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Abstract

There is a scarcity of laboratory and field-based results showing the movement of the dia-

mondback moth (DBM) Plutella xylostella (L.) across a spatial scale. We studied the popula-

tion growth of the diamondback moth (DBM) Plutella xylostella (L.) under six constant

temperatures, to understand and predict population changes along altitudinal gradients and

under climate change scenarios. Non-linear functions were fitted to continuously model

DBM development, mortality, longevity and oviposition. We compiled the best-fitted func-

tions for each life stage to yield a phenology model, which we stochastically simulated to

estimate the life table parameters. Three temperature-dependent indices (establishment,

generation and activity) were derived from a logistic population growth model and then cou-

pled to collected current (2013) and downscaled temperature data from AFRICLIM (2055)

for geospatial mapping. To measure and predict the impacts of temperature change on the

pest’s biology, we mapped the indices along the altitudinal gradients of Mt. Kilimanjaro (Tan-

zania) and Taita Hills (Kenya) and assessed the differences between 2013 and 2055 climate

scenarios. The optimal temperatures for development of DBM were 32.5, 33.5 and 33˚C for

eggs, larvae and pupae, respectively. Mortality rates increased due to extreme tempera-

tures to 53.3, 70.0 and 52.4% for egg, larvae and pupae, respectively. The net reproduction

rate reached a peak of 87.4 female offspring/female/generation at 20˚C. Spatial simulations

indicated that survival and establishment of DBM increased with a decrease in temperature,

from low to high altitude. However, we observed a higher number of DBM generations at low

altitude. The model predicted DBM population growth reduction in the low and medium alti-

tudes by 2055. At higher altitude, it predicted an increase in the level of suitability for estab-

lishment with a decrease in the number of generations per year. If climate change occurs as

per the selected scenario, DBM infestation may reduce in the selected region. The study
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highlights the need to validate these predictions with other interacting factors such as crop-

ping practices, host plants and natural enemies.

Introduction

Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is a major pest

of cruciferous crops [1]. The pest is estimated to cause a global annual yield loss valued at

US$ 1.3 billion with control costs of US$ 1.4 billion [2]. In Kenya, Macharia et al [3] reported

that DBM contributes to 31% yield loss in farmer-managed cabbage (Brassica oleraceae var.

capitata L.) crop. Success of DBM as a major pest is attributed to its ability to survive under a

wide temperature range, prolific reproductive capacity, ability to feed on diverse host plants,

and insecticide resistance [4–5].

Numerous studies on population dynamics of DBM have been conducted in the field

[6–10] and in the laboratory [7–8,11–15]. Central to these studies is the role of temperature in

influencing the life cycle of DBM. Based on accumulated day-degrees, numerous forecasts

have been employed to predict the pest dynamics [16]. However, day-degree forecasts can only

predict the sporadic occurrence of pests but not the spread [17]. Studies have also established

that DBM migrate long ranges [18] and annually invade from regions where they can overwin-

ter [1,11].

A recent study shows that, worldwide, a synergy of laboratory and field-based findings to

map DBM activity across a spatial scale is limited [19]. Several distributions have been gener-

ated based on the presence data of DBM in a country/region, its seasonal phenology [19] and

persistence [20–21]. Using a bioclimatic model created using CLIMEX, Zalucki and Furlong

[19] synthesized the core and seasonal distribution map of DBM across the globe. But, there is

a need to understand and predict likely changes in DBM population dynamics in precise hot-

spot regions, to adopt location-specific and effective management strategies. Moreover, the

CLIMEX-based approach mainly fails to consider the vulnerabilities of discrete stages of DBM

to extreme temperatures and other biological characteristics of species [22]. In other instances,

the forecast was developed using a Monte Carlo simulation from a fixed number of individuals

between successive generations rather than targeting the whole population [17].

Built under the physiological timeline of development, phenology models employed in this

work are reliable at predicting population dynamics of insect pests [23]. This modeling

approach was applied to predict a decrease in the development times of eggs of Busseola fusca
from 19.1 to 6.5 days between 15 and 30˚C, respectively [24–26]. Phenology models are

process-oriented mathematical expressions that link climate variability with lesser levels of

abstraction to physiological pattern of the insect species growth to mimic and predict the

dynamics of their population within a given point location or region [14,27–32].

In East Africa, cruciferous vegetables are grown under ecological conditions from semi-

arid low to mid altitude regions to highlands [33]. The Eastern Afromontane transects are

characterized with such diverse ecological conditions, and DBM is a key pest of crucifers

across the altitude range. Montane ecosystems are vulnerable to climate change and are warm-

ing at a greater rate than low elevations [34–35]. Such rapid effects of climate change are likely

to influence the physiology and phenology of key insect pests such as DBM, thereby affecting

their ability to infest and damage their hosts along the altitudinal gradients. Understanding

such changes in the pest’s dynamics is essential, to develop and adopt new pest management

strategies. In this regard, the present study focused on the development of temperature-driven
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phenology models of DBM. Furthermore, the study linked the phenology model with field

temperature datasets to estimate the pest demographic parameters and analyze the possible

impacts of changes that can occur in the population of DBM along altitudinal transects in the

Eastern Afromontane Biodiversity Hotspot (EABH). The phenology model was also mapped

at high resolution using downscaled regional climate datasets (AFRICLIM) [36] to predict the

changes in the distribution and abundance of DBM along altitudinal transects.

Materials and methods

Ethical statement

This study was carried out in cultivated farm plots where all plant species used (namely com-

mon cabbage Brassica oleraceae var. capitata, kale Brassica oleraceae var. acephala and Ethiopian

mustard Brassica carinata) and the insect pest (DBM), are neither endangered nor protected.

The Regional Administrative Secretary of Kilimanjaro (reference letter FA/191/228/01/61)

and the Kenya Forest Service (reference letter RESEA/1/KFS/5) granted permission to

CHIESA project to conduct the research in Mt. Kilimanjaro and Taita hills, respectively. Indi-

vidual small-scale farmers owning crucifer farm plots granted CHIESA project the permission

to conduct research in their farm plots.

