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Abstract

Identifying drug-drug interaction (DDI) is an important topic for the development of safe

pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases

such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed,

which is a great resource for DDI studies. In this paper, we introduced an automatic compu-

tational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical

Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary the-

saurus developed by the National Library of Medicine for indexing and annotating articles.

Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and

phenomena with high accuracy. The connections among these MeSH terms were investi-

gated by using co-occurrence heatmaps and social network analysis. Our approach can be

used to visualize relationships of DDI terms, which has the potential to help users better

understand DDIs. As the volume of PubMed records increases, our method for automatic

analysis of DDIs from the PubMed database will become more accurate.

Introduction

A drug-drug interaction (DDI) occurs when the pharmacologic effect of a given drug is altered

by the action of another drug, leading to unpredictable clinical effects [1]. DDIs may make the

drug less effective, delay drug absorption, or cause unexpected harmful side effects. Polyphar-

macy, the concurrent use of multiple medications, is an important factor for increasing the

risk of DDIs. Centers for Disease Control (CDC) reported that the percentage of population

taking three or more prescription drugs has increased from 11.8% in 1988–1994 to 20.8% in

2007–2010 in the United States. In addition, the percentage of people taking five or more

drugs has increased from 4.0% to 10.1% during this same time period [2]. With each new drug

added to an individual’s regime, the risk of DDIs may increase. Thus, DDI is becoming a
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serious clinical safety issue as the use of multiple medications becomes more common. DDIs

account for more than 30% of all adverse drug events [3, 4]. In 2007, DDIs caused approxi-

mately 0.054% of emergency room visits, 0.57% of hospital admissions, and 0.12% of rehospi-

talizations in the United States [5]. DDI-related health care costs increase each year. For

several drugs (e.g., cisapride, astemizol and terfenadine), the late identification of DDIs has led

to restrictions, or even withdrawal of the drug from the market [6]. Therefore, detecting DDIs

is an important topic to the pharmaceutical industry, drug regulatory agencies, healthcare pro-

fessionals and patients [7].

DDI findings are frequently reported in clinical and scientific journals. PubMed developed

by the National Library of Medicine (NLM), is the most widely used database of life sciences

and biomedical literature. PubMed contains over 26 million entries from more than 5,600

journals, with 2,000–4,000 new references being added daily. PubMed is available for free on

the Internet. A PubMed search for journal articles related to DDIs has produced about 150,000

results. This large amount of PubMed literature enables us to investigate DDIs comprehen-

sively. However, it is difficult to read and summarize these references manually, even for spe-

cialists. Efficient and accurate retrieval of useful information is in increasing demand.

Bioinformatics approaches are widely used to investigate DDIs because of their ability to

efficiently analyze large amounts of drug-related data including electronic health records [8],

post-marketing safety surveillance reports [9–11], scientific literature [12–16], structural infor-

mation on drug molecules [17–19] and drug-gene interactions [1, 20, 21]. In our previous

paper [22], we developed a statistical method to identify compounds that might interact with

the queried drug from substances information in MEDLINE records. Substances contain a lot

of useful drug and compound information. In this study, we chose MeSH terms to systemati-

cally analyze DDIs and their mechanisms. MeSH terms, developed by the NLM, are used for

indexing and annotating PubMed documents. MeSH terms are manually assigned to each doc-

ument by biomedical subject specialists based on the context of the whole document. Thus,

MeSH terms contain high-density information from the whole document which may not be

inferred from the title or the abstract. In addition, MeSH terms are updated annually to

include new vocabulary. In this paper, a random-sampling-based statistical algorithm was

firstly applied to investigate the categories of drugs, proteins, and phenomena of MeSH terms.

Co-occurrence heatmaps and networks were then plotted to explore the relationships among

these terms. Three case studies on cyclosporine, rifampin and theophylline implied that our

method was able to rank possible DDI-related terms with high accuracy. The co-occurrence

heatmaps and social networks generated from these MeSH terms also illuminated possible

associations among drugs, proteins, and phenomena, which can help people understand DDIs

better. To our knowledge, there are no previous publications that have utilized these methods

to study MeSH terms. Our computational approach will improve the ability of the research

community to efficiently use increasingly large and complex PubMed data.

