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Abstract

Antibiotic resistance increases the likelihood of death from infection by common pathogens

such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries

alike. Most important modern antibiotic resistance genes spread between such species on

self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the

basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in

the same cell. These plasmids also use post-segregational killing (‘addiction’) systems,

which poison any bacterial cells that lose the addictive plasmid, to guarantee their own sur-

vival. This study demonstrates that plasmid incompatibilities and addiction systems can be

exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria

in vitro and in the mouse gut. Conjugative ‘interference plasmids’ were constructed by spe-

cifically deleting toxin and antibiotic resistance genes from target plasmids. These interfer-

ence plasmids efficiently cured the corresponding antibiotic resistant target plasmid from

different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacte-

rial populations into which plasmid-mediated resistance had spread. This approach might

allow eradication of emergent or established populations of resistance plasmids in individu-

als at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective anti-

biotics than would otherwise be possible, if sepsis develops. The generalisability of this

approach and its potential applications in bioremediation of animal and environmental micro-

biomes should now be systematically explored.

Introduction

The efficacy of antibiotics used for decades to treat serious infections is increasingly threatened

by large, low-copy, self-transmitting resistance plasmids in the Enterobacteriaceae. These con-

jugative plasmids are arguably the most important vectors of modern antibiotic resistance, and

are directly linked to major outbreaks of antibiotic resistant infection [1–4]. Modern resistance

plasmids may spread through a range of different member species of the Enterobacteriaceae as
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a plasmid epidemic, but host strain contributions to plasmid-encoded antibiotic resistance

phenotypes [4] further complicate surveillance and control [1, 4]. A conjugative resistance

plasmid in the microflora directly increases risk of therapeutic failure [5], and may spread

resistance to others. Antibiotic resistance carried on large conjugative plasmids may also per-

sist for months even in the absence of ongoing specific selection [6]. Even when spread of a

particular resistance plasmid is defined early enough for implementation of containment strat-

egies, the only available option is to use an antibiotic to which the plasmid does not confer

resistance, in an attempt to entirely eliminate all bacterial populations that carry it.

Older antibiotics and those not used as primary therapy in severe sepsis may provide

options for killing bacterial populations harbouring dangerous plasmids. Indeed, non-absorb-

able antibiotics such as colistin and neomycin have long been used to ‘selectively decontami-

nate’ the gut. The consequences of this ablative approach are not fully defined and is not

widely adopted despite promising results in clinical trials [7, 8], due to clinician concerns

about development of antibiotic resistance [9, 10]. Approaches that specifically eradicate prob-

lem plasmids and the phenotypes they encode without destroying host bacterial populations

or other resident plasmids is the ideal next step toward microbial husbandry.

Multiple plasmids commonly coexist in the same bacterial cell but cross-interference

between plasmid replication systems ensures that the most closely related plasmids are incom-

patible and cannot stably persist together [11, 12]. Entry exclusion systems (EES) also inhibit

conjugation of a plasmid into a cell that already has a resident plasmid of the same ‘exclusion

group’ by ten- [13] to more than a thousand-fold under certain conditions [14]. Strong selec-

tion for a plasmid entering a bacterial population therefore normally results in displacement of

any resident incompatible plasmids that are not selected, allowing the incoming plasmid to

take over the ecological niche.

Large conjugative low-copy number plasmids have also acquired specific ‘addiction’ mech-

anisms that are important for their long term persistence (Fig 1). Small protein toxins that

help regulate bacterial death under stress conditions were first identified as part of post-segre-

gational killing (PSK) / ‘addiction’ systems [15] in plasmids. A typical addiction system

includes a long-lived toxin and cognate short-lived antitoxin, with the unopposed toxin killing

any bacteria that have lost the plasmid, and thus the encoded antitoxin, during cell division

[16–19] (Fig 1).

T/A systems are generally classified by mode of action with the largest numbers and diver-

sity in types I and II. In type I systems, e.g. pndBCA found in IncI1 plasmids, toxin (PndA)

translation is inhibited by an unstable antisense RNA (pndB) transcribed in reverse orientation

at the toxin gene locus [20–22]. In type II systems e.g. pemIK, first described in the IncFII plas-

mid R1 as Kis-Kid [23] and common in IncL/M and IncF plasmids, the protein antitoxin

(PemI) is stable only when complexed with the cognate toxin PemK [24, 25].

