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Abstract

Feature selection is an important preprocessing method in machine learning and data min-

ing. This process can be used not only to reduce the amount of data to be analyzed but also

to build models with stronger interpretability based on fewer features. Traditional feature

selection methods evaluate the dependency and redundancy of features separately, which

leads to a lack of measurement of their combined effect. Moreover, a greedy search consid-

ers only the optimization of the current round and thus cannot be a global search. To evalu-

ate the combined effect of different subsets in the entire feature space, an adaptive feature

selection method based on V-shaped binary particle swarm optimization is proposed. In this

method, the fitness function is constructed using the correlation information entropy. Fea-

ture subsets are regarded as individuals in a population, and the feature space is searched

using V-shaped binary particle swarm optimization. The above procedure overcomes the

hard constraint on the number of features, enables the combined evaluation of each subset

as a whole, and improves the search ability of conventional binary particle swarm optimiza-

tion. The proposed algorithm is an adaptive method with respect to the number of feature

subsets. The experimental results show the advantages of optimizing the feature subsets

using the V-shaped transfer function and confirm the effectiveness and efficiency of the fea-

ture subsets obtained under different classifiers.

Introduction

The generation and accumulation of data in every walk of life is giving rise to new require-

ments for data mining and machine learning tasks. The question about to utilize these growing

data scientifically and extract their valuable information has become a popular topic of current

research. A professor at the University of Washington who is an expert in machine learning

has noted that the key to success in machine learning tasks is the correct use of data features.

Therefore, the critical first step in extracting valuable information is to determine the impor-

tant features in large data sets.

Feature selection refers to the assessment of features or feature combinations using a spe-

cific evaluation function to obtain a lower-dimensional feature subset from the original
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feature set. The significance of feature selection is that it can be effectively used to address

the curse of dimensionality. The learning process can be more efficient when data are mod-

eled in terms of certain important features [1]. Moreover, the elimination of useless and

redundant features makes the results of learning result interpretable. This reduction does not

change the physical meaning of the features. For this reason, feature selection methods tend

to be used when it is necessary to understand the potential meaning and original characteris-

tics of data sets. In the process of feature selection, better and fewer features mean more flexi-

bility, and the learned model will also represent more approximate results with regard to the

original data. In recent years, feature selection has been widely applied to studies of social

networks [2], intrusion detection [3] [4], bioinformation [5], image analysis [6], nature lan-

guage processing [7], etc.

Research on feature selection is mainly focused on two aspects of the process [1]: the search

strategy and the evaluation function. In the task of choosing the subject of features from the

original set that contains the most valuable information, an attempt to traverse all possible sub-

sets would be computationally infeasible and would encounter the problem of combinatorial

explosion. To allow features to be selected more efficiently, several greedy search strategies are

used in this work, such as forward search and backward search. However, a traditional greedy

search can easily fall into local optima, which means that non-optimal subsets may be found.

This search strategy is inapplicable for finding the globally optimal solution or an approxi-

mately optimal solution. With respect to subset evaluation functions, a variety of metrics can

be used, such as distance-based metrics [8], [9], information-entropy-based metrics [10] [11]

[12] [13], correlation-based metrics [14] and dependency-based metrics [15]. In many of these

approaches, features or pairs of features are evaluated for their importance one by one; conse-

quently, the correlations among different combinations of features are ignored. Therefore, it is

of interest to study an evaluation function that can be used to rapidly evaluate the importance

of each feature subset as a whole. Depending on the methods used to evaluate feature subsets,

feature selection models can be divided into three categories [16]: filter models, wrapper mod-

els and embedded models. A filter model relies only on the intrinsic characteristic of the data

for feature selection, without any specific guidance from learning algorithms, e.g., [17]. A

wrapper model requires a pre-specified learning algorithm, and the performance of each sub-

set based on the chosen learning algorithm is used as the measure for determining the final fea-

ture subset, e.g., [18]. An embedded model includes the feature selection method as part of the

objective analysis of a learning algorithm, which is used as part of the training process for

determining feature importance,e.g., [19]. Depending on the output of the feature selection

process, these can be further divided into two types: ranking methods and subset selection

methods. A ranking method is based on the degree of importance of each feature, which is

then used to select a feature subset, where the number of features in the selected subset must

be controlled manually. By contrast, a subset selection method outputs the subset with the best

overall evaluation.

Because of the advantages of filter models, such as generation ability and computing

capacity, various efficient filter measures have been developed for use as the evaluation func-

tion during feature selection. Battiti et al. presented a mutual information measure for evalu-

ating the degree of dependency between features and class labels in [10]; the larger the

mutual information measure is, the more important the corresponding feature is. The mini-

mum-redundancy-maximum-relevance(mRMR) method was proposed by Peng et al. as a

classical information-based feature selection method [12]. This method uses mutual infor-

mation to calculate the correlation between feature and class and the redundancy between

features. However, these ranking methods cannot determine the combined effect of all fea-

tures in a subset. In 2004, Yu et al. proposed an Fast Correlation Based Filter(FCBF) method
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for measuring feature-feature and feature-class correlations by using symmetrical uncer-

tainty in the context of information theory [20]. However, this method cannot handle feature

redundancy. In [21] and [22], Sun et al. used the Banzhaf power index and Shapley value to

evaluate the combined influence of the features in each feature subset as a whole; however,

this method required a significant amount of time during the process of creating candidate

feature subsets. As a representative method based on distance, Hu et al. proposed the soft

fuzzy rough sets(SFS) method [9], which uses the neighborhood rough set for the evaluation,

but this method is strongly influenced by neighborhood parameters and dependency. In [8],

Dong reported research on an evolutionary algorithm for evaluating feature subsets; how-

ever, this method relied on measures of within-class and between-class distances, which

resulted in a weak anti-noise ability. In [15], Liu et al. considered the overall change in the

dependency of the subsets to propose a novel feature selection based on a dependency mar-

gin; however, this method had a high time complexity. ReliefF [23] is the classical ranking

method of feature selection based on distance measurements, but it lacks the ability to mea-

sure the combined effects of features.

The concept of correlation information entropy comes from the field of multi-sensor

data fusion. It is a measure of redundant information in a multi-sensor system. This tech-

nique was proposed by Wang et al [24]. for measuring overlapping and independent infor-

mation in a multi-sensor system. The information on the correlation among multiple

sensors is measured as a value on the closed interval of [0,1]. The greater the degree of inde-

pendence among sensors is, the smaller is the degree of redundancy (overlap), and conse-

quently, the greater is the correlation information entropy. In our previous work [25], we

used a greedy search based on the correlation information entropy for feature selection, in a

method termed CMFS−η. In this method, the most relevant feature that introduces the low-

est redundancy is added to the candidate subset until the redundancy constraint η is

reached. This method considers only the optimal set for the current round [1]. As an exam-

ple of a forward search, suppose that f5 is better than f6 in the third round, and conse-

quently, the candidate subset is {f2,f4,f5}; however, in the fourth round, it may be that {f2,f4,

f6,f8} is better than any{f2,f4,f5,fi}. Therefore, the greedy algorithm cannot obtain the optimal

set. Similar problems arise in a backward search and a two-way search. The greedy strategy

cannot solve a problem in which the combination of weaker features with other features

results in a stronger recognition ability. As we all know, the search speed of particle swarm

optimization (PSO) is better than it of genetic algorithm and some other evolutionary algo-

rithms, while run time is an important indicator in feature selection. Therefore, the PSO is

more suitable for searching the feature space [26] [27] [28] [29].Variants of PSO have been

developed and discussed in recent study from the above references. However, different

parameters and evolutionary strategies of PSO have great influence on search ability. Liu

et al. [30] investigated the effect of the inertia weight on the behavior of BPSO theoretically

and empirically. Du et al. [31] illustrated the importance of some useful information from

other neighbors rather than the best performer. In their study, particles are influenced by

only several top individuals of the population sorted by performance. The redundant infor-

mation of neighbors is controlled and the useful information is shared by particles in their

PSO method. Furthermore, the transfer function is another important influence of binary

particle swarm optimization (BPSO) which should be tested for different optimization prob-

lems [32].