Material and methods

Identification of DDI-related MeSH terms

The flowchart of the MeSH term analysis process is shown in Fig 1. In the first step, we

searched PubMed using the query “Drug0 [MeSH Terms]” and downloaded the resulting arti-

cles. Here, “Drug0” was the name of a queried drug. Basic information including PubMed IDs

(PMIDs), title, publication date, publication type, abstract, substances and MeSH terms fields

of these articles was retrieved. The end of publication date was set to be 2015/12/31. In other

words, only papers published before 2015/12/31 was included for data analysis. In the second

step, the articles were divided into two groups, DDI-related literature (group A) and DDI-
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Fig 1. The workflow of the identification of significant MeSH terms.

https://doi.org/10.1371/journal.pone.0173548.g001
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unrelated literature (group B). If a paper contained at least one of the drug interaction terms, it

was selected as DDI-related literature. Drug interaction terms included “drug interactions”,

“drug agonism”, “drug partial agonism”, “drug antagonism”, “drug inverse agonism”, “drug

synergism”, “food-drug interactions”, and “herb-drug interactions”. The MeSH terms from

DDI-related articles (group A) were extracted and chosen as candidate terms. 1,064 FDA-

approved drugs [23] were found in the current version of the MeSH tree (2016 MeSH). These

molecules were used to identify the drug terms. Terms in subgroups “D08” and “D12.776” in

the MeSH tree were chosen as protein terms. MeSH terms in subgroups “G03”, “G04”, “G06”

and “G07” were selected as phenomena terms. In the third step, a random-sampling based

algorithm, reported in our previous paper [22], was applied to identify the MeSH terms whose

frequency is significantly higher in DDI-related articles (group A) than frequency in DDI-

unrelated articles (group B). In this step, the same number of articles in group B as articles in

group A will be randomly selected. The number of candidate MeSH terms in these selected

papers was counted. The process was repeated many times (for example, 1000 times) to estab-

lish the null distribution of the candidate term frequencies in the DDI-unrelated articles. The

p-value for each candidate compound protein, and phenomena term was calculated based on

the distribution using Z-statistics. Detailed information about the algorithm can be found in

our previous study [22]. The terms whose frequency was more than 5 and p-value<0.1 were

selected. The source python code for downloading papers from PubMed and random sam-

pling can be accessed at the website: https://figshare.com/articles/step_1_download_

Substance_py/4711516.

In the last step, to highlight the applicability of our random-sampling-based statistical algo-

rithm, three medications, cyclosporine, rifampin (also known as rifampicin) and theophylline

were chosen to validate our predictions of DDI-related drugs and proteins. Drug interactions

are important for these compounds resulting in more than 1000 DDI-related articles in

PubMed. Cyclosporine was introduced into clinical practice in the early 1980s as an effective

immunosuppressant. Since that time, cyclosporine has been found to interact with many drugs

which causes either elevated or subtherapeutic blood cyclosporine concentrations. Elevated

cyclosporine levels have been linked to nephrotoxicity, neurotoxicity, and an increased risk of

infection [24]. Rifampin is an important drug in the treatment of several types of bacterial infec-

tions. Rifampin is used extensively despite its broad effects on DDIs, creating serious problems.

The clinical importance of such interactions includes auto induction leading to suboptimal or

failed treatment [25]. Theophylline has been used to treat airway diseases for over 70 years.

DDIs can alter blood theophylline concentrations. Elevated theophylline levels produce a wide

range of adverse reactions including persistent vomiting, cardiac arrhythmias, and intractable

seizures that can be lethal [26]. Drug interaction information about these drugs was collected

from LexiComp (http://online.lexi.com), Clinical Pharmacology (http://clinicalpharmacology-ip.

com), Drug Interaction Checker (http://www.drugs.com/drug_interactions.html), and Microme-
dex (http://micromedex.com/). These databases were chosen as the gold standard data for DDI

validation. In addition, DDI-related proteins were manually validated from literatures. Receiver

Operating Characteristic (ROC) curves, which show the sensitivity against one minus the speci-

ficity for all possible threshold values, were plotted to describe the ability of a model to correctly

identify DDIs or proteins reported in the PubMed databases.

