; n = 1, 2.9 Mb deletion; S3 Table). There were no deleterious nonsynonymous

variants near the 22q11.2 deletion breakpoints (i.e., within 4 Mb).

WGS results for the 22q11.2 deletion region revealed only a single rare missense variant

involving different brain-expressed genes in each of three subjects (Table 2). None involved a

putative 22q11.2 region PD candidate gene [2, 21] and the variants in cases PD1 and PD3

involved genes TRMT2A and DGCR2, encoding proteins of largely unknown function

(Table 2) [35, 36].

With respect to the gene-set of 43 putative candidate PD genes (S1 Table), no deleterious

nonsynonymous variants (Table 2), or copy number or other structural variants, were identi-

fied in any of the nine subjects.

Overall the genome-wide burden of rare deleterious missense variants in coding sequence

genes was non-significantly greater in the PD cases than in the patients without PD (Table 2).

We assessed a candidate gene-set functionally restricted to the top 1000 genome-wide ranked

PD-relevant genes, excluding those in the 22q11.2 deletion region or in known PD genes. This

revealed a greater burden of rare deleterious missense variants in the 22q11.2DS-PD cases

(nominal p = 0.03; FDR = 10%; Table 2). The result remained significant (p = 0.04) after cor-

recting for the total number of rare deleterious missense variants per subject. To test the speci-

ficity of these findings, we assessed between-group differences for burden of rare deleterious

missense variants in 10 000 random non-PD relevant gene-sets. We found that <5% of the

resulting p-values were less than the p-value yielded from the top 1000 genome-wide ranked

Table 2. Rare nonsynonymous variants in 22q11.2 deletion-associated early-onset Parkinson’s disease (22q11.2ds-pd) patients compared with

22q11.2 deletion patients with no Parkinson’s disease (22q11.2DS-NPD).

Rare deleterious coding variant countsa

22q11.2DS-PD 22q11.2DS-NPD Analyses

Subject Identifier PD1 PD2 PD3 NPD1 NPD2 NPD3 NPD4 NPD5 NPD6 PD Mean (SD) NPD Mean (SD) pb

Genome-wide total

Loss-of-function variants 9 7 14 22 17 22 13 9 11 10.0 (3.6) 15.7 (5.6) 0.06

Missense variants 97 98 117 102 79 95 90 82 89 104.0 (11.3) 89.5 (8.4) 0.07

Candidate gene-sets for 22q11.2DS-PD

22q11.2 deletion region genes (46 genes) 1c 0 1c 0 0 0 0 0 1c 0.7 (0.6) 0.2 (0.4) 0.14

Known PD candidate genes (43 genesd) 0 0 0e 0 0 0 0 0 0 - - -

PD-relevant genes (top 1000 candidate genesf)

Loss-of-function variants 1 1 0 1 0 1 1 3 0 0.7 (0.6) 1.7 (1.1) 0.29

Missense variants 12 7 11 3 4 4 5 8 5 10.0 (2.6) 4.8 (1.7) 0.03

aRare (MAF<0.01) autosomal heterozygous deleterious variant counts. Only one homozygous variant was identified (missense variant in ZNF418, no

apparent functional relevance to PD, in PD3)
bNominal p value for one-sided independent t-test. Non-parametric Wilcoxon testing yielded the same pattern of results
cMissense variants in three brain-expressed genes in the proximal typical deletion region, none of which are considered 22q11.2 PD candidate genes [2]:

TRMT2A, tRNA methyltransferase 2 homolog A [S. cerevisiae] (PD1); DGCR2, DiGeorge syndrome critical region 2 (PD3); GNB1L, guanine nucleotide

binding protein [G protein], beta-polypeptide 1-like (NPD6)
dPD candidate causative and risk genes (S1 Table)
eA false positive missense variant in PARK2 (subject PD3) was not confirmed: Sanger sequencing showed no mutation [2].
fTop 1000 genome-wide genes ranked as potential PD-relevant genes using the genome-wide candidate gene prioritization tool, Endeavour

https://doi.org/10.1371/journal.pone.0173944.t002
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PD-relevant genes (p = 0.03), suggesting the results were specific to the PD-relevant gene-set.