In this paper, each dimension of features is regarded as a sensor, and these sensors are

used to model the sensor information system and the feature information system. Then, the

correlation information entropy is calculated to measure the combined effects of the feature

subsets. To overcome the shortcomings of ranking methods as discussed above, we use
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BPSO to search the feature space. Based on an analysis of transfer functions, we determine

that V-shaped binary particle swarm optimization (VBPSO) is most appropriate for evaluat-

ing the feature subsets. Unlike traditional information theory methods, in the proposed fea-

ture selection method using V-shaped binary particle swarm optimization (VPFS), subsets

are formed adaptively to prevent the greedy search from easily falling into local optima. The

proposed method is independent of any specific learning algorithm; therefore, it is a filter

model. Moreover, a comprehensive set of experiments is conducted to demonstrate the effec-

tiveness of the proposed method. Finally, the main contributions of this paper can be sum-

marized as follows:

• VBPSO is used for the first time for a global search for feature selection.

• The transformation between a sensor information system and a feature information system

is established.

• A metric called the correlation information entropy is employed to measure the combined

effects of features.

• Four indicators of performance based on statistical tests, compression ratio and run time,

rather than classification accuracy alone, are used to experimentally verify the validity of the

proposed method and evaluate various methods for comparison.

Materials and methods

Feature selection

Throughout the paper, the following notations are used. The feature information system is

defined as a triplet S = (D,F,C), where D = {d1,d2, . . .,dk} is the complete dataset consisting of

a total of k instances, F = {f1,f2, . . .,fn} is the set of n features, and C = {c1,c2, . . .,cm} is the set

of target classes. Every instance di has n features (although the value of one or more features

may be null). The instances in dataset D can be divided into m target classes. Every instance

has only one target class in single-label classification. The main goal of feature selection is to

find the optimal feature subset P, which contains p features, to represent the original fea-

tures (generally, p� n if the dimensionality of the search space is high). A basic requirement

is that the subset P must provide acceptable classification accuracy. A higher-level require-

ment is that the performance of a learning algorithm should be enhanced by using the

selected feature subset. The exhaustive search and evaluation of all possible subsets are

infeasible because the search space is exponentially large (= 2n-1), meaning that the problem

is NP complete.

The feature selection task usually consists of four components: feature subset generation,

subset evaluation, satisfaction of a termination condition and result verification. Based on a

given search strategy, the candidate feature subset P’ is first generated (feature subset genera-

tion). Then, each candidate feature subset is evaluated using a given evaluation function and

compared with the previous best candidate feature subset (subset evaluation). If the current

feature subset is superior, the previous best feature subset is replaced. This loop of generation

and evaluation continues until a specified termination condition is satisfied. Then, the selected

feature subsets must be validated using certain learning algorithms.

Binary particle swarm optimization

Particle swarm optimization (PSO), which was inspired by studies of bird predation behavior,

is an evolutionary algorithm developed by Kennedy and Eberhart [33]. Particles are used to

optimize the solutions in the search space and to record the best location on the current path.

Adaptive feature selection using VBPSO
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Each particle considers its own current position and velocity and records its own optimal solu-

tion (optimal position), pbest. Then, it adjusts its current position according to the global opti-

mal solution among the population, gbest. The specific updating of each particle is performed

as shown in Eqs (1) and (2):

vtþ1

h ¼ wvt
h þ c1 � rand pbesth � xt

h

� �
þ c2 � rand gbest � xt

h

� �
ð1Þ

xtþ1

h ¼ xt
h þ vtþ1

h ð2Þ

where vt
h is the velocity of the hth particle in iteration t, w is the inertia coefficient, and is the

position of the hth particle in iteration t. The acceleration coefficients c1 and c2 are nonnegative

constants that control the influence of pbest and gbest on the search process. In formula (1),

wvt
h represents the search capabilities of particles, whereas c1 � randðpbesth � xt

hÞ and c2 �

randðgbest � xt
hÞ represent the evolution of the particles themselves and the cooperation

among particles, respectively.

The original PSO algorithm was developed for solving problems in a continuous space.

Kennedy later adjusted the method used to update velocity and position and proposed binary

particle swarm optimization (BPSO), which is suitable for solving discrete problems [34]. In

this approach, the particles in the population can search in a binary space. That is to say, the

position vectors of the particles are represented by values of 0 or 1. The most important com-

ponent of the BPSO algorithm is the transfer function, which converts continuous velocity val-

ues into discrete positions. The velocity obtained using Eq (1) is transformed into a vector in

the interval [0,1] by means of the sigmoid function T, as given in Eq (3):

T vk
h tð Þ

� �
¼

1

1þ e� vk
h tð Þ

ð3Þ

where vk
hðtÞ is the velocity of the hth particle in iteration t for the kth dimension. Hence, the

position of a particle is updated to its new value using the following Eq (4):

xk
h t þ 1ð Þ ¼

0 if rand < T vk
h t þ 1ð Þ

� �

1 if rand � T vk
h t þ 1ð Þ

� �

(

ð4Þ

Correlation information entropy

Let P represents the output sequences of a multi-sensor system with n sensors at time t (t = 1,

2, . . ., m),as defined in Eq (5):

P ¼ yi tð Þð Þ
1�t�m;1�i�n; P 2 Rm�n ð5Þ

where yi(t) denotes the output of the ith sensor at time t. The correlation matrix at time t is

generated using P and is described as in Eq (6):

R ¼ P � PT ; R 2 Rn�n ð6Þ

In the correlation matrix, each entry indicates the similarity of the information between

the two corresponding sensors and implies the overlap of information in the multi-sensor

system. In practical applications, because the signals obtained from different sensors vary

with their different ranges, the sensor data must be centralized and normalized before the

correlation matrix can be calculated. The correlation matrix R of n sensors is derived as in
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Eq (7):

R ¼

1

r21

..

.

rn1

r12

1

..

.

rn2

. . .

. . .

. . .

r1n

r2n

..

.

1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼ I þ ~R ; ð7Þ

where I is the auto-correlation matrix and ~R is the co-correlation matrix, which represents

the overlap of information in the multi-sensor system, l
R
n , l

I
n and l

~R
n denote the eigenvalues

of R, I and ~R, respectively. It easy to see that, l
R
n , l

I
n and l

~R
n contain the information implied

by R, I and ~R, respectively. Moreover, l
R
n , l

I
n and l

~R
n satisfy the following Eqs (8) and (9):

l
R
n > 0 ð8Þ

Xn

i¼1
l

R
i ¼

Xn

i¼1
l

I
i þ
Xn

i¼1
l

~R
i ¼ n ; ð9Þ

That is to say, the contribution of every sensor to the overall information of the multi-sen-

sor system can be represented by the corresponding eigenvalues. From the information

entropy perspective, the correlation information entropy of a multi-sensor system can be cal-

culated as as given in Eq (10):

HR ¼ �
Xn

i¼1

l
R
i

n
log n

l
R
i

n
ð10Þ

Since the eigenvalues of the identity matrix I are 1, the overlap information entropy H~R can

be calculated as shown in Eq (11).