Study sites

The altitudinal transects considered for the study were located within the Eastern Afromon-

tane Biodiversity Hotspot (EABH) in Taita hills, Kenya and Mt. Kilimanjaro, Tanzania, as

detailed in Mwalusepo et al [37]. These transects are ‘hotspots’ for cultivation of cruciferous

vegetables throughout the year and DBM is a key constraint. A total of 13 crucifer farms were

selected in the Taita hills transect, where the altitude increases from Majengo (830 masl) to

Mbangang’ombe farm (1785 masl). The lowland Taita hills area is characterized by grassy

fields and small thickets of shrubs and woodlands, which become denser with rising altitude.

People have cleared nearly all the natural forest in the extensive undulating mountains for agri-

culture and human settlements [38]. A similar number of crucifer farms was selected in Mt.

Kilimanjaro transect, where the altitude increases from Kisangesangeni B (716 masl) to Marua

A farm (1692 masl). This transect is characterized by open fields and small stands of bushland

areas in the lowlands. Midway up the transect is a transition between fragmented bushland

and “Chagga homegardens”, an agroforestry cropping system vertically characterized by a

close intermix of assorted food crops and fodder herbs (� 1 m.), coffee (1–2.5 m.), bananas

(2.5–5 m.), fuel/fodder trees (5–20 m.) and timber/multipurpose trees (20� 30 m.) [39]. Sus-

tainably maintained through use of traditional furrow irrigation and recycling of nutrients

through farmyard manure, the homegardens are well established within the ecosystem in the

higher altitudes. Geographic coordinates and elevations of the sampled farms were recorded

using a handheld Global Positioning System (GPS) receiver (Garmin eTrex 30, Garmin Inter-

national Inc., Taipei, Taiwan). Selected farms in both transects were classified into three desig-

nated altitudinal zones (low: 700–1200 metres above sea level [masl]; medium: 1201–1600

masl; high:> 1600 masl). In each selected farm, a data logger (iButton, Maxim Integrated

Products Inc., California, USA) was installed and daily mean minimum and maximum tem-

perature recorded from January to December 2013.

Temperature-dependent life tables for diamondback moth

The DBM population utilized for the establishment of life tables was obtained from crucifer

vegetables grown in Taita hills transect. The DBM colony was maintained on common

Potential impacts of climate change on DBM populations in the Eastern Afromontane
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cabbage plants (Gloria, F1 hybrid) at the International Centre of Insect Physiology and Ecol-

ogy (icipe) in Nairobi, Kenya as described by Kahuthia-Gathu et al. [40]. The DBM were raised

for one generation to enable the field stock to acclimatize to laboratory conditions.

Freshly laid eggs from the colony were inoculated on individual cabbage leaf bits and placed

in glass vials (2.5 cm diameter, 7.5 cm high), lined with absorbent paper towels and covered

with a fine mesh sieve ventilated lid. The vials were placed in an incubator (Sanyo MIR– 554;

Sanyo Electric Co. Ltd, Japan) at five constant temperatures (10, 15, 20, 25 and 30, each ± 1˚C).

At 35˚C, each egg was inoculated on whole young leaf to delay dehydration, with the stipule

end wrapped in wet cotton wool and placed inside a ventilated plastic container (12 x 10.2 x

6.5cm) covered with muslin cloth. All experiments were carried out at 70 ± 10% relative

humidity and a 12:12 h (L: D) photoperiod. Egg development was recorded daily until hatch-

ing. Eggs that failed to hatch by the end of the experiment were assumed to have died. Freshly

cut leaves of cabbage were provided to the larvae after every 1 or 2 days. Development of the

larvae and pupae was checked and recorded daily. Developmental time and mortality rates

were recorded for egg, larvae and pupae until adult emergence.

To record oviposition data, emerged adults were paired at a 1:1 ratio, placed inside venti-

lated plastic containers (12 x 10.2 x 6.5cm) and fed with 6% sugar solution absorbed in cotton

wool balls. The sugar solution was replaced after every 1–2 days. A dried aluminum foil

smeared with cabbage leaf extract was hung inside each container as an oviposition substrate.

The oviposition substrate was replaced at 24-hour intervals and the numbers of eggs laid

recorded. The total life period of each individual adult maintained in different temperature

treatments was recorded.

Phenology model building and validation using Insect Life Cycle

Modeling (ILCYM version 3.0)

The Insect Life Cycle Modeling (ILCYM version 3.0) software [41] developed by the Interna-

tional Potato Centre, Lima, Peru [29] was used to generate temperature-dependent phenology

models. ILCYM is an open-source computer-aided tool built on R codes and Java interface,

equipped with modules for building process based and temperature dependent phenology

models for insect populations. The ‘model builder’ module was used to develop the phenology

models whereas the ‘validation and simulation’ module of ILCYM was applied to estimate six

demographic parameters—[intrinsic rate of natural increase (rm), net reproduction rate (Ro),

gross reproduction rate (GRR), mean generation time (GT), finite rate of increase (λ) and dou-

bling time (Dt)] of the species]. Practically, ILCYM inputs experimental life table data to esti-

mate functions for the species development time, development rate, mortality, senescence and

fecundity. The software helps to establish temperature-dependent relationships between the

transitions from one stage to another during the life history of an insect [29]. Statistical criteria,

such as the Akaike’s information criterion (AIC) [42], which are inbuilt in ILCYM, were used

to select the mathematical expression for each life stage of the pest with the best fit.

Development time and its variation. The values of the development rates of DBM

obtained from laboratory experiments at different temperatures were normalized and fitted to

density distribution functions. The cumulative frequencies of developmental times of each life

stage and temperatures were plotted against normalized developmental times. Logit distribu-

tion curve [25,29] was considered as the best fit function for the egg, larva, pupa and adult

male, whereas a complementary log—log (CLL) distribution curve [25] was considered as the

best fit function for the adult female.