Results for the few loss-of-function variants were non-significant (Table 2). There were no

genome-wide PD-relevant copy number or other structural variants identified [4].

Secondary analyses showed that the genes with these rare missense variants ranked signifi-

cantly higher in the PD-relevant gene-set in the PD patients (mean rank, 196) than those in the

cases without PD (mean rank, 316; p = 0.009), and that burden results remained significant

using a higher stringency threshold (top 500 ranked candidates in the PD network gene-set, S2

Table; 22q11.2DS-PD mean = 5.7, SD = 2.1 vs. 22q11.2DS-NPD mean = 2.0, SD = 1.7; p = 0.03).

Also, a negative control analysis using lifetime history of schizophrenia or seizure(s) in

place of PD as the phenotype of interest [4] showed no significant differences in PD network

missense variant burden between groups at either stringency threshold (schizophrenia: top

1000 ranked PD-relevant genes, p = 0.81; top 500 genes, p = 0.54; seizure(s): top 1000 ranked

PD-relevant genes, p = 0.17; top 500 genes, p = 0.77).

Table 3 shows the PD-relevant genes with rare nonsynonymous variants in the subjects

with PD. These included KLF11, a regulator of monoamine oxidase B expression [37], and

MAP2, a neuronal cytoskeletal protein found in Lewy bodies in PD patients (Table 3) [38].

There were two genes with variants that affected more than one case with PD (Table 3). The

same rare variant (MAF�0.01) in LARS2 (rs116826217) was identified in subjects PD2 and

PD3. This gene encodes a mitochondrial aminoacyl-tRNA synthetase reported to be signifi-

cantly down-regulated (~1.45 fold) in substantia nigra dopaminergic neurons of patients with

idiopathic PD [39]. Two different rare variants in TTN were identified in subjects PD1 and

PD3. Although ranked in the top 100 candidates in the PD-relevant gene-set, TTN is highly

polymorphic and one of the largest genes in the genome, thus caution is warranted in the

interpretation of the potential pathogenicity of variants [40].

At the most stringent nominal p-value threshold of�1e-7 (corresponding to just 388 SNPs),

the mean polygenic risk score was non-significantly greater in the PD cases (-18.6 vs. -23.7;

p = 0.17; S1 Fig). A similar non-significant trend with more modest relative differences was

observed at more lenient SNP nominal p-value thresholds.

Discussion

This first ever study using WGS in PD provides initial proof-of-principle of the utility of next-

generation sequencing for studying the etiology of PD, and the potential advantage of using a

genetic model, here, 22q11.2DS. The results provide preliminary evidence that genome-wide

burden of rare deleterious variants in genes functionally relevant to PD may collectively act to

increase the likelihood of expression of PD in the presence of a 22q11.2 deletion. This is consis-

tent with, and extends to PD, findings using this WGS approach for schizophrenia in 22q11.2DS

[4]. These findings will require confirmation in adequately powered larger samples.

The results of this proof-of-principle study suggest that hemizygosity of the 22q11.2 dele-

tion region, together with each individual’s cumulative genome-wide burden of rare deleteri-

ous variants in PD-relevant pathways, with perhaps some modification related to cumulative

common variants, may form a “multi-hit” pathway to the expression of PD in 22q11.2DS.

Collectively, the findings provide an initial glimpse of the potential for WGS to reveal a more

complete view of the complex genetic architecture of PD at the individual level that could

potentially be generalizable to other forms of PD. Reduced gene dosage in the 22q11.2 region

appears to be a more plausible mechanism for increasing risk of early-onset PD in 22q11.2DS

than does the unmasking of a recessive allele on the intact 22q11.2 chromosome.

With this sample size, we could not find evidence of a contribution to risk from pathogenic

mutations in well-known or other risk genes for PD, nor loss-of-function mutations affecting

22q11.2 deletion-associated PD mechanisms
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Table 3. Rare nonsynonymous variants in autosomal genes in a genome-wide Parkinson’s Disease-relevant gene-set in three unrelated patients

with 22q11.2 deletion-associated Parkinson’s disease.