H~R ¼ 1 � HR ¼ 1þ
Xn

i¼1

l
R
i

n
log n

l
R
i

n
¼
Xn

i¼1

1

n
þ

1þ l
R
i

n
log n

1þ l
R
i

n

� �

ð11Þ

When l
~R
n ¼ 0 and l

R
n ¼ l

I
n ¼ 1, the sensors provide completely different information, and

the multi-sensor system information entropy is HR = 1. There is no overlap of information.

When l
~R
n 6¼ 0, the multi-sensor system does contain overlapping information, and H~R > 0.

Proposed method

In this paper, we use BPSO to find the feature subset with global dominance based on the

overall evaluation of the combined effect of the features. During the optimization process,

we study the optimization capabilities of different transfer functions as evaluation functions

and choose the best transfer function. Because the focus of this paper is the evaluation of the

combined effects of multiple features, the evaluation process considers the correlation

between features and target classes as well as the redundancy of the feature set based on the

correlation information entropy. The original feature space is represented as a multi-sensor

system. Each feature is regarded as a sensor. In this environment, the correlation informa-

tion entropy is used to judge the combined effect of each candidate subset and to reduce the

redundant information among features. Based on this metric, an adaptive feature selection

method based on V-shaped binary particle swarm optimization (VPFS) is proposed in this

section. This method is different from traditional feature selection methods. For the first

time, V-shaped binary particle swarm optimization is used to search the feature space, and
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the fitness function is constructed by using the correlation information entropy to evaluate

each candidate subset. The algorithm finally obtains an adaptive-scale feature subset, with-

out the need to set the size of the subset manually.

Encoding

In this paper, each feature subset is encoded as a bit string. This encoding rule is widely applied

in BPSO algorithms and other binary evolutionary algorithms. Given a feature set F with cardi-

nality n, the length of the bit string is n. An individual is represented by an n-bit string. As

shown in S1 Fig, if the ith bit is set to 1, then the corresponding feature is selected as part of the

candidate feature subset; if the ith bit is set to 0, then the corresponding feature is not selected

as part of the candidate feature subset.

With this coding rule, the feature selection problem is equivalent to finding the optimal bit

string. The position of each particle is expressed as a discrete bit string, so the key component

of the BPSO algorithm is the transfer function, which is used to obtain discrete positions from

the real velocity values.

Transfer functions for BPSO

A transfer function defines the probability of changing a position vector’s elements from 0 to 1

and vice versa. Transfer functions force particles to move in a binary space. According to

Rashedi et al. [35], some concepts should be taken into account for selecting a transfer function

in order to map velocity values to probability values as follows:

1. The range of a transfer function should be bounded in the interval [0,1], as they represent

the probability that a particle should change its position.

2. A transfer function should provide a high probability of changing the position for a large

absolute value of the velocity. Particles having large absolute values for their velocities are

probably far from the best solution, so they should switch their positions in next iteration.

3. A transfer function should also present a small probability of changing the position for a

small absolute value of the velocity.

4. The return value of a transfer function should increase as the velocity rises. Particles that

are moving away from the best solution should have a higher probability of changing their

position vectors in order to return their previous positions.

5. The return values of a transfer function should decrease as the velocity reduces.

Mirjalili S. and Lewis A. divided the transfer functions for BPSO into two classes: S-shaped

functions and V-shaped functions [32]. The eight possible transfer functions are shown in

detail in Table 1

As seen in Table 1, S1, S2, S3 and S4 can be classified as S-shaped transfer functions,

whereas V1, V2, V3, and V4 are V-shaped transfer functions. It can be seen that the function

S2 is the sigmoid function used in traditional BPSO. This transfer function is the most widely

used function for BPSO. The curves of S-shaped transfer functions are shown in S2 Fig, while

the curves of V-shaped transfer functions are shown in S3 Fig. As shown in S2 Fig, S1 returns

the highest probability among them for the same value of velocity.The V-shaped transfer func-

tions shown in S3 Fig are different from the S-shaped transfer functions, which do not force

particles to take a value of 0 or 1. The advantage of a V-shaped transfer functions is that they

encourage particles to remain in their current positions when their velocity values are low or

to switch to their complements when their velocity values are high.
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Mirjalili S. has proven the optimization effects of V-shaped and S-shaped transform func-

tions on benchmark functions in optimization tests and has verified the superior search capa-

bility of V-shaped transform functions on many benchmark functions. For the fitness function

proposed in this paper, we test for the optimal function among these eight functions for feature

selection and choose the best transfer function in our experimental study. The results are dis-

cussed in detail in section 4.

Fitness function

In this paper, correlation information entropy theory is used to evaluate the combined effect

of each candidate feature subset. Each particle in the swarm is regarded as a candidate feature

subset, and each bit in a particle string is regarded as one feature dimension. The original fea-

ture set F = {f1,f2, . . .,fn} is a multivariable system with n variables, where each feature fi corre-

sponds to an equivalent sensor, as described above. Unlike in the original model of a multi-

sensor system, this paper does not use specific data on instances of n-dimensional features as

the input; instead, instances of the target classes C = {c1,c2, . . .,cm} are taken as the system time

series. Based on the correlation between the features and target classes, a multivariable model

M is constructed, where M is equivalent to the matrix R in section 1.3. The feature information

system M is formed as in Eq (12):

M ¼

I11

I21

..

.

In1

I12

I22

..

.

In2

. . .

. . .

. . .

I1m

I2m

..

.

Inm

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð12Þ

Of particular interest is the element Iij, which represents the mutual information between

the ith feature and the jth target class; this marks the most significant difference from a multi-

sensor system. Since the correlation information entropy in a multi-sensor system is focused

on the redundancy (overlap) relationship among the variables, it is impossible to consider the

correlation between features and target classes if data on instances of each feature are taken as

the input. The utilization of mutual information as the elements in M enables the consider-

ation of not only feature redundancy but also the correlation between features and target clas-

ses. Moreover, this model also can reduce the size of the multivariable system and thus satisfies

the basic requirements of feature selection. The mutual information is calculated as given in

Eqs (13) and (14):

I fi; cj

� �
¼ H fið Þ þH cj

� �
� H fi; cj

� �
ð13Þ

Table 1. S-shaped and V-shaped families of transfer functions.

S-shaped function V-shaped function

Name Transfer function Name Transfer function

S1 1

1þe� 2v V1 j erf
ffiffi
p
p

2
v

� �
j

S2 1

1þe� v V2 |tanh (v)|

S3 1

1þeð� v=2Þ V3 j v=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2
p

j

S4 1

1þeð� v=3Þ V4 j 2

p
arctan p

2
v

� �
j

https://doi.org/10.1371/journal.pone.0173907.t001
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H fi; cj

� �
¼ �

X

fi

pðfi; cjÞlbpðfi; cjÞ ð14Þ

The information entropy of the variable v is calculated using Eq (15):

H vð Þ ¼ �
XV

i¼1

p við Þ lbp við Þ ð15Þ

Without loss of generality, the normalization and centralization of M are performed as

shown in Eqs (16) and (17) to obtain the matrix QF ¼ ½
�I ij�.