Development rate. Both linear and non-linear models were evaluated for fitting the devel-

opment rates for each immature stage of the pest. The low temperature thresholds and thermal

Potential impacts of climate change on DBM populations in the Eastern Afromontane
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constants were derived from the fitted linear regression model,

rðTÞ ¼ aþ bT

where, r(T) is the development rate at temperature T, a is the intercept and b the slope of the

equation. The values of development rates obtained by inversing the median development

times (development rate = 1/ development time) were fitted best to Logan 1 [43] model. This

function helps to represent and describe the temperature-dependent development rates of egg

and larva. Hilbert and Logan model [44] proved to be the best fit for describing development

rate of DBM pupa.

Mortality of immature stages. Mortality of eggs was best described by the Weibull func-

tion [45] whereas a second order polynomial expression [46] offered the best fit for mortality

of the larvae and pupae, respectively.

Adult life span and aging. Tanigoshi model [43] fitted best to describe the relationship

between the age of adult females and temperature. The modified Hilbert and Logan model

[44] allowed a good representation of the senescence of adult males. Female longevity was

measured and the following parameters calculated:

Age-specific survival (lx) of females at 10, 15, 20, 25 and 30˚C.

Expected remaining life span (Ex) of females: Ex ¼
X

y¼x

ly þ ly þ 1

2
=lx [47]

Reproduction. A simple Gaussian function [48] was considered as the best fitted model

in expressing the effects of temperature on fecundity. On the other hand, the relative oviposi-

tion frequency, which shows proportion of total lifetime reproductive potential that elapses

during each time period, was evaluated in relation to the normalized age of females at a given

temperature. The cumulative oviposition rate was plotted against the normalized age expressed

as a ratio of age in days over the mean survival time. The Gamma function [49] was used to fit

the experimental datasets and further help to estimate parameters such as:

• Age-specific fecundity (mx) (=females born/female) by multiplying the mean number of

eggs by ratio of females to total population [50].

• Reproductive value (Vx) of females: Vx ¼

X

y¼x
ðerm:y: ly :myÞ
lx : e� rm : x [51]

Population growth parameters. Once the phenology model was developed, the “valida-

tion and simulation” module imported the models from “model builder” and applied rate

summation and cohort updating approaches to estimate the population growth parameters of

DBM. The estimates were generated from stochastic simulations under constant temperatures

with 10 repetitions. An initial population of 100 individuals and the estimated population

growth parameters were plotted against the respective temperatures and fitted to cubic equa-

tions [52].

Model validation. The validation tool in ILCYM tests the ability of developed phenology

models to reproduce similar physiological behavior of the insect under fluctuating temperature

conditions [41]. A complete life table experiment was conducted outdoors at icipe (1619 m

above sea level; latitude S 01.22051˚; longitude E 036.89563˚) following the same experimental

procedures used for constant temperatures in the laboratory, from 3rd November– 30th

December 2014. A total of 100 individual insects were used. Validation was conducted by

using a stochastic simulation, in which results obtained from fluctuating temperatures were

compared with phenology model simulation outputs. In addition, the effects of temperature

on development time, adult life span, fecundity and population growth parameters obtained

Potential impacts of climate change on DBM populations in the Eastern Afromontane
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from the phenology model were individually compared to published information using the

generalized linear modeling (GLM) in R [53] with means separated by Tukey HSD

(P< 0.001).

Climate data used in spatial analysis

The mean minimum and maximum temperature information collected from individual data

loggers in each farm in the year 2013 were considered as current climatic conditions. Climate

data to represent future climatic conditions (2055) were obtained from the regional climate

models (RCMs) at 30” (1km) spatial resolution documented in Platts et al [36]. This is a down-

scaled, bias-corrected and open source spatial database accessible at AFRICLIM (http://www.

york.ac.uk/environment/research/kite/resources/) [37]. To establish the difference between

the current and future climates, several steps were involved. The available downscaled values

of future temperature (mean daily minimum and maximum) in raster format were loaded and

opened in Quantum Geographic Information System software (QGIS) [54]. Every farm was

presented with 24 files, in which 12 were the mean daily minimum temperatures covering a

month (from January to December) and the remaining 12 were the mean daily maximum tem-

peratures for the same period.

Spatial analysis of distribution and abundance of DBM along the altitude

and over time

The information on field geographical coordinates—altitude and temperature data—was

arranged into a spatial framework and linked to the compiled phenology model, to estimate

the life table parameters of DBM [30]. Three risk indices, namely establishment risk index

(ERI), generation index (GI) and activity index (AI), were produced from the obtained popula-

tion growth parameters. The ERI identifies areas with a favorable climate for survivorship and

establishment of the pest, and it is estimated based on a daily time scale by the following

expression:

ERI ¼

Xi¼365

1
Ii

II
� net � reproduction

where, Ii is the interval of day i (with i = 1, 2, 3,. . ., 365) and the total number of intervals, II, is

365.

The index is 1 when all the immature stages of DBM survive throughout the year at varied

proportions, with ERI<1 characterizing areas in which survival and establishment of the popu-

lation is restricted to certain periods in the year.

The GI estimates the mean number of generations the pest can produce per annum, calcu-

lated by averaging sum of the estimated generation lengths in each Julian day as shown in the

formula:

GI ¼

X365

X¼1
365=Tx

365

where, Tx is the predicted generation length in days at Julian day x (x = 1, 2, 3,. . ., 365). When

temperature is rising, it theoretically implies more number of generations per year. However,

in practice, extreme temperatures reduce fecundity and increase mortality, disrupting the

finite rate of natural increase (λ).

The third parameter, AI, is related to annual finite rate of natural increase of the DBM pop-

ulation, taking into account the whole life history of the pest. The index is calculated by taking
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a log of products of the estimated finite rates of natural increase for each Julian day as shown

below:

AI ¼ log
10

Y365

x¼1

lx

where, λx is the finite rate of increase at Julian day x (x = 1, 2, 3,. . ., 365). Every increase of AI
by 1 implies a 10-fold increase of the pest population [55].