The combined effects of addiction, incompatibility and repeated antibiotic exposure favour

the emergence of a few lineages of resistance plasmids in populations of antibiotic resistant

Enterobacteriaceae [26], possibly at the expense of diverse antibiotic-susceptible indigenous

plasmids that have evolved over thousands of years. Targeting of incompatibility and addiction

systems to selectively remove plasmids from bacterial populations has been proposed as part of

an optimal ecological/evolutionary approach [27] that had been previously demonstrated in
vitro with IncP and IncF plasmids [28]. Conjugative addictive plasmids (including plasmids

with multiple addiction systems) can also be eliminated in vitro by blocking replication, with

[28] or without [29, 30] blocking addiction, by using intercalating dyes and drugs such as quin-

olones [31], small molecule replication inhibitors [32, 33] and even by applying heat stress

[34], while fatty acids or tanzawaic acids can be used to inhibit spread by conjugation [35, 36]

but no such approach has ever been demonstrated in vivo.

Curing antibiotic resistance
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We postulated that antibiotic susceptibility could be restored to an entire gut microbiome by

the introduction of an appropriately-designed, orally administered conjugative ‘interference’

plasmid without the gain of any new antibiotic resistance and without the loss of the original

bacterial populations or of any bystander plasmid populations. Plasmids encoding resistance to

carbapenems and/or third-generation cephalosporins, which often also carry aminoglycoside

resistance determinants, are the highest priority for elimination. Two locally-endemic plasmids

carrying different β-lactamase genes and with different replicons and different addiction sys-

tems were therefore chosen for an experimental proof of principle.

Materials and methods

Bacteria, culture conditions, primers and plasmids

Tables 1 and 2 and S1 Table list plasmids, bacterial strains and primers, respectively. Bacteria

were grown in Luria-Bertani (LB) broth (Invitrogen, CA, USA) and plated on CHROMagar

Orientation (CHROMagar, Paris, France). Ampicillin (100 μg/mL), tetracycline (10 μg/mL),

gentamicin (8 μg/mL), chloramphenicol (20 μg/mL), cefotaxime (8 μg/mL), fosfomycin

(200 μg/mL), rifampicin (100 μg/mL), and/or sodium azide (100 μg/mL) were added as indi-

cated. Chemical transformation and electroporation were carried out using standard proto-

cols. Conjugations were performed by filter mating [37], with overnight or 2 h incubation on

filters before antibiotic selection of specific transconjugants. Conjugation efficiency was calcu-

lated as the number of transconjugants per donor cell.

Fig 1. Addictive antibiotic resistance plasmids. The replicon (rep, solid circle), antitoxin (AT, arrowhead)

and toxin (T, arrow) genes of a PSK/addiction system, an antibiotic resistance gene (AbR) and corresponding

antibiotic (Ab, solid blocks) are shown. (A) An addictive plasmid is stable in the absence of antibiotic selection.

(B) An addictive plasmid can be displaced by an incompatible plasmid. (C) A compatible plasmid providing

specific antitoxin (non-addictive compatible) leads to loss of addictive resistance plasmids from some cells. (D)

An incompatible non-addictive interference plasmid providing specific antitoxin (non-addictive incompatible)

ensures that all bacterial cells are ultimately free of both plasmid types.

doi:10.1371/journal.pone.0172913.g001
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PCR amplification and cloning

Platinum pfx DNA polymerase (Invitrogen, USA) was used to amplify blunt-ended PCR

products. All PCR products were purified (PureLink Quick PCR Purification Kit; Invitrogen,

USA). PCR and sequencing was used to confirm all constructs.

Construction of specific plasmids

The antitoxin gene pemI with its own promoter and ribosome binding site (RBS) was amplified

from pEl1573 as a blunt-ended PCR product and cloned into the unique SmaI site of pBCSK+

Table 1. Plasmids used in this study.

Plasmid Characteristics Source/

Reference

pBCSK+ High copy phagemid cloning vector (CHLR) Stratagene,

USA;

pGEM-T

Easy

Cloning vector for direct cloning of PCR products (AMPR) Promega, USA

pBAD18 Arabinose inducible expression vector (AMPR) [38]

pKM200 Plasmid carrying the lambda-Red recombinase system (CHLR) Addgene, USA

pEl1573 Naturally occurring conjugative IncL/M plasmid carrying blaIMP-4 from

clinical isolate E. cloacae El1573 (JX101693)

[39, 40]

pJIBE401 Naturally occurring conjugative IncL/M plasmid from clinical isolate K.

pneumoniae Kp1239; identical to pEl1573

[39]

pJIE512b Naturally occurring conjugative IncI1 plasmid carrying blaCMY-2 from

clinical isolate E. coli JIE512b (HG970648)