Î ij ¼ Iij �
max Ii � min Ii

2
ð16Þ

�I ij ¼
Î ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1
Î ij

� �2
r ð17Þ

The correlation matrix is calculated as in Eq (18):

Rel ¼ QF
T � QF ð18Þ

The correlation matrix Rel exhibits symmetry, and each element in the matrix represents

the similarity of the information provided by the two corresponding features with regard to

the target classes. This process enables the initial compression of the original data space of k ×
n into a matrix of m × n (m� n, n� k). Although the matrix dimensions increase to n × n
when the correlation matrix is calculated, the data space is nevertheless greatly reduced.

The eigenvalue l
Rel
n of the correlation matrix Rel is calculated to obtain the correlation infor-

mation entropy HRel according to Eq (11).The smaller the degree of feature redundancy HeRel
is,

the higher the degree of independence among the features is, and the greater is the relevance

between the candidate feature subset and the target classes. Similarly, when HeRel
¼ 0 and

HRel = 1, there is no redundant information in the system, and every feature provides different

information. When HeRel
> 0 and HRel < 1, the degree of feature redundancy can be repre-

sented by the value of HeRel
. Thus, the mapping from the multi-sensor system to the feature

selection space is complete. Because of the calculation of eigenvalues, we need to delete features

with the same value in all classes before calculating the correlation matrix to avoid anomalies.

For the purpose of feature selection, a feature that has the same value in all classes provides no

guidance for the learning task and is, in essence, a useless feature.

An analysis of why the metrics discussed above can consider both correlation and redun-

dancy is presented as follows. From the perspective of linear space, the decomposition of an n-

order symmetric square matrix produces n standard orthogonal bases of a linear space defined

by inner products. Then, the matrix is projected onto these n standard orthogonal bases. The n
eigenvectors correspond to the n standard orthogonal bases, and the size of each eigenvalue

represents the length of the projection of the matrix onto the corresponding basis. The larger

an eigenvalue is, the larger is the variance of the matrix in the corresponding eigenvector, and

the greater is the power of that basis. In the task of data mining, the largest eigenvalue corre-

sponds to the feature vector that contains the largest amount of information. In this paper, the

correlation information entropy is used to evaluate the combined effect of the features in each

candidate feature subset. The eigenvalues, which are based on the mutual information of each
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candidate subset, measure the correlation. The redundancy among features is also measured,

by HeRel
.

In the greedy algorithm to be verified, if HRel is close to 1, then only very few features can be

used if non-redundancy is to be ensured. However, because of the advantages of VBPSO, we

can find the combination of different features that most closely approximates 1. Therefore,

two new fitness functions are constructed based on the above theory in the following Eqs (19)

and (20):

Fitness1 hð Þ ¼ 1 � HRel hð Þ

� �
� d

�
�
�

�
�
� ð19Þ

Fitness2 hð Þ ¼ e
1� HRel hð Þ

� �
� d

�
�
�

�
�
�

ð20Þ

where h denotes the hth particle in the particle swarm and HRel(h) denotes the correlation infor-

mation entropy of the candidate subset represented by particle h. Rel is a matrix of size n × n.

If n is 10 and particle h is 0101001011, then the fitness is calculated using a correlation matrix

Rel(h) of size 5 × 5, corresponding to the five features dimensions 2, 4, 7, 9, and 10. The signifi-

cance of δ is that it is the information control parameter, which is used to control the maxi-

mum amount of redundant information that a candidate subset can contain. When δ = 0, the

fitness functions will attempt to keep the redundancy of the desired subset close to zero.

When the dimensions are few, the particle optimization process is relatively stable, so Eq

(19) is suitable for avoiding immature convergence on datasets of small-and medium-scale

dimensions, whereas Eq (20) is suitable for high-dimensional and ultra-high-dimensional

datasets. The significance of the exponent e is that a curve with a higher exponent is more mag-

nified in contrast to a linear equation, and the amplification of the difference provides better

guidance for long-bit particles.

VPFS

The VPFS algorithm uses the correlation information entropy for subset evaluation and the

heuristic evolutionary search algorithm known as VBPSO as the search strategy. The VPFS

algorithm, compared with traditional feature selection methods, has the following advantages:

1) The correlation and redundancy among all features in each subset are evaluated simulta-

neously rather than for pairs of features. 2) This algorithm represents the first use of V-shaped

binary particle swarm optimization as the search strategy in a feature space. These two innova-

tions enable improvements to the subset evaluation function and search strategy used during

feature selection. The superior ability of the transfer function V4 and the optimal specific value

of δ will be demonstrated in detail in the experimental section. General diagram about the

overall algorithm is included in S4 Fig. The specific process of the algorithm is shown in Algo-

rithm 1:

Algorithm 1. VPFS algorithm.

Input:Data set D, featureset F, targetclassesC
Output:Adaptivefeatureset S
1) For each fi 2 F, cj 2 C:
2) CalculateIij to get the matrixM;
3) End For
4) Obtainthe matrixQF by the centralizationand standardization;
5) Rel = QF

T � QF;
6) Initialization:particles
7) While(maximumiterationsis not attained)
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8) For each particle
9) Calculatethe fitnessaccordingto HRel(h);
10) Updatepbest and gbest;
11) Update vk

hðt þ 1Þ and xk
hðt þ 1Þ;

12) End For
13) End While
14) S gbest.

Experimental results and analysis

To verify the effectiveness of the proposed method, an experiment is performed on UCI’s

machine learning data repository. Firstly, the eight different transfer functions are tested for

BPSO. Based on the optimization results for the proposed fitness functions, the best transfer

function is applied for subsequent feature selection. The purpose of the second part of the

experiment is to compare the VPFS method with other methods on various classifiers. The

classification performance and differentiation are described in detail based on five indicators.

Finally, the execution times are presented to illustrate the time efficiency on different datasets.

The experimental workbench is MATLAB 2013. For the continuous data, we use the MDL

data discretization method implemented in Weka 3.8. The details of datasets are shown in

Table 2.

Breast Cancer is a cancer diagnostic dataset. It consists of 569 instances, which are uni-

formly distributed between 2 categories, and 32 feature dimensions. Dermatology is a derma-

tological data set with 33 feature dimensions and 366 instances that are heterogeneously

distributed among 6 categories. Soybean is a soybean disease diagnostic dataset, with 19 cate-

gories and an uneven distribution. There are only 26 instances in the smallest category and

149 instances in the largest category. QSAR is a biodegradation data set constructed in 2013

with no missing values, which contains 1/3 positive instances and 2/3 negative instances. Syn-

thetic Control is a control chart data set in which 600 instances with 60 feature dimensions are

distributed evenly among 6 categories. Mice Protein is a mouse protein expression data set

published in 2015, in which each instance has 82 feature dimensions. Gas Sensor Array is a gas

sensor array drift data set from 2013 with no missing values, in which 13910 instances are

evenly distributed among 6 categories. Musk is a data set with no missing data in which the

negative instances are approximately 5 times greater in number than the positive instances.

Multi-feature Pixel is a part of the data set consisting of handwritten instances of the numerals

“0” to “9” in Multi-feature, which possesses up to 240 feature dimensions. Isolet is drawn from

a dataset consisting of 150 testers’ pronunciations of the 26 English letters. For this paper, the

Table 2. Descriptions of UCI benchmark datasets.