Case Gene

symbol

Gene Name Variant type Ranka Coordinates (GRCh37) Ref. allele Alt.

allele

Entrez

ID

OMIM

IDChr. Position

PD1 TTNb titin Missense 57 2 179560789 T C 7273 188840

MAP2 microtubule-associated protein 2 Missense 147 2 210543361 C A 4133 157130

HAL histidine ammonia-lyase Missense 180 12 96371731 C T 3034 609457

GPATCH8 G patch domain containing 8 Missense 184 17 42476786 G A 23131 614396

DOCK4 dedicator of cytokinesis 4 Missense 213 7 111368481 G A 9732 607679

MYH9 myosin, heavy chain 9, non-muscle Missense 229 22 36681790 G A 4627 160775

KHK ketohexokinase (fructokinase) Missense 256 2 27320515 G A 3795 614058

HSD17B4 hydroxysteroid (17-beta) dehydrogenase

4

Missense 265 5 118844919 C T 3295 601860

EYA1 EYA transcriptional coactivator and

phosphatase 1

Missense 648 8 72246370 G A 2138 601653

ATXN7 ataxin 7 Missense 735 3 63968025 A T 6314 607640

RNF123 ring finger protein 123 Missense 804 3 49737107 C T 63891 614472

G3BP1 GTPase activating protein (SH3 domain)

binding protein 1

Missense 997 5 151176801 G C 10146 608431

PDE1A Phosphodiesterase 1A, calmodulin-

dependent

LOF

(deletion)

177 2 183106620 to

183106623

GTTT NA 5136 171890

PD2 KLF11 Kruppel-like factor 11 Missense 75 2 10188597 C T 8462 188840

GCA grancalcin, EF-hand calcium binding

protein

Missense 86 2 163208877 G T 25801 176878

PTPRG protein tyrosine phosphatase, receptor

type, G

Missense 165 3 62189076 C T 5793 172250

ADCY6 adenylate cyclase 6 Missense 408 12 49165650 C T 112 603301

NFATC1 nuclear factor of activated T-cells,

cytoplasmic, calcineurin-dependent 1

Missense 887 18 77171480 T C 4772 600489

LARS2b leucyl-tRNA synthetase 2, mitochondrial Missense 921 3 45537795 G A 23395 604544

TYR tyrosinase Missense 970 11 89017973 C T 7299 606933

C19orf80 chromosome 19 open reading frame 80 LOF

(nonsense)

936 19 11350874 C T 55908 NA

PD3 ANKHD1 ankyrin repeat and KH domain

containing 1

Missense 22 5 139815809 C G 54882 610500

ARG1 arginase 1 Missense 29 6 131904553 C T 383 608313

TTNb titin Missense 57 2 179430433 C T 7273 188840

MTMR14 myotubularin related protein 14 Missense 469 3 9714418 A G 64419 611089

MC5R melanocortin 5 receptor Missense 489 18 13826678 C T 4161 600042

DHTKD1 dehydrogenase E1 and transketolase

domain containing 1

Missense 502 10 12129639 G T 55526 614984

ALDH4A1 aldehyde dehydrogenase 4 family,

member A1

Missense 512 1 19209862 A G 8659 606811

SMG6 SMG6 nonsense mediated mRNA decay

factor

Missense 585 17 2202573 G A 23293 610963

HARS histidyl-tRNA synthetase Missense 815 5 140070517 C T 3035 142810

LARS2b leucyl-tRNA synthetase 2, mitochondrial Missense 921 3 45537795 G A 23395 604544

PGLYRP4 peptidoglycan recognition protein 4 Missense 972 1 153303392 C T 57115 608198

Abbreviations: Alt. allele, alternate allele; Chr., chromosome; LOF, loss-of-function; NA, not applicable; Ref. allele, reference allele
aGenome-wide rank as a potential PD-relevant gene using the genome-wide candidate gene prioritization tool, Endeavour
bVariants involving the same gene in two patients with 22q11.2DS-associated Parkinson’s disease (same variant with respect to LARS2)

https://doi.org/10.1371/journal.pone.0173944.t003
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genes in the broader PD-relevant network. Notably, enrichment of additional rare ATP13A2
variants was recently reported in LRRK2-associated PD [41]. Larger studies of patients with

22q11.2DS-associated PD will help clarify if additional rare variants in known PD genes could

impact penetrance of PD in this genetic population. Though non-significant, the finding of a

less negative polygenic score in the 22q11.2DS-PD cases suggests the possibility that 22q11.2DS

patients who develop PD may have fewer protective PD risk alleles. These preliminary findings

provide hypotheses that await testing in larger, well-powered samples that will become feasible

as more patients with 22q11.2DS-PD continue to be identified [2, 3, 42–49].