[22]

pJIMK3 pemI gene of pEl1573 in SmaI site of pBCSK+ This study

pJIMK21 IncL/M rep genes of pEl1573 in pGEM-T Easy This study

pJIMK25 NotI L/M rep fragment from pJIMK21 in NotI site of pJIMK3 This study

pJIMK39 pemI and IncL/M rep from pJIMK25 in SmaI site of pBAD18 This study

pJIMK41 Construct to replace pEl1573 pemK with fosA3 This study

pJIMK43 Construct to replace pEl1573 MRR with tetA This study

pJIMK45 pEl1573 with ~28.5 kb including entire MRR replaced by tetA This study

pJIMK46 pJIMK45 with part of pemK replaced by fosA3 This study

pJIMK50 Construct to replace pJIE512b blaCMY-2 with fosA3 This study

pJIMK54 pJIE512b with blaCMY-2 replaced by fosA3 This study

pJIMK55 Construct to replace pJIE512b pndA with tetA This study

pJIMK56 pJIMK54 with part of pndA replaced by tetA This study

doi:10.1371/journal.pone.0172913.t001

Table 2. Bacterial strains used in this study.

Bacteria Characteristics Source/

Reference

DH5α E. coli K-12; F-, 80lacZΔM15 Δ(lacZYA-rgF)U169 deoR, recA1, endA1,

hsdR17(rk-mK+), phoA, supE44, λ-thi-1, gyrA96, relA1

Invitrogen

(USA)

UB5201Rf Rifampicin resistant E. coli K-12, F -, pro, met, recA56, gyrA [4]

J53Azir Azide resistant E. coli K-12, F-, lac+, pro, met [41]

El1573 Multi-drug resistant E. cloacae carrying pEl1573 [39]

Kp1239 Multi-drug resistant K. pneumoniae carrying pJIBE401 [4]

JIE512b Multi-drug resistant E. coli carrying pJIE512b [22]

Kp13883Rf Rifampicin resistant derivative of K. pneumoniae ATCC13883 [4]

Mm1585Rf Rifampicin resistant derivative of Morganella morganii Mm1585 [4]

Cf4000Rf Rifampicin resistant derivative of Citrobacter freundii Cf4000 [4]

doi:10.1371/journal.pone.0172913.t002
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(CHLR; Stratagene, USA) to construct pJIMK3. The IncL/M replication genes (repCBA) were

amplified from pEl1573 and cloned into pGEM-T Easy (Promega, USA) to construct pJIMK21.

The NotI fragment from pJIMK21 containing repCBA was cloned into the unique NotI site of

pJIMK3 to construct pJIMK25. pemI-repCBA was amplified from pJIMK25 and the blunt-

ended product cloned into the unique SmaI site of pBAD18 (AMPR) to construct pJIMK39.

E. coli DH5α (β-galactosidase-negative, white on CHROMagar) carrying pJIMK39 (AMPR

CTXS) was mated with E. coli UB5201Rf (β-galactosidase-positive, pink on CHROMagar) car-

rying pEl1573 (AMPR CTXR). Six white E. coli DH5α transconjugants picked from CHROMa-

gar containing CTX were all confirmed to contain both pJIMK39 and pEl1573 (AMPR CTXR)

by PCR. After incubation (4 h, 37˚C, 220 rpm) in LB broth containing AMP plus either glucose

or arabinose (0.2% w/v) and subculture on antibiotic-free CHROMagar, 12 colonies from each

of the 12 subcultures were screened for blaIMP-4 by PCR.

Construction of conjugative interference plasmids

The fosA3 fosfomycin resistance gene (e.g. GenBank accession no. JF411006) from E. coli
78AJTi [42] and the tetA tetracycline resistance gene (94% identical to tetA(A)) from plasmid

N3 (FR850039) were each amplified with their native promoter and RBS. Short regions

upstream and downstream of the regions to be replaced were amplified using primers overlap-

ping with tetA or fosA3 specific primers. Fusion products from Gibson assembly PCR [43] of

the three amplicons (1:1:1 molar ratio) were cloned into pGEM-T Easy for use as templates to

amplify larger amounts. Amplicons (~1.0 μg) were electroporated into UB5201Rf carrying

pJIBE401 or J53Azir carrying pJIE512b, both also containing pKM200 encoding lambda Red

recombinase [44]. Homologous recombination (at 30˚C) was used to replace the target region

with the antibiotic resistance marker, with subsequent growth at 37˚C to remove pKM200.

Colonies were selected on CHROMagar containing appropriate antibiotics and the replace-

ments confirmed by PCR and sequencing.