No. Dataset Number of Instances Number of Features Number of classes Scientific area

1 Breast Cancer 569 32 2 Biology

2 Dermatology 366 33 6 Biology

3 Soybean 683 35 19 Biology

4 QSAR 1055 41 2 Chemometrics

5 Synthetic Control 600 60 6 Computer

6 Mice Protein 1080 82 8 Biology

7 Gas Sensor Array 13910 129 6 Computer

8 Musk 6598 168 2 Physical

9 Multi-feature pixel 2000 240 10 Computer

10 Isolet 1559 618 26 Computer

https://doi.org/10.1371/journal.pone.0173907.t002
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Isolet5 collection is selected, which has an enormous number of feature dimensions but con-

tains only 1559 instances. These datasets contain various numbers of features, from 32 to 618,

and various numbers of target classes, from 2 to 26. The 10 data sets listed above are taken

from the fields of medicine, biology, image processing, audio processing and industry, among

others.

Comparison of transfer functions

To ensure a fair assessment, we select six data sets from Table 2 on which to test the eight func-

tions using Eq (19). The same fixed initialization parameters are specified, as follows: 500 gen-

erations and c1 = c2 = w = 2. The final optimal search results (minimum values) obtained by

taking the optimal average of 30 rounds for each of the different transfer functions are shown

in Table 3, where the first column indicates the data set as presented in Table 2 and the subse-

quent columns correspond to the different transfer functions. The data presented in the table

are the mean values. The number presented in bold normal font represents the optimal mini-

mum value among the optimization results for the eight functions. The number presented in

bold italic font is the next-to-optimal minimum value among the optimization results for the

eight functions.

According to Eq (19), when the value of the function is closer to 0, the redundant informa-

tion provided by the feature subset is closer to δ. Therefore, the smaller δ is, the less redundant

information there is. To prove that the function optimization process is not affected by δ, the

value of δ used in the function is randomly set to a value of 0 or [0,0.5]. The results show that

the V-shaped transfer functions are superior to any S-shaped transfer function, with the excep-

tion that the optimal value of S2 is smaller than that of V1 on the Dermatology data set. In par-

ticular, the transfer function V4 achieves the best average fitness value on all data sets, showing

a strong ability to find the optimal results, whereas the next-to-optimal solutions are found

using V3, V1, V2, V1, V3 and V2. In other words, the other three V-shaped transfer functions

perform similarly to but more weakly than V4. Among the S-shaped transfer functions, the

function S1 performs better than the others.

To more intuitively illustrate the excellent performance of V4, S5 and S6 Figs present the

convergence curves within a single round for each of the eight functions on the Synthetic Con-

trol and Mice Protein datasets separately. Unlike the data in Table 3, in this validation, the fit-

ness function is altered to Eq (20) to graphically illustrate the optimization capability of the V4

function for feature subsets. The results for 500 iterations executed with the same initialization

parameters are presented. For this analysis, the value of δ is 0.

We can see that according to the fitness function given in Eq (20), the fitness value

approaches 1 when the redundant information in a feature subset approaches zero. The graph-

ical results show that the transfer function V4 still exhibits the best search ability. The function

Table 3. Minimization results for fitness function 1 using different transfer functions.

Dataset Transfer function

S1 S2 S3 S4 V1 V2 V3 V4

Dermatology 5.85E-06 5.11E-06 9.83E-06 9.27E-06 5.39E-06 4.61E-06 4.37E-06 3.61E-06

Soybean 6.59E-03 1.36E-02 5.60E-02 9.47E-02 1.86E-03 2.58E-03 1.94E-03 9.87E-04

Synthetic control 3.47E-04 3.75E-03 4.39E-02 8.20E-02 4.29E-05 4.10E-05 4.26E-05 3.74E-05

Mice Protein 9.57E-05 6.91E-04 1.52E-02 3.10E-02 7.42E-06 8.90E-06 1.01E-05 5.74E-06

Pixel 5.88E-02 7.39E-02 7.64E-02 8.08E-02 5.44E-06 7.77E-06 4.69E-06 4.53E-06

Isolet 8.86E-02 9.43E-02 9.36E-02 9.27E-02 4.95E-06 4.55E-06 5.39E-06 2.71E-06

https://doi.org/10.1371/journal.pone.0173907.t003
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S1 is superior to the other S-shaped transfer functions, and S3 is the worst. The graph yields

the same conclusion as Table 3. Therefore, in subsequent experiments, V4 is used as the trans-

fer function for mapping the positions of the particles.

The function V4 is excellently well suited for use with the fitness function proposed in this

paper. However, the S-shaped functions, especially S2, are generally superior to the V-shaped

functions on the Realization Instances set for the combined auction problem. Therefore, for

the selection of the transfer function, the performances of the different functions should be

tested for the specific problem of interest.

Since the proposed method depends on some parameters specified in experiments, an anal-

ysis regarding the robustness to parameter specifications is required. There are two important

parameters influence results of the proposed method, which are the probability p of initializing

to 1 bit and inertia weight w. Probability p affects the size of the adaptive subset, The inertia

weight affects the best fitness value. Specific changes can be shown in Table 4. In this testing,

we fixed the other values of variables and adjusted values of only one variable on four datasets.

The observation of results is got by taking the average value in 30 runs. With the increase of

the probability, the size of the feature subset is expanding. So the robustness to the probability

is not ideal enough. However, when the inertia weight is 1.5 or 2, the best fitness value is the

minimum. Since the gap of fitness values are quite small by taking 1.5 and 2 respectively, the

inertia weight is robust.

The classification performance of VPFS

This section verifies the performance of the feature subsets derived using the VPFS method in

terms of specific classifiers. Six different methods are considered for comparison: FCBF, IG,

ReliefF, mRMR, SFS and CMFS-η. FCBF and CMFS-η are adaptive subset selection methods.

IG, ReliefF, mRMR are ranking methods. SFS is inherently an adaptive subset selection

method, but in this paper, it is transformed into a ranking method by adjusting the neighbor-

hood and dependency. To validate the generalization capability of the proposed method,

SVM, 1-NN and Naïve Bayes classifiers are used to study the selected subsets. Classification is

performed by means of 10-fold cross validation. The experimental datasets are the 10 high-

dimensional datasets introduced in Table 2.To make the comparison more insightful, the dif-

ferent methods should be compared with the case that all features are used in classification

process when SVM, 1-NN, and Naïve Bayes Classifiers are employed respectively. This com-

parison will illustrate the pros and cons of feature selection methods. Therefore, we first give

the classification accuracy of ten datasets on all features in Table 5.

The experimental results regarding classification accuracy of different feature selection

methods are shown in Tables 6–8. To ensure a fair comparison, the parameters of the algo-

rithm are set such that it yields a subset of the same size as that selected by the CMFS-η algo-

rithm. The value of η is 0.35 in the CMFS-η. Since the proposed algorithm is evolutionarily

Table 4. Parameter testing of probability p and inertia weight w.

p Number of Selected Features w Fitness Value

Dermatology QSAR Synthetic Pixel Dermatology QSAR Synthetic Pixel

0.1 3 4 5 19 0.5 6.09E-06 1.17E-02 1.04E-02 8.62E-06

0.2 4 10 8 36 1.0 4.52E-06 9.15E-03 9.97E-03 4.69E-06

0.3 8 14 13 58 1.5 4.39E-06 7.85E-06 2.51E-05 2.94E-06

0.4 10 16 20 89 2.0 3.61E-06 1.76E-05 3.74E-05 2.27E-07

0.5 13 20 27 96 2.5 4.54E-06 1.26E-04 8.33E-05 3.05E-07

https://doi.org/10.1371/journal.pone.0173907.t004
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optimized, the data labeled as VPFS-Avg in the table represent the average classification accu-

racy rate and average selected subset size for 20 runs, whereas VPFS-Best represents the best

classification accuracy rate and the corresponding subset size among the 20 runs. The data pre-

sented in Tables 6–8 show the classification accuracy rate for the subset selected by each fea-

ture selection method for the corresponding data set using each type of classifier, and the bold

values represent the highest accuracy rates in their respective rows. The data shown in paren-

theses indicate the size of the selected subset. For the Dermatology and Soybean datasets, we

use Eq (19) as the fitness function, whereas Eq (20) is used for the other datasets. The values of