Using the index interpolator (a sub-module of ILCYM), the compiled DBM phenology, the

Digital Elevation Model (DEM) defined by geo-referenced altitudinal data obtained from the

Shuttle Radar Topography Mission (SRTM), and the temperature data in text files, were

imputed into ILCYM and the pest risk indices for each transect generated in form of American

Standard Code for Information Interchange (ASCII) formats [56]. Obtained results were

transferred into QGIS for analysis, visualization and interpretation.

Results

Temperature-dependent life tables for diamondback moth and

phenology model

Development time. Mean development times of the immature stages varied significantly

with temperature (eggs: χ2 = 321.6, df = 5, 930, P < 0.001; larvae: χ2 = 178.63, df = 5, 741,

P< 0.001, pupa: χ2 = 254.27, df = 5, 511, P< 0.001). The mean development times (where

accumulated development frequency = 50%) decreased at all life stages with increasing tem-

peratures. The mean developmental time of DBM egg varied from 20.6 days at 10˚C to 2.5

days at 35˚C. The mean developmental time of DBM larva was approximately 10 times higher

at 10˚C than at 35˚C. The same trend was observed in the mean developmental times of pupae

(Table 1).

Development rate. The estimated lower development threshold temperatures were

3.76˚C for egg (F = 273.1, df = 1, 4 and P < 0.001), 4.79˚C for larva (F = 355.5, df = 1, 4 and

P< 0.001) and 4.21˚C for pupa (F = 305.7, df = 1, 4 and P < 0.001). The thermal constants

expressed in degree days (DD = 1/slope) to represent the amount of energy needed to complete

development for eggs, larvae and pupae were estimated at 22.4, 58.5 and 37.1, DD respectively.

Optimal values of temperatures reached 32.5 (eggs), 33.5 (larvae) and 33˚C (pupae), respec-

tively (Fig 1). Beyond these values, the model predicted a sharp decline in the development

rates at all immature stages of DBM. The upper threshold limit for development of eggs larvae

and pupae was observed at 40.6, 40.7 and 38˚C, respectively.

Table 1. Mean development time of DBM life stages at different constant temperatures.

Temperature (˚C) Mean development time (No. of days ± SE)

Egg (n = 936)* Larva (n = 747) Pupa (n = 517)

10 20.64 ± 0.20a 25.55 ± 1.65a 27.45 ± 1.04a

15 8.68 ± 0.27b 19.30 ± 0.62b 14.84 ± 0.35b

20 5.40 ± 0.10c 11.78 ± 0.20c 7.51 ± 0.09c

25 3.47 ± 0.07de 7.89 ± 0.21d 4.84 ± 0.10d

30 3.43 ± 0.09e 5.51 ± 0.12e 3.79 ± 0.0.07ef

35 2.55 ± 0.051f 2.71 ± 0.24f 2.86 ± 0.20f

Mean values within a column followed by a different letter differ significantly at P<0.05, Poisson and Negative binomial GLM (Tukey test).

*n = number of immature stages observed

https://doi.org/10.1371/journal.pone.0173590.t001
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Mortality of immature life stages. Mortality of immature life stages of DBM was best

described by Weibull function for eggs and a second order polynomial for larvae and pupae.

The models predicted 20˚C as the most favorable temperature level for the survival of eggs, lar-

vae and pupae (Fig 2). The rates of mortality of immature life stages of DBM increased at

extreme temperatures.

Adult lifespan and reproduction. The adult lifespan and fecundity differed significantly

at extreme temperatures (lifespan: male; χ2 = 51.39, df = 5, 240, P< 0.001; female: χ2 = 37.22,

df = 5, 223, P < 0.001; fecundity: χ2 = 318.12, df = 4, 215, P < 0.001). The lifespan of DBM

females reached its peak of 58.46 days at 10˚C whereas the lifespan of DBM males reached

its peak at 44.09 (10˚C) and 44.73 days (15˚C). Overtime, the life span of adult DBM males was

shorter than for females at 10˚C, but females aged faster in subsequent temperatures (Table 2).

The temperature-dependent fecundity of DBM was described by a simple Gaussian func-

tion (P = 0.0191; df = 3, 2; F = 51.5897). The model predicted a value near 20˚C to be the favor-

able temperature for DBM females to oviposit. Under this condition, a female produced an

average of 265.2 eggs. At a constant temperature of 35˚C, only a few adult females emerged

from the pupae, but all failed to oviposit. At low and high temperatures, fecundity reduced

considerably (Fig 3a). The relationship between cumulative oviposition rate and female age

was described by the gamma function (P< 0.001; df = 1, 246; F = 3780.426) (Fig 3b).

Fifty (50) percent of the eggs were laid on the first 44.1, 31.9, 36.4, 13.8 and 11.5% of the

adult lifetime, at 10, 15, 20, 25 and 30˚C, respectively. A summary of the DBM life table is pre-

sented in Table 3.

Fig 1. Development rates of immature stages of DBM: Egg (a), larva (b) and pupa (c). Blue dots are the observed means ± SE, the

solid red line represents the selected model output, while the dotted blue lines represent the upper and lower 95% confidence limits. Bars

represent standard deviations.

https://doi.org/10.1371/journal.pone.0173590.g001
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Population growth parameters of DBM. The intrinsic rate of natural increase of the pop-

ulation reached 0.21 at 25˚C, suggesting this is the optimal temperature. The pest obtained a

maximum net reproduction rate of 87.38 female offpring/female/generation at 20˚C. Under

the same conditions of temperature, the total number of offspring reached 136.12 individuals/

female/generation. The time lags between the same life stages from one generation to the next

reduced with increased temperature. Though the values did not differ substantially with tem-

perature (χ2 = 0.00268, df = 4, 45, P = 0.9889), the finite rate of population increased steadily

from 10 to 25˚C before starting to decline. An increase of temperature values from 10 to 25˚C

reduced the time period to double the population (Fig 4; Table 4).