Co-occurrence analysis of the relationships among significant DDI-

related MeSH terms

Co-occurrence analysis was applied to explore the co-localization frequency of MeSH terms in

the same paper. A term-article matrix was firstly built. The columns and rows of the matrix
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were terms and articles respectively. If term “A” exists in article “B”, the value in the matrix is

set to be 1, otherwise, it is 0. The term-term adjacency matrix was then built from the term-

article matrix, where the rows and columns represent terms, and every entry is the number of

co-occurrences of the two terms. Co-occurrence heatmaps were plotted to visualize term-term

adjacency matrix, where the numbers were substituted with colored cells. In the heatmap,

Euclidean distance was used for hierarchical clustering. The heatmap can clearly show the co-

occurrence of the DDI-related MeSH terms. A weighted network was also constructed with

nodes representing MeSH terms and the edges representing interactions between two con-

nected nodes. The co-occurrence heatmaps and term networks were plotted using gplot and

igraph packages in R (https://www.r-project.org).

Results

Identification of DDI-related compounds and proteins from MeSH terms

As shown in Table 1, 1,996, 1,322 and 2,167 DDI-related articles containing drug interaction

terms were found in PubMed for cyclosporine, rifampin and theophylline respectively. Fig 2

shows ROC curves for predicting DDI-related drug terms whose frequencies are greater than

5 times in DDI-related articles. The ROC curves from our model are closer to the upper left

corner of the graph. The area under the curve (AUC) is 0.72 (cyclosporine), 0.72 (rifampin)

and 0.73 (theophylline), which represents the accuracy of our model for the identification of

DDIs. 46, 61 and 73 drug terms with p-value<0.1 and frequency greater than 5 times in DDI-

related articles for cyclosporine, rifampin and theophylline were identified and listed in S1

Table. The comparison of ROC curves with the cutoff of term frequency ranging from 1 to 6 is

shown in S1 Fig.

The ROC curves for predicting DDI-related proteins terms whose frequencies are greater

than 5 times in DDI-related articles were plotted in Fig 3. The AUC of the ROC curves is 0.9,

0.86, and 0.79 for cyclosporine, rifampin and theophylline which shows the model can cor-

rectly identify most of the DDI-related proteins from PubMed. As shown in Table 1 and S2

Table, 22, 19 and 12 statistically significant protein terms (p-value<0.1 and frequency greater

than 5 times) were identified for cyclosporine, rifampin and theophylline using the same ran-

dom-sampling-based approach. For cyclosporine, many DDI-related proteins are transporter

proteins such as P-glycoprotein, ATP-binding cassette transporters, and organic anion trans-

porters. Two cytochrome P-450 (CYP) isoenzyme CYP3A and CYP2E1 were also identified.

For rifampin, several CYP isoenzymes (including CYP2C8, CYP3A, CYP2C9, CYP2D6,

CYP2B6, and CYP1A2) and transporter proteins (including P-glycoprotein and organic anion

Table 1. Identification of significant DDI-related compounds and proteins from MeSH terms.

Cyclosporine Rifampin Theophylline

Number of DDI-related articles Including reviews 1996 1322 2167

Without reviews 1804 1258 2038

Number of significant proteins Including reviews 22 19 12

Without reviews 22 18 12

Number of significant drugs Including reviews 46 61 73

Without reviews 41 58 70

AUC of ROC curves of drug terms Including reviews 0.72 0.72 0.73

without reviews 0.71 0.70 0.72

AUC of ROC curves of protein terms Including reviews 0.9 0.86 0.79

Without reviews 0.91 0.83 0.75

https://doi.org/10.1371/journal.pone.0173548.t001
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transporters) were identified as proteins involved in DDIs. Additionally, glucuronosyltransfer-

ase was found. For theophylline, the majority of DDI-related proteins are CYP isoenzymes,

including CYP1A2, CYP3A and CYP2E1. Phosphorylases and adrenergic receptors were also

identified as proteins involved in DDIs.