δ used in VPFS for the 10 data sets, in the order in which they are listed in the tables, are

0.1,0,0,0,0.25,0,0,0,0,0, respectively. It can be seen that the evolutionary algorithm is almost

independent of δ, with the exception that non-zero δ values are specified for two data sets to

obtain subsets of approximately the same size as those found by the other methods. For most

data sets, however, this value can be set directly to δ = 0, which is very different from the con-

trol required for the greedy algorithm in CMFS-η. The probabilities of initializing to 1 bit are

0.3, 0.55, 0.55, 0.55, 0.3, 0.3, 0.15, 0.1, 0.1, 0.1, respectively. Here, IG, ReliefF, mRMR and SFS

select sorted subsets of equal size.

In this paper, we use several statistical indicators [36] to evaluate the different feature selec-

tion algorithms. The Avg A rows of the tables represent the average classification accuracy of

each algorithm on the 10 data sets. The WTL row represents the number of wins / ties / losses

for VPFS-Avg in comparison with the method corresponding to the indicated column on the

10 data sets. The overall winning percentage is calculated as in Eq (21):

Pwin ¼
X

WVPFSj j
.X

WTL0j j ð21Þ

WTL’ represents the overall number of VPFS-Avg evaluations compared with the other six

methods on the 10 data sets (60 in this paper), and WVPFS represents the total number of wins.

The value after the brackets in Tables 6–8 is the rank in terms of classification accuracy on one

of the 10 data sets. The Avg R values in tables indicate the average rank in terms of classifica-

tion accuracy achieved by the different feature selection methods on the 10 data sets.

The Friedman test is a nonparametric test for the existence of significant differences

between population distributions, which is abbreviated as F-test in Tables 4–6. The global dif-

ferences among the seven different methods are evaluated in the tables. The larger the value of

χ2 is, the greater is the global difference among the methods. When p is less than 0.05, the

Table 5. Comparison of classification accuracy for three classifiers on full set.

No. Classification Accuracy/%

SVM 1-NN Naïve Bayes

Breast Cancer 97.92 95.96 92.97

Dematology 95.35 94.54 97.54

Soybean 93.85 91.22 92.97

QSAR 85.59 84.46 75.92

Synthetic Control 99.17 96.50 94.67

Mice Protein 100 99.26 87.50

Gas Sensor Array 97.14 99.47 59.47

Musk 94.92 95.80 83.86

Multi-feature Pixel 97.55 96.15 93.3

Isolet 96.81 89.58 84.21

Avg A 95.83 94.29 86.24

https://doi.org/10.1371/journal.pone.0173907.t005
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difference is considered significant. The specific calculation is as shown in Eq (22):

w2
F ¼

12N
k kþ 1ð Þ

X

j

R2

j �
k kþ 1ð Þ

2

4

" #

ð22Þ

where Ri is the Avg R of the ith method, N is the number of data sets (N = 10), and k is the

number of feature selection algorithms (k = 7). The value of p can be obtained from a χ2 look-

up table.

In addition to the global difference, Post-hoc (p) values are used to compare the differences

between pairs of methods, which is abbreviated as Post(p) in Tables 6–8. The corresponding

Table 6. Comparison of classification accuracy for the SVM classifier.

No. Classification Accuracy/%(Number of Features in Subset)Rank of Classification Accuracy

FCBF IG ReliefF mRMR SFS CMFS-η VPFS-Avg VPFS-Best

1 95.78(2.5) 93.50(6) 93.32(7) 94.55(5) 95.78(2.5) 94.90(4) 96.17(1) 97.19

2 95.67(3) 85.25(7) 95.36(4) 93.99(5.5) 93.99(5.5) 97.00(2) 97.87(1) 98.36

3 91.80(5) 92.83(2) 92.68(3) 92.97(1) 90.19(6) 90.04(7) 92.31(4) 93.7

4 73.74(7) 83.32(4) 82.46(5) 80.47(6) 84.08(2) 83.98(3) 84.99(1) 85.78

5 82.67(4) 72.33(7) 77.00(5) 73.83(6) 93.83(2) 90.83(3) 94.86(1) 97.50

6 96.29(3) 99.73(2) 99.81(1) 95.28(4) 93.25(6) 92.50(7) 94.45(5) 96.48

7 84.06(7) 84.14(6) 84.28(5) 95.14(2) 85.44(4) 93.67(3) 97.86(1) 99.47

8 84.58(7) 91.06(4) 88.31(5) 87.59(6) 93.48(2) 92.54(3) 94.59(1) 95.33

9 93.90(5) 90.45(7) 92.10(6) 94.40(4) 94.95(2) 94.90(3) 96.22(1) 97.25

10 84.67(3) 73.32(6) 51.21(7) 85.54(1) 80.56(5) 82.48(4) 85.12(2) 88.14

Avg A 88.32 86.59 85.65 89.38 90.56 91.28 93.44 94.92

WTL 9/0/1 8/0/2 8/0/2 7/0/3 10/0/0 10/0/0

Avg R 4.65 5.1 4.8 4.05 3.7 3.9 1.8

F-test χ2 = 15.46 p = 0.017

Post(p) 0.0032 0.0006 0.0019 0.0198 0.0486 0.0295

https://doi.org/10.1371/journal.pone.0173907.t006

Table 7. Comparison of classification accuracy for the 1-NN classifier.

No. Classification Accuracy/%(Number of Features in Subset)Rank of Classification Accuracy

FCBF IG ReliefF mRMR SFS CMFS-η VPFS-Avg VPFS-Best

1 94.55(4.5) 94.55(4.5) 94.20(6) 93.32(7) 94.38(3) 94.90(2) 95.06(1) 95.96

2 95.36(1) 83.33(7) 94.26(2) 93.44(4) 89.87(5) 88.25(6) 93.96(3) 95.63

3 86.38(5) 86.53(4) 89.02(3) 83.31(7) 83.89(6) 89.31(2) 89.59(1) 92.83

4 81.13(7) 82.08(5) 83.13(2) 82.94(3.5) 82.94(3.5) 81.52(6) 83.14(1) 84.83

5 80.50(7) 83.00(6) 84.00(4) 85.67(3) 83.17(5) 89.33(2) 91.13(11 93.17

6 94.63(6) 99.9 (1.5) 99.9(1.5) 98.52(3) 70.37(7) 97.50(5) 98.00 (4) 99.26

7 99.22(3) 99.63(1) 99.30(2) 97.64(6) 98.92(4) 95.69(7) 98.48(5) 99.31

8 93.14(7) 95.63(1) 93.66(5) 94.14(4) 93.45(6) 94.60(2) 94.40(3) 94.68

9 92.80(2) 84.4(7) 86.75(6) 90.40(5) 92.25(4) 93.75(1) 92.60(3) 94.8

10 66.45(6) 68.30(4) 48.93(7) 80.07(1) 71.07(3) 67.12(5) 74.88(2) 79.17

Avg A 88.42 87.74 87.32 89.95 86.03 89.2 91.12 92.96

WTL 7/0/3 7/0/3 7/0/3 8/0/2 9/0/1 9/0/1

Avg R 4.85 4.1 3.85 4.35 4.65 3.8 2.4

F-test χ2 = 8.36 p = 0.2131

Post(p) 0.0112 0.0769 0.1289 0.0431 0.0198 0.1418

https://doi.org/10.1371/journal.pone.0173907.t007
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row shows the differences between VPFS-Avg and the other six methods. When the value of p
is less than 0.05, the difference between the two feature selection methods is considered signifi-

cant. The specific calculation is as give in Eq (23):

z ¼ Rj � RVPFS

� �
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k kþ 1ð Þ

6N

r

ð23Þ

where RVPFS is the Avg R of the VPFS-Avg results and N, k and Ri have the same meanings as

above. Post-hoc (p) values can be obtained by querying the standard normal distribution table

for z values.