Fig 2. Temperature-dependent mortalities of immature life stages of DBM: Egg (a), larva (b) and pupa (c). Blue dots are the

observed means, the solid red line represents the selected model output, while dotted blue lines represent the upper and lower 95%

confidence intervals of selected models.

https://doi.org/10.1371/journal.pone.0173590.g002

Table 2. Lifespan and fecundity of DBM at constant temperatures.

Temperature (˚C) Longevity (in days) Fecundity [No. eggs/female]

Male (n = 246)* Female (n = 229) (n = 220)

10 44.73 ± 3.82a 58.46 ± 3.89a 26.83 ± 10.09a

15 44.09 ± 2.68a 31.89 ± 1.84b 155.64 ± 18.72bde

20 31.97 ± 1.21b 22.61 ± 0.84c 265.21 ± 13.24cd

25 21.34 ± 1.6cd 14.04 ± 0.91de 197.83 ± 14.39d

30 20.17 ± 1.03d 13.90 ± 0.79e 101.54 ± 11.80e

35 7.33 ± 2.03e 6.43 ± 0.78f -

Mean values within a column followed by different letter differ significantly at P<0.05, Poisson and Negative binomial GLM (Tukey test)

* n = number of adults observed

https://doi.org/10.1371/journal.pone.0173590.t002
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Phenology model evaluation. The minimum and maximum temperatures recorded ran-

ged between 13.1–18.6 and 22.6–38.6˚C, respectively. The mean temperature was 21.8˚C. The

simulated values of intrinsic rate of natural increase (rm), finite rate of population increase (λ),

doubling time (Dt), and mortality were closely similar to the observed values (Table 5), signify-

ing the strength of the developed phenology models in estimating demographic parameters.

Temperature changes between the current and future scenarios

It was estimated that changes in the maximum temperatures between the current and future

will be substantial (1.6˚C) in the low zone of Taita hills and will reduce considerably towards

farms located at the higher altitudes in the transect (Table 6). The changes will be compara-

tively lower and uniform along the Mt. Kilimanjaro transect.

Spatial changes in distribution and abundance of DBM population

Current scenario along the altitudinal transect. The current suitability of habitat for the

survivorship and establishment of DBM increased gradually from 700 masl in the low zone

(ERI = 0.6049) to 1690 masl in the high zone (ERI = 0.7842) in Mt. Kilimanjaro (Fig 5a),

reflecting the observed distribution of the pest in the transect. In contrast, the highest number

of new generations of DBM added were in the low zone (GI = 19.5994), with the number

reducing steadily with increasing altitudes in the transect, settling to approximately 11 per

annum in the high zone (Fig 5b). The temperature-dependent population increase is shown to

decrease consistently from a range of approximately 363.6-fold at the bottom of the low zone

(AI = 36.3586) to approximately 213.5-fold at the top of the high zone (AI = 21.3541) (Fig 5c).

Suitability of habitats based on temperature increased with increasing altitude in Taita hills.

If you consider two farms, one at Majengo (830 masl) and the other at Dembwa (1107 masl),

little variation in the level of suitability of habitat is noticed in the low zone (0.6719�

ERI� 0.7232) (Fig 5d). From medium towards high zone, the farms become increasingly

Fig 3. Temperature-dependent total egg production (a) and age-related cumulative proportion of egg production (b). Age of the

females at 50% oviposition is indicated. Dots represent data points. The upper and lower 95% confidence intervals of the model are

indicated.

https://doi.org/10.1371/journal.pone.0173590.g003
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suitable, with the likelihood of pest establishment ranging between 0.7745 and 0.8631. How-

ever, it was observed that the pest produces increasingly fewer new generations with rising alti-

tude, reducing from 17.5 generations (GI = 17.4606) in the low zone to 7.7 generations

(GI = 7.727) in the high zone (Fig 5e). Population growth is roughly halved from a 331.8-fold

increase in the low zone (AI = 33.1817) to about 162.9-fold increase (AI = 16.2904) in the high

zone (Fig 5f).

Changes between the current (2013) and future climate change scenarios (2055). Most

changes in potential distribution between the current (2013) and future (2055) scenarios in

Mt. Kilimanjaro will happen in the low zone (Fig 6g) whose establishment risk index ranges

from 0.1860 to 0.2103. In between the two periods, the capacity of DBM to produce new gener-

ations will reduce, resulting into a loss of approximately two generations (GI = -1.9299) in the

low zone (Fig 6h). This decline in number of generations will be reflected in the overall

Table 3. Summary of the life table of DBM at different constant temperatures.

Day Age specific survival (lx) Age specific fecundity (mx) Reproductive value (Vx) Expected life expectancy (Ex)

10˚C (n = 24)*

30 0.96 0.1 0.2 5

34 0.86 0.1 0.1 4.2

38 0.84 1.5 2.6 3.7

45 0.75 0 0 3.3

58 0.83 0 0.1 3

66 0.9 0 0 2.4

15˚C (n = 46)

11 0.81 2 3.9 3.6

22 0.89 2.8 4.9 3.2

28 0.74 1 1.6 2.5

31 0.57 0.1 0.2 2

35 0.38 0 0 1.7

42 0.8 0.4 0.4 1

20˚C (n = 57)

7 0.95 10.3 20.5 3.6

12 0.92 5.9 11.4 3

16 0.73 2.3 4.3 2.1

21 0.36 2.6 3.9 2.3

25 0.46 0.4 0.5 1

25˚C (n = 46)

4 0.89 7.6 14.9 3

8 0.67 2.4 4.4 2.2

12 0.5 1.8 2.8 1.8

16 0.54 1.4 1.8 1.7

20 0.29 0 0 1.3

30˚C (n = 47)

3 0.98 9.7 19 3.3

7 0.76 5.2 10 2.4

11 0.47 2.5 4.3 1.8

15 0.56 0 0 1.7

19 0.22 0 0 1.2

* n = number of adults observed. At 35˚C, no adult survived

https://doi.org/10.1371/journal.pone.0173590.t003
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Fig 4. Population growth parameters of DBM estimated over a range of five constant temperatures. rm, intrinsic rate of natural

increase; Ro, net reproduction rate; GRR, gross reproduction rate; GT, mean generation time; λ, finite rate of increase; and DT, doubling

time.

https://doi.org/10.1371/journal.pone.0173590.g004

Table 4. Estimated population growth parameters of DBM at different constant temperatures.