The co-occurrence of drugs and proteins

Protein-drug co-occurrence heatmaps were plotted to display which proteins are involved in a

specific DDI. As shown in Fig 4, for cyclosporine, the most frequent proteins are P-glycopro-

tein and CYP3A for most drug pairs. The most frequent DDI-related proteins are CYP3A and

organic anion transporter for rifampin. Our results show that both cyclosporine and rifampin

are mainly involved in pharmacokinetic DDIs, in which one drug affects the absorption, distri-

bution, metabolism, or excretion (ADME) of another drug. The P-glycoprotein and organic

anion transporter play an essential role in drug elimination and drug bioavailability [27]. For

theophylline, the most frequently DDI-related proteins are CYP1A2, CYP3A, cholinergic

Fig 2. ROC curves for predicting DDI-related drug terms for cyclosporine, rifampin and theophylline.

https://doi.org/10.1371/journal.pone.0173548.g002

Fig 3. ROC curves for predicting DDI-related protein terms for cyclosporine, rifampin and theophylline.

https://doi.org/10.1371/journal.pone.0173548.g003

Analysis of the mechanism of DDIs using MeSH terms

PLOS ONE | https://doi.org/10.1371/journal.pone.0173548 April 19, 2017 6 / 13

https://doi.org/10.1371/journal.pone.0173548.g002
https://doi.org/10.1371/journal.pone.0173548.g003
https://doi.org/10.1371/journal.pone.0173548


receptors, and adrenergic receptors. Experiments showed that theophylline (or its metabolites)

could stimulate cholinergic effect [28]. Beta-adrenergic blockers may also interfere the effects

of theophylline if they are taken together [29].

The co-occurrence of drugs and phenomena

The phenomena terms were also analyzed using the same approach as proteins. These phenom-

ena terms contain important mechanism-related information including biological processes

and clinical consequences. As shown in Fig 5, for cyclosporine, the most frequent phenomena

include many pharmacokinetics-related terms, such as metabolic clearance rate, biological

transport and biological availability. Similarly for rifampin, many pharmacokinetics-related

Fig 4. Protein-drug co-occurrence heatmaps for cyclosporine, rifampin and theophylline. The rows and columns represent drug and protein terms

respectively, and each cell is the normalized count of co-occurrences of the two terms. The normalized count can be calculated as normalized count = count/

total row count.

https://doi.org/10.1371/journal.pone.0173548.g004

Fig 5. Phenomena-drug co-occurrence heatmaps for cyclosporine, rifampin and theophylline. The rows and columns represent drug and

phenomena terms respectively, and each cell is the normalized count of co-occurrences of the two terms. The normalized count can be calculated as

normalized count = count/ total row count.

https://doi.org/10.1371/journal.pone.0173548.g005
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terms including metabolic clearance rate, intestinal absorption, biotransformation, and biologi-

cal availability were shown in the drug-phenomena heatmap. For theophylline, the majority of

DDI-related phenomena were metabolic clearance rate, biotransformation, depression, and

chemical stimulation.

Network analysis of DDI-related terms

The connections among drugs, proteins and phenomena terms were modeled using social

network analysis. Fig 6 shows the results for three drug pairs, cyclosporine-itraconazole,

rifampin-quinidine, and theophylline-omeprazole. For cyclosporine-itraconazole (shown in

Fig 6A), the proteins connecting to both drug interaction and itraconazole are CYP3A and

P-Glycoprotein. The phenomena terms including biological availability, metabolic clearance

rate, intestinal absorption, and drug dose-response relationship, are also connected to the

terms drug interaction and itraconazole. These results are consistent with clinical observa-

tions that the metabolism of itraconazole can be affected when combined with cyclosporine.

Cyclosporine can increase the level of itraconazole because itraconazole is eliminated from

the body by P-glycoprotein and cyclosporine is the inhibitor of P-glycoprotein [30]. In addi-

tion, itraconazole can disturb the ADME of Cyclosporine. Cyclosporine is primarily metabo-

lized by CYP3A4 [31], and itraconazole is an inhibitor of CYP3A4 [32]. As shown in Fig 6B,

for rifampin-quinidine, MeSH terms including CYP3A, CYP2C8, P-Glycoprotein and dose-

response relationship were connected to the terms drug interaction and quinidine. Clinical

studies have found that rifampin strongly reduces plasma concentrations and the antiar-

rhythmic effects of quinidine by inhibiting CYP3A4 and P-glycoprotein [33, 34]. For theoph-

ylline-omeprazole (shown in Fig 6C), the terms connecting both drug interactions and

omeprazole include CYP1A2, therapeutic equivalency, area under curve, and drug dose-

response relationship. The results agree with the clinical findings that omeprazole may

induce CYP1A2 and the induction of CYP1A2 can significantly reduce the plasma concentra-

tions of theophylline [35].