Table 6 shows the performance of each feature selection method when the SVM classifier is

used. It can be seen that VPFS-Best achieves the highest classification accuracy on nine of the

data sets and the highest average classification accuracy. VPFS-Avg achieves the next-to-opti-

mal classification accuracy on 8 data sets and the next-to-optimal average classification accu-

racy. On the Soybean data set, although VPFS-Avg does not achieve the next-to-optimal

classification accuracy, it is only 0.52% behind the next-to-optimal value achieved by IG. The

performance quality of VPFS on the Mice Protein dataset is only moderate. On this dataset,

ranking methods perform better than adaptive subset selection methods. The advantages of

the proposed method are more prominent for the ultra-high-dimensional Multi-feature Pixel

and Isolet data sets. VPFS-Avg achieves the highest overall average ranking of 1.8. For the

SVM classifier, the global difference p is 0.0111, which indicates that the seven methods show

significant differences. In the comparisons of VPFS with FCFS, IG, ReliefF, mRMR, SFS and

CMFS-η, the Post-hoc (p) values are all smaller than 0.05. This shows that the proposed method

performs significantly differently from each of other methods when the SVM classifier is used.

As seen from the results for the 1-NN classifier presented in Table 7, VPFS-Best achieves

the highest classification accuracy on seven of the data sets and the highest average classifica-

tion accuracy. VPFS-Avg achieves the next-to-optimal classification accuracy on only four

data sets and the next-to-optimal average classification accuracy. However, VPFS-Avg still

achieves the highest Avg R. On the Multi-feature Pixel dataset, it is only 1.25% behind the sub-

Table 8. Comparison of classification accuracy for the naïve bayes classifier.

No. Classification Accuracy/%(Number of Features in Subset)Rank of Classification Accuracy

FCBF IG ReliefF mRMR SFS CMFS-η VPFS-Avg VPFS-Best

1 95.08(2) 94.73(3) 92.79(7) 94.55(4) 94.38(5.5) 94.38(5.5) 95.52(1) 96.66

2 96.98(1) 86.89(7) 96.72(3) 96.45(4.5) 94.81(6) 96.45(4.5) 96.83(2) 98.09

3 90.04(2) 87.99(5) 89.31(3.5) 89.31(3.5) 85.94(7) 86.68(6) 91.21(1) 92.83

4 63.98(7) 73.65(6) 75.17(5) 75.83(4) 77.44(3) 81.61(2) 81.73(1) 82.46

5 80.00(6) 77.67(7) 80.67(5) 82.67(4) 94.50(1) 91.12(3) 94.29(2) 96.83

6 94.07(3) 98.52(1) 98.42(2) 83.89(4) 75.46(7) 82.68(6) 83.42(5) 87.96

7 55.75(7) 65.86(4) 61.92(6) 77.89(2) 62.06(5) 68.03(3) 82.92(1) 85.75

8 76.46(7) 86.47(4) 84.72(5) 84.59(6) 89.13(3) 90.65(2) 90.95(1) 91.92

9 91.15(2) 82.7(7) 84.25(6) 88.15(5) 91.40(1) 90.45(4) 90.99(3) 92.55

10 84.22(2) 55.23(6) 35.23(7) 68.77(5) 70.37(4) 82.80(3) 85.17(1) 89.10

Avg A 82.77 80.97 79.92 84.21 83.55 86.49 89.3 91.42

WTL 7/0/3 9/0/1 9/0/1 9/0/1 8/0/2 10/0/0

Avg R 3.9 5 4.95 4.2 4.25 3.9 1.8

F-test χ2 = 14.71 p = 0.0226

Post(p) 0.0295 0.0009 0.0011 0.0129 0.0112 0.0295

https://doi.org/10.1371/journal.pone.0173907.t008
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optimal SFS algorithm. For the 1-NN classifier, the global difference p is 0.2131, which indi-

cates that the seven methods show no significant difference when this classifier is used; all

seven yield feature subsets with similar effects on the classification results. The values of Post-
hoc (p) are all smaller than 0.05 for the comparisons of VPFS with FCBF, IG, mRMR and SFS.

However, as indicated by Post-hoc (p) values of 0.1418 and 0.1289, the proposed method per-

forms less differently from CMFS-η and ReliefF when the 1-NN classifier is used.

Upon comparing the experimental results for the Naïve Bayes classifier presented in

Table 8, we can again see the advantages of VPFS in terms of classification performance.

VPFS-Best achieves the best performance on nine of the datasets. The average classification

accuracy of VPFS-Avg is almost 5% higher than that of CMFS-η, which achieves the next-to-

optimal average classification accuracy. VPFS-Avg again achieves the highest overall average

ranking of 1.8. The performance of the proposed method in combination with the Naïve Bayes

classifier is similar to that in combination with the SVM classifier in terms of χ2. For the Naïve

Bayes classifier, the global difference p is 0.0078, indicating that the seven methods show signif-

icant differences. Moreover, the VPFS method performs significantly differently from all other

methods, as indicated by the fact that the values of Post-hoc (p) are all smaller than 0.05.

The above experimental analysis and the data presented in Tables 6–8 show that VPFS-Best

achieves the best effect in combination with all three classifiers, whereas VPFS-Avg achieves

the overall next-to-optimal results. Comparisons with FCBF, IG, ReliefF, mRMR, SFS and

CMFS-η in terms of the WTL results reveal that the overall winning percentages of the pro-

posed method are 86.67%, 78.33% and 86.67% for the SVM, 1-NN and Naïve Bayes classifiers,

respectively. In the classification task, VPFS and CMFS-η, which use the correlation informa-

tion entropy measure, are superior to FCBF, IG, ReliefF, mRMR and SFS. As seen from the

fact that it enables the best classification accuracies, VPFS can find superior feature combina-

tions compared with those identified by the other methods. Thus, the proposed method is

more suitable for classification tasks. VPFS-Avg represents the average performance on each

classifier. VPFS-Best represents the best performance on each classifier. In addition to the

above four indicators, another important indicator is the compression ratio, which can indi-

cate the trade-off of feature selection algorithms in terms of prediction accuracy and the com-

pactness. The compression ratio is calculated as in Eq (24):

Compression Ratio ¼ 1 �
Subsetj j

jFull Setj

� �

% ð24Þ

where |Subset| is the cardinality of selected features and |Full Set| is the cardinality of whole

dataset. Because the proposed method works in the filter approach, we employed SVM, 1-NN,

and Naïve Bayes Classifiers to verify the prediction accuracy based on selected feature subsets.