Temperature (˚C) Population growth parameters

rm Ro GRR GT λ Dt

(n = 50) (n = 50) (n = 50) (n = 50) (n = 50) (n = 50)

10 0.01 ± 0.001a 3.31 ± 0.36a 32.44 ± 4.15a 86.92 ± 0.75a 1.01 ± 0.001a 56.96 ± 5.57a

15 0.07 ± 0.001a 41.22 ± 1.25b 110.77 ± 2.91bcd 54.31 ± 0.29b 1.07± 0.001a 10.14 ± 0.11b

20 0.13 ± 0.001a 87.38 ± 3.19c 136.12 ± 4.41c 33.67 ± 0.18c 1.14 ± 0.001a 5.23 ± 0.05cde

25 0.21 ± 0.002a 72.59 ± 3.28d 102.8 ± 3.37d 20.63 ± 0.09d 1.23 ± 0.003a 3.35 ± 0.04de

30 0.20 ± 0.004a 17.08 ± 1.03e 38.35 ± 2.31a 14.11 ± 0.08e 1.22 ± 0.005a 3.48 ± 0.08e

Mean values within a column followed by different letters differ significantly at P<0.05, Poisson and Negative binomial GLM (Tukey test). rm, intrinsic rate of

natural increase; Ro, net reproduction rate; GRR, gross reproduction rate; GT, mean generation time; λ, finite rate of increase; Dt, doubling time (days).

Adult female DBM failed to reproduce at 35˚C.

https://doi.org/10.1371/journal.pone.0173590.t004
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population that will be characterized by a decline of the growth rate from the Kisangesangeni

Madukani farm upwards to 22.3-fold in the low zone (Fig 6i).

The model predicts that most areas of the medium zone of Mt. Kilimanjaro will be least

favorable for survival and establishment of DBM (ERI = 0.1134) along the gradient (Fig 6g),

leading to a reduction of the mean number of new generations added from 0.95 to 0.42

(Fig 6h). Changes in finite rate of population increase will be associated with the declining

growth rate (-1.3578� AI� -0.4838); however, these will not be large enough to warrant sig-

nificant change in the population growth rate in the zone (Fig 6i).

Population changes in the high zone of Mt. Kilimanjaro are associated with the increase of

favorable temperature conditions for the establishment and distribution of the pest (increase

of establishment risk index from 0.1134 to 0.1376 (Fig 6g)), which will further influence the

number of generations and population growth. The increase in level of suitability will probably

allow more DBM to shift into the zone; and thereby, add several new generations in the popu-

lation (Fig 6h). The added new generations are likely to lead into a net increase of the popula-

tion growth rate from approximately 3.9 to 12.6-fold.

The model also predicts that the changes in favorable habitats between current and future

temperature conditions in Taita hills will be substantial in the low zone farms (0.2098�

ERI� 0.2667) (Fig 7g). By 2055, the number of generations produced per annum will decline

gradually, with a loss of approximately 12 generations alone in the lowest-lying farm in the

transect, Majengo (Fig 7h), leading to a significant reduction of DBM population growth in

the zone. The farm is predicted to lose about 92.2 times of its DBM population between these

two periods (Fig 7i).

Table 5. Validation of the developed phenology model through comparison of observed and simulated population growth parameters of DBM life

stages.

Euclidian distance

Population growth parameters Phenology model Egg 41.83

Parameter Simulated Observed P-value Mortality Simulated Observed P-value Larva 75.48

rm 0.16(0.01) 0.16 0.31 Egg 0.12(0.05) 0.12 0.5712 Pupa 103.09

λ 1.18(0.01) 1.17 0.3054 Larva 0.17(0.08) 0.18 0.2611 Female 41.29

Dt 4.28(0.32) 4.34 0.3734 Pupa 0.55(0.13) 0.54 0.8497 Male 42.29

Standard errors are enclosed in brackets.

n = 100.

https://doi.org/10.1371/journal.pone.0173590.t005

Table 6. Changes between the current (2013) and future (2055) maximum and minimum temperatures on selected farms along Mt. Kilimanjaro tran-

sect and the Taita hills transect. All current, future and their differences in temperatures were recorded in degrees centigrade (˚C) and altitude in metres

above sea level (masl).

Mt. Kilimanjaro Taita hills

Maximum temperatures

Zone Farm Altitude Current Future Difference Farm Altitude Current Future Difference

Low Kisange B 716 34.3 34.8 0.4 Majengo 830 33.8 35.4 1.6

Medium Kirua 1513 28.3 28.6 0.3 Msangalinyi 1461 27.7 28 0.3

High Marua A 1692 26.8 27.2 0.4 Kishamba 1765 25.9 25.9 0

Minimum temperatures

Low Kisange B 716 20 20.9 0.9 Majengo 830 17.3 19.2 1.9

Medium Kirua 1513 15 15.7 0.7 Msangalinyi 1461 13.1 15.8 2.7

High Marua A 1692 13.3 14.5 1.2 Kishamba 1765 13.1 13.8 0.7

https://doi.org/10.1371/journal.pone.0173590.t006
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A wider range of the establishment risk index in the medium zone of Taita hills spanning

from 0.1809 to 0.2667 (Fig 7g) can only suggest more suitable conditions and extensive favor-

able temperatures between current and future conditions. Nonetheless, the predicted changes

seem unfavorable to DBM population, because, as the expected added number of generations

reduces to approximately 8.74 and 10.74 generations, this will slow down the growth rate by 7

to 8-fold (Fig 7i), which will also translate to a reduction in the damage potential in the zone.