The effect of review articles on term identification

A review article in PubMed may contain duplicate content because it summarizes previously

published research or clinical papers. To investigate the effect of review articles on the identifi-

cation of DDI-related term, we performed the same analysis using the articles excluding review

papers. Results were shown in Table 1. 192, 64, and 129 review papers were excluded for cyclo-

sporine, rifampin and theophylline respectively. The number of identified MeSH terms and

the AUCs of drugs and proteins ROC curves generally were similar or slightly decreased for

cyclosporine, rifampin and theophylline.

Discussion

PubMed was chosen as the literature resource for DDI studies in this project for three reasons.

First, PubMed is the largest and the most widely used database of life sciences and biomedical

literature. It contains more than 26 million scientific or clinical articles [22]. Among them,

150,000 articles are related to DDI. New references are added daily at an ever-increasing rate.

The large amount of literature in PubMed enables us to comprehensively investigate DDIs and

their molecular mechanisms. Second, PubMed is available for free on the Internet and original

PubMed literature data can be easily downloaded. Third, PubMed records have a well-defined

structure including title of the journal article, author information, journal information, publi-

cation type, language, abstract, MeSH terms, and substances. Information from the structured

Analysis of the mechanism of DDIs using MeSH terms
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Fig 6. The social network of drug, proteins, phenomena and DDI types for three drug pairs, (A)

cyclosporine-itraconazole, (B) rifampin-quindine, and (C) theophylline-omeprazole. Drugs, proteins,

phenomena and DDI types are shown in red, blue, green and orange, respectively.

https://doi.org/10.1371/journal.pone.0173548.g006
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data can be efficiently analyzed by using computational methods. Among them, MeSH terms

provide high-density information from the whole article.

Our method automatically explored the possible DDI-related MeSH terms and the rela-

tionships among them from the literature in the PubMed database. Our approach has the fol-

lowing advantages. First, current literature-based approaches are generally performed to

discover DDIs from scientific literature by text mining [12–16]. To the best of our knowl-

edge, our method is the first automatic approach that can systematically analyze the DDIs

directly from MeSH terms. As the volume of records in the PubMed database grows, manual

curation techniques become increasingly less desirable and our approach will become more

important. Second, the random sampling step in our algorithm can effectively filter unrelated

DDI terms. As shown in ROC curves, many DDIs and DDI-related proteins identified from

our method have been validated. Third, we performed a systematic analysis of MeSH terms,

including drugs, proteins, and phenomena, of PubMed records to explore the mechanism of

DDIs. These fields contain important information related to DDIs. Fourth, our approach can

show the relationship among these terms by using co-occurrence heatmaps and social net-

works, which provides a novel way to visualize and explore possible connections among

terms without priori assumptions.

Nonetheless, there are some limitations to the present study. First, some important infor-

mation in PubMed articles may not be collected because MeSH terms are manually summa-

rized [36]. Additionally, the identified MeSH terms are not from the exact content of the text

and the associations identified among MeSH terms are indirect. Therefore, the findings can

only be hypotheses but not proofs. In the future, we plan to apply Natural Language Processing

(NLP) tools to automatically index more terms and to identify direct associations from the

abstract or the full text of PubMed literature. Second, there are only 1,064 FDA approved

drugs in the MeSH tree. Some drugs are not available in MeSH terms. Therefore, we missed

DDIs involving the drugs not included in the MeSH tree. This limitation of the study can be

overcome if more MeSH terms are included in the future. Third, the number of papers for

some drugs/compounds is few and some low-frequency but important DDIs are excluded.

However, PubMed records increase rapidly and more DDI information can be identified by

our method in the future.

Conclusion

In this paper, we have described a method for analyzing the action mechanism of DDIs based

on automated extraction of relevant MeSH terms from PubMed. The method can identify

DDI-related terms including compounds, proteins and phenomena, and help users to visualize

relationships of these terms using co-occurrence heatmaps and social networks. The success of

the project will open doors to the future use of similar techniques in literature analysis.
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