It is necessary to examine the performance regarding the ratio of features selected over all fea-

tures in Table 9. Tha Avg C R row represents the average compression ratio of corresponding

method in ten datasets. FCBF method has achieved the highest compression ratio and CMFS

method is the suboptimal performer. Other five methods are very similar to the compression

ratio. According to the results of classification accuracy in Tables 6–8, there are competitive

advantages of FCBF and VPFS, which are both subset selection methods. In ranking methods

as mentioned above, CMFS–η is best performer. In general terms, the performance of subset

selection methods is better than ranking methods on classification accuracy and compression

ratio.

We can summarize the proposed method in terms of the following two aspects: the search

strategy and the evaluation function. Considering that the correlation information entropy is

used in both VPFS and our previously proposed method, namely, CMFS-η, the superior
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performance of VPFS compared with that of CMFS-η shows that the V-shaped binary particle

swarm optimization approach is better than the simple greedy search strategy. Since VPFS and

FCBF are both subset selection methods, the superior performance of VPFS and CMFS-η com-

pared with that of FCBF shows that evaluation based on the correlation information entropy is

better than evaluation based on the basic information entropy. With regard to overall stability,

the VPFS method is the most stable in overall performance for each classifier and on each data-

set. However, because of the limitations related to the generation and initialization processes

in the evolutionary search algorithm, the feature subsets obtained by VPFS may be only

approximations of the global optimal solutions. Moreover, when there are multiple global opti-

mal solutions, the proposed method will not always yield the same selected subset.

Run-time performance comparison

The efficiency of the calculation is also an important indicator when evaluating different fea-

ture selection methods. The purpose of feature selection is to reduce the dimensionality of the

original data and to improve the efficiency of subsequent learning tasks. However, if the fea-

ture selection method also requires considerable time consumption, then such an effort will be

meaningless. CoFS is a feature selection method based on a cooperative game that was pro-

posed in [10]. This method considers the combined effect of all features in a subset and

achieves excellent classification performance. However, this method has a high time complex-

ity for the generation of candidate features. The time complexity of this algorithm is exponen-

tial, which leads to high time consumption. The mRMR method is of similar time complexity

to the CMFS-η algorithm proposed in our previous work. The run time of SFS depends on its

neighborhood and dependency; when the neighborhood and dependency are very small, the

algorithm becomes relatively time-consuming. The run times of the various methods are

shown in Table 10.

Table 9. Comparison of compression ratio.

No. Number of Features in Subset(Compression Ratio/%)

FCBF IG ReliefF mRmR SFS CMFS-η VPFS-Avg VPFS-Best

1 7(78.13) 7(78.13) 7(78.13) 7(78.13) 7(78.13) 7(78.13) 7(78.13) 7(78.13)

2 16(51.52) 16(51.52) 16(51.52) 16(51.52) 16(51.52) 13(60.61) 16(51.52) 16(51.52)

3 16(54.29) 16(54.29) 16(54.29) 16(54.29) 16(54.29) 12(65.71) 17(51.43) 16(54.29)

4 5(87.80) 23(43.90) 23(43.90) 23(43.90) 23(43.90) 23(43.90) 22(46.34) 21(48.78)

5 15(75.00) 14(76.67) 14(76.67) 14(76.67) 14(76.67) 11(81.67) 12(80.00) 14(76.67)

6 17(79.27) 36(56.10) 36(56.10) 36(56.10) 36(56.10) 28(65.85) 35(57.32) 36(56.10)

7 12(90.70) 14(89.15) 14(89.15) 14(89.15) 14(89.15) 14(89.15) 13(89.92) 13(89.92)

8 6(96.43) 12(92.86) 12(92.86) 14(91.67) 14(91.67) 12(92.86) 14(91.67) 15(91.07)

9 27(88.75) 58(75.83) 58(75.83) 58(75.83) 58(75.83) 44(81.67) 59(75.42) 60(75.00)

10 31(94.98) 49(92.07) 49(92.07) 49(92.07) 49(92.07) 39(93.69) 49(92.07) 55(91.10)

Avg C R 89.43 82.96 82.96 82.82 82.82 85.88 83.03 82.41

https://doi.org/10.1371/journal.pone.0173907.t009

Table 10. Run times on UCI datasets.

Dataset Running Time/s

CoFS mRMR CMFS-η SFS VPFS

Synthetic Control 1.06 0.31 0.16 0.27 1.01

Multi-Feature Pixel 44.37 22.28 2.48 15.09 15.92

Isolet 124.02 57.95 42.17 90.92 18.86

https://doi.org/10.1371/journal.pone.0173907.t010
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In the same environment, consider the results achieved by five methods on three data sets

of increasingly high dimensionality. The parameters of the VPFS method are the same as those

in section 3.3. On a small data set, the VPSO-FS method does not have advantage in terms of

run time because of the number of iterations; for example, it runs more slowly than the two

greedy algorithms on the Synthetic Control data set. However, as the number of dimensions

increases, the run time of the VPFS algorithm becomes preferable. On the Isolet dataset, the

proposed method requires the minimum time of 18.86 seconds for feature subset selection.

Unlike the time complexity of a greedy algorithm, which can be concretely evaluated, the

upper bound on the time required for an evolutionary algorithm is difficult to analyze in detail.

When the problem space involves inverse matrix operations, the upper bound on the run time

is especially difficult to deduce. Therefore, this paper presents a comparison of the run times

on specific data. As the size of the data set increases, the run times of CoFS, mRMR, CMFS-η
and SFS multiplicatively increase. Among the three ranking methods, the run time of CMFS-η
is the shortest. Between the two subset selection methods, VPFS is much faster than CoFS. The

run time of VPFS is mainly affected by the number of bits (feature dimensions), the probability

of initializing to 1 bit, and the number of generations. Therefore, as the number of dimensions

increases, the run time will increase. However, because the number of iterations is fixed, the

overall increase in run time for the ultra-high-dimensional data sets is not significant. When

solving for the feature correlation matrix, the VPFS algorithm is relatively time-consuming on

large data sets because of the calculation of the eigenvalues. However, during the evolutionary

process, the solution time is greatly reduced.

Conclusion

In this paper, we extend our preliminary study in this paper and propose VPFS algorithm,

which transform the data form feature space into a multi-sensor system. On one aspect of fea-

ture evaluation, the proposed algorithms achieve the consideration of the combined effect of

all features in a subset. On the other aspect of feature search strategy, the VBPSO performs bet-

ter than traditional BPSO in feature selection. The VPFS algorithm demonstrates good perfor-

mance in terms of classification accuracy, especially for high-dimensional data. Due to the

control of generations, the proposed algorithm has an advantage in time consumption of high

dimensional datasets. Different from traditional methods, this paper provides a research per-

spective for constructing a feature information system. However, the feature correlation

matrix is constructed based on mutual information; therefore, when the number of feature

dimensions is far greater than the number of instances, the generalization ability of the algo-

rithm will be poor. Science search results of proposed algorithm are not fixed, it is needed for

specific practice to get a number of results and determine which is the optimal solution. Future

research will focus on feature selection with few training instances for ultra-high-dimensional

data. In addition, the trade-off between time consumption and classification accuracy in the

searching process should be studied. More than single label in classification, in the next step,

we will attempt to extend the correlation information entropy to handle feature selection prob-

lems with multi-labels classification.
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S1 Fig. Coding scheme of BPSO.

(TIF)

S2 Fig. S-shaped family of transfer function.

(TIF)
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S3 Fig. V-shaped family of transfer function.

(TIF)

S4 Fig. General diagram about the proposed algorithm.

(TIF)

S5 Fig. Comparison with different transfer function on synthetic control.

(TIF)

S6 Fig. Comparison with different transfer function on mice protein.
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