In the high zone of Taita hills, the environmental suitability for survivorship of DBM is

expected to change little, with such changes becoming even smaller upwards in the zone

(Fig 7g). In this zone, therefore, the pest will witness little variation on its annual number of

new generations; which is translated into maintaining a more stabilized population compared

to the other zones (Fig 7h). Potentially, the overall impact will be an increase of the population

growth rate (Fig 7i).

Fig 5. Changes in the establishment, abundance and population growth rates of DBM along altitudinal gradients of Mt.

Kilimanjaro and Taita hills. Establishment risk indices (ERI) of Mt. Kilimanjaro (a) and Taita hills (d); Generation indices (GI) of Mt.

Kilimanjaro (b) and Taita hills (e); and Activity indices (AI) of Mt. Kilimanjaro (c) and Taita hills (f) *KisangeB = Kisangesangeni B,

KisaMadukani = Kisangesangeni Madukani.

https://doi.org/10.1371/journal.pone.0173590.g005
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Discussion

Several bioclimatic models have been developed for determining temperature-dependent pop-

ulation dynamics, abundance and distribution of insect species in the field. Often these models

are developed at broad geographic scale, mostly continental or global scale. Utility of such

broad geographic scale prediction with scarce inclusion of information on the pest biology is

often limited for improving or adapting management strategies in response to climate change

at a local scale. In the eastern Afromontane, cruciferous vegetables such as kale and cabbage

are widely cultivated in diverse agroecologies spread along the altitudinal gradient, but DBM is

a key constraint to productivity of these vegetables [33,57]. The growth and development of

DBM are significantly influenced by the prevailing weather variables, especially temperature

and rainfall, in the field [58]. Understanding the effects of changing climate on DBM biology

and damage to crops is critical for adapting and implementing management strategies in the

region. However, previous efforts to predict distribution of DBM in relation to climatic

Fig 6. Changed establishment, abundance and population growth rates across climate change scenarios of Mt. Kilimanjaro.

Current 2013 distribution and abundance of DBM: (a) ERI, (b) GI and (c) AI; future 2055 distribution and abundance of DBM: (d) ERI, (e)

GI and (f) AI. Absolute change in distribution and abundance between current and future scenarios: (g) ERI, (h) GI and (i) AI. ERI =

Establishment Risk Index, GI = Generation Index and AI = Activity Index. *KisangeB = Kisangesangeni B,

KisaMadukani = Kisangesangeni Madukani.

https://doi.org/10.1371/journal.pone.0173590.g006
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variables using approaches such as CLIMEX [19] have been employed on a global scale and

were entrenched on limited information on the pest biology. Regional prediction models, as

reported for abundance of DBM in China using DYMEX software [59], are also not robust

enough to properly analyze age-structured pest populations. Temperature-dependent life

tables provide reliable information for understanding the life history, behavioral response and

population dynamics of key insect pests such as DBM, under the widely changing temperature

conditions in a local scale [31]. Furthermore, such information is useful for predicting poten-

tial impacts of climate change on the population dynamics through estimations of the lower

and upper threshold of temperatures during the species life history [28].

We used process-based phenology models to understand the temperature-dependent popu-

lation growth potential of DBM. Our results indicated that growth and reproduction of DBM

could only be sustained between the minimum and maximum temperature thresholds of

3.76˚C for eggs and 40.7˚C for larvae, respectively. Although the development rate increased

with temperature, our findings show that females failed to oviposit at temperatures beyond the

maximum threshold of 30˚C. Maximum number of eggs and female offspring were only pro-

duced at 20˚C, suggesting the temperature range of 20–25˚C is the optimum for high intrinsic

Fig 7. Altered establishment, abundance and population growth rates across climate change scenarios of Taita hills. Current

2013 distribution and abundance of DBM: (a) ERI, (b) GI and (c) AI; future 2055 distribution and abundance of DBM: (d) ERI, (e) GI and (f)

AI. Absolute change in distribution and abundance between current and future scenarios: (g) ERI, (h) GI and (i) AI. ERI = Establishment

Risk Index, GI = Generation Index and AI = Activity Index.

https://doi.org/10.1371/journal.pone.0173590.g007
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rate of natural increase and maximum net reproduction rate. These results agree with previous

reports of Bahar et al [11] who found that 4˚C was the lowest temperature threshold for

eggs and that no larvae survived beyond 38˚C. Marchioro and Foerster et al [26] also reported

maximum oviposition by DBM at 20˚C, with the highest intrinsic rate of natural increase

occurring between 20 and 25˚C. Further, 50% of the total number of eggs at 20˚C were laid

in 36.4% of the female’s life time. Chelliah and Srinivasan [60] point out that DBM is physio-

logically programmed to lay the maximum number of eggs in the early days following

eclosion.

Often, DBM outbreaks in the tropics occur during the hot dry season in the low altitudes

soon after a wet season [61] or with ample irrigation resources [62] when there are abundant

food supplies. The growth of DBM outside the optimum temperature range declined as evi-

denced by high egg mortality towards both the lower and upper temperature extremes (10˚C

and 30˚C). A long period of exposure to temperature beyond 32.5˚C impaired viability of the

eggs, resulting in decline of field populations [26]. At temperatures, lower than optimum, lon-

ger development times resulted in fewer numbers of generations per year in the field. Exposure

to freezing temperatures for less than two months could lead to hibernation of DBM [63];

however, such weather is uncommon to crucifer cultivation in the tropics. Similarly, with

increasing temperatures above the optimum, shorter development times could lead to more

generations per year in the field. However, this is not always the case in nature, because the rel-

atively long periods of exposure to high temperatures interfere with food conversion-enzymes

[64] and deprive the pupae and adults the possibility of gaining the normal weight for proper

growth and differentiation [11,64].