The smaller proximal deletion that occurs in about 10% of cases [50, 51] was identified in

one of the 22q11.2DS patients with PD sequenced in this study [2]. Adequately-powered stud-

ies will be needed to investigate the molecular nature of the deletion and the potential impact

of neighbouring mutations as a possible source of discordance for PD in 22q11.2DS. Notably,

there appears to be no relationship between deletion length and expression of other major neu-

ropsychiatric features in 22q11.2DS [52–54]. We found no evidence that nonsynonymous vari-

ants near the 22q11.2 deletion breakpoints impacted expression of PD.

The results of this study appear to be consistent with the polygenic genetic architecture

expected for a common, complex neurological disorder such as PD. Studies using a compara-

ble design in this and other genetic models of PD (e.g., LRRK2-associated PD) could help to

reveal generalizable mechanisms relevant to the reduced penetrance associated with most

mutations. Non-genetic factors may also be important to include in future designs. For exam-

ple, Vitamin D deficiency may increase PD risk [55], and is a common finding in 22q11.2DS

related to inadequate levels of parathyroid hormone secretion [32, 33, 56]. Prospective studies

could help clarify if Vitamin D levels may be involved in mediating PD risk in 22q11.2DS.

The small sample size necessitated analyses focused on a targeted candidate gene-set

approach. This included reliance on reported PD-associated genes to seed a network to priori-

tize rare variants across the genome. More individual PD genes are likely to be discovered, and

others may be dropped from such lists as data accrue. Although this initial study produced a

nominally significant enrichment of rare putatively damaging missense variants in PD-rele-

vant genes among the PD cases, there was no correction for multiple comparisons. We limited

the number of tests to the minimum by considering only gene-sets with relevance to PD.

These findings will require replication in adequately powered samples. We were underpow-

ered in this preliminary study to include clinical covariates, including other neuropsychiatric

phenotypes, in our analyses. The clinical phenotype of 22q11.2DS patients with PD reported to

date appears consistent with the variable expression and reduced penetrance of the associated

features that is characteristic of 22q11.2DS [2, 3, 42–49]. However, there were no significant

differences in the PD network variant burden using other major neurological phenotypes (e.g.,

expression of schizophrenia or seizures) as the grouping variable, suggesting the findings may

be specific to PD-relevant genes.

Advances in WGS bioinformatics methods will permit informative analyses of non-coding

regions in future studies. The 22q11.2 region includes DGCR8, a key gene in the biogenesis of

brain microRNAs, in addition to seven microRNAs [57]. It remains possible that one or more

of the cases without PD may go on to develop PD at a later age, limiting the power to deter-

mine between-group differences. Evaluating clinical and neuroimaging phenotypes in genetic

studies of patients with 22q11.2DS without a diagnosis of PD may help clarify disease risk. We

recently found that adults with 22q11.2DS without a diagnosis of PD exhibit olfactory and

motor deficits compared with age-matched healthy controls [58]. The true penetrance of PD

in adults with 22q11.2DS remains to be reliably estimated, and there are as yet no predictive

clinical markers of PD. Longitudinal studies will help resolve such questions. For the six cases

without PD, all but one (NPD1) had reached or was beyond the reported age-at-onset range

22q11.2 deletion-associated PD mechanisms
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for 22q11.2DS-associated early-onset PD [2, 3, 42–46]. The absence of PD pathology was con-

firmed in one case where brain tissue was available (NPD4) [2], and there was no evidence of

nigrostriatal dopamine loss in two others (NPD1 and NPD6) on PET neuroimaging using 11C-

dihydrotetrabenazine relative to controls [58, 59].

The results of this study represent an important first step in appreciating how WGS can

help to elucidate the genetic etiology of early-onset PD in 22q11.2DS. These findings may have

implications for other genetic models of PD and for idiopathic PD. Eventually such molecular

results could help to inform early identification and intervention strategies for individuals at

risk.
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