Although the experiments were conducted at constant temperatures, in nature, tempera-

tures fluctuate both due to diurnal variations and microclimate. Hence, when periodically

stressed from the very hot or cold weather, insects limit their movements, only to resume nor-

mal activity when favorable conditions resume [65–66]. Liu et al [67] reported that eggs incu-

bated for up to 36 hours at a constant temperature of 38˚C could still develop when

transferred to 28˚C. Thus, to test reliability of the models developed under constant tempera-

tures, it may be reasonable to compare species performance under a close range of fluctuating

temperatures. However, only a few studies have investigated the effect of fluctuating tempera-

tures on mortality and population growth parameters of DBM [66,68–69]. Under higher tem-

perature fluctuations of 25 ± 10˚C, 57% of the eggs of DBM died at 37˚C [67], which is

comparable to 53.3% mortality observed in this study. Similarly, mortality rate of pupae (5.6%)

observed at 20˚C in the present study is comparable to mortality rate of 8.5% under fluctuating

temperature (15–27˚C, mean: 22˚C) reported previously [66]. Our adopted models predicted

the higher survival of pest population under moderate temperatures [68], which supports our

observations on suitability of medium and high zones for DBM population buildup.

To understand the changes in population dynamics of DBM with graded changes in the

weather variables along the altitudinal transects, we ran the developed phenology models with

field collected temperature datasets from Mt. Kilimanjaro and Taita hills. Both in Mt. Kiliman-

jaro and Taita hills, suitability of habitats for survivorship and establishment increased from

the low-altitude (ERI = 0.6049–0.6719) to the high-altitude zones (ERI = 0.7842–0.8631). How-

ever, with number of generations per year declining from 17–19 in the low altitude zones to

8–11 in the high zones, temperature-dependent population growth rate is nearly double in the

low zones compared to the high zones. In addition, the shorter generation length in the low

altitude zone implies a rapid increase in populations [31]. However, our findings indicate that

this population growth trend will only hold if the pest population is not exposed for long peri-

ods at or above 35˚C [15], which would otherwise compromise egg production, pupation and

adult size [70].
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Several studies have suggested that warming gets more rapid at higher elevations in the

tropics [35] and particularly so, when the altitudinal gradient is constant. Based on the current

(2013) and future (2055) temperatures on selected farms along each transect, significant

increases in mean minimum temperatures could be expected in Mt. Kilimanjaro (+0.7–1.2˚C)

and Taita hills (+0.7–2.7˚C), respectively. In the low altitude zone of Taita hills, increase of

mean maximum temperature up to 1.6˚C could also be expected. Change of mountain temper-

atures is also subject to the extreme local variability in the topography, slope, aspect, tree cover

and exposure [35,71]. It is possible the well-managed “Chagga homegardens”, a multi-storeyed

agroforestry cropping system based on banana and coffee, providing shading effects in the

upward slope of Mt Kilimanjaro [39,72], enhanced resilience of the crucifer cropping systems

to harsh climates by providing the favorable microclimate [73–77]. Taita hills, which has lost

approximately 99% of its forest cover in the past few centuries [38] is likely to experience more

warmer climates [37] compared to Mt. Kilimanjaro where nearly one third of the forest cover

has been lost in the last 70 years [78]. The falling coffee prices in the world market, rising pro-

duction costs and changing climate [76,79], to mention a few, have compelled some farmers in

Mt. Kilimanjaro to substitute coffee with other food and cash crops [80]. To this end, the

diversity, density and placement of existing shade trees have been changed, leading to signifi-

cant reduction in the tree component of the Chagga homegardens [76].

Based on predictions of the DBM population risk indices in a future climate change sce-

nario (2055) along the transects, the crucifer farms in the low zone of Mt Kilimanjaro near

Kisangesangeni B and farms in higher altitudes of the transect from Kirua to Marua B are likely

to face increasing pressures of DBM. The higher change in the population growths expected in

the low zones of Mt Kilimanjaro indicates the possible role of Miwaleni springs, which is clos-

est to the Kisangesangeni B farm, in producing the microclimate needed for both host plants

and DBM in a region that is otherwise relatively hot. Furthermore, in the mid to high zones of

Mt Kilimanjaro, the Chagga homegardens [39] could buffer DBM growth from unfavorable

extreme temperatures.

However, significant declines in the GI across the Taita hills transect by 8–12 generations

and declines in the AI from -5.0729 to -9.2248 due to rising temperatures in the future could

lead to an overall decline in population of DBM across the transect. As noted in numerous

studies [9–10,81], high field temperatures will not necessarily increase population of the pest

but might impair the physiology of the pests directly and indirectly through increased killing

capacity of its predators. The decline in egg oviposition and hatchability of DBM after 20 and

32.5˚C, respectively [26], and the decline in finite rate of increase after 25˚C, will inevitably

cause a decrease of the DBM population in the low zone. The high zones of Taita hills will

undergo significant increase in DBM dynamics with greater potential for survival of all life

stages of DBM throughout the year with optimum temperature conditions, resulting in signifi-

cant yield losses. However, with increasing temperature, the potential for outbreak of other

pests such as thrips and aphids [82–83] in the low zones needs to be considered.

In conclusions, the study highlights how detailed temperature-based life analysis of a pest

(such as DBM) in the laboratory combined with field-collected and downscaled temperature

data could predict the dynamics of the pest at a local scale both under current and future cli-

mate change scenarios. In a broader sense, incorporating other factors known to influence

DBM dynamics into the model such as weather-influenced reproductive and dispersal behav-

ior of the pest [84–86], host plant diversity [12–13,40], natural enemy dynamics [32,87], rela-

tive humidity [88–89] and rainfall [90–91] could enhance the validity of these predictions. A

recent study has highlighted the relevance of microclimate in influencing the bioecology of

insect species [92]; hence incorporation of fine scale weather data for modeling species distri-

bution can also further enhance the precision of the predictions.
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