For pJIBE401, a 734 bp region upstream and a 699 bp region (including part of the trbC gene)

downstream of the antibiotic multi-resistance region (MRR) were amplified for Gibson PCR

with tetA to give pJIMK43. This was used to replace the entire 27.555 kb MRR of pJIBE401 (con-

taining blaIMP-4) plus ~1.0 kb of flanking sequence to create pJIMK45 (Fig 2A). A 558-bp region

including 116 bp of pemK and a 545-bp region immediately downstream of pemK were amplified

from pJIBE401 for Gibson PCR with fosA3 to give pJIMK41. This was used to replace 217 bp of

the 333 bp pemK toxin gene of pJIMK45 to create pJIMK46 (Fig 2B). pJIBE401 (sequenced here)

is identical to pEl1573 (JX101693) except for a single C!T change at position 60364 in ISCR1,

which is in the antibiotic resistance region that was deleted to construct pJIMK46.

For pJIE512b a 700 bp region (part of the yacBC hypothetical genes) upstream and a 593 bp

region (blc and part of sugE) downstream of blaCMY-2 were amplified for Gibson PCR with

fosA3 to give pJIMK50. This was used to replace a 6.460 kb region containing hypothetical pro-

teins, IS1294, the truncated ISEcp1 and blaCMY-2 (pJIMK54; Fig 2C). A 655 bp region (218 bp

of trbA, all of pndC) upstream and a 542 bp region downstream of pndBCA were amplified

from pJIE512b for Gibson PCR with the tetA amplicon to give pJIMK55. This was used to

replace the last 7 bp of the pndA toxin gene of pJIMK54 to give pJIMK56 (Fig 2D).

pJIBE401, pJIMK46 and pJIMK56 DNA was purified (HiSpeed plasmid midikit; Qiagen,

Germany) and 1 ng of each used for library preparation (Nextera XT DNA sample preparation

kit; Illumina, Inc., USA), with each of the three libraries indexed for sequencing (Illumina

MiSeq; Australian Genome Research Facility, Melbourne, Australia). Geneious V7 (Biomat-

ters, New Zealand) was used to map raw reads from pJIBE401 and pJIMK46 against pEl1573

(JX101693) and those from pJIMK56 against pJIE512b (HG970648).

Curing antibiotic resistance
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Fig 2. Construction of conjugative interference plasmids. pJIMK46 (A, B) was constructed from pJIBE401 by replacing 28.5 kb

including the MRR with tetA and then part of the pemK toxin gene with fosA3. pJIMK56 (C, D) was constructed from pJIE512b by replacing

Curing antibiotic resistance
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Mouse experiments

All research and animal care procedures were approved by the Animal Ethics Committee of

the Western Sydney Local Health District (protocol 4205.06.13) in accordance with the ‘Aus-

tralian Code of Practice for the Care and Use of Animals for Scientific Purposes’. Five week

old female BALB/c mice (Animal Resource Centre; Perth, WA, Australia) were housed in

groups of three in open-lid M1 polypropylene cages (Able Scientific, Australia) on a 12 h light/

dark cycle, with food and water available ad libitum (Westmead Hospital small animal research

facility). Mice were acclimatized (d-6 to d0) prior to experiments, followed by run-in (d1-d3)

in the experimental room to introduce the new gelatine food [45] (10% w/v Davis gelatine,

GELITA NZ Ltd; 10% w/v Splenda artificial sweetener, Johnson-Johnson Pacific Pty Ltd, Aus-

tralia; 10% v/v flavouring (Flavouring Essence Imitation Strawberry, Queen Fine Foods Pty.

Ltd. QLD, Australia). Mice were fasted for 6 h, allowed access to gelatine food and then normal

food was continuously available. Bacteria (1 mL culture) carrying a given plasmid were resus-

pended in PBS to an OD600 of ~0.4–0.5 and fed to mice on specified days in gelatine, with anti-

biotics in drinking water (20 mg/L) to follow, as previously described [45]. Mice were

euthanized by an overdose of CO2 immediately after completion of experiments.

Group 1 received gelatine with no antibiotics. Group 2 received gelatine containing antibi-

otics. Groups 3, 4, 5 and 6 received bacteria with target plasmid (pEl1573 or pJIE512b, respec-

tively) conferring cefotaxime (CTX) resistance in gelatine plus CTX to select for the plasmid.

Only groups 4 and 6 subsequently received bacteria with the matching interference plasmid

(TETR FOSR) plus TET to select for it, then CTX in water at the end of the protocol to select

for any residual resistant bacteria (Table 3). On the specified days each mouse was briefly

transferred into a separate plastic box for weighing and to collect fresh faeces. Faeces (100 μg/

mouse) was suspended in 1 mL PBS, dilutions plated on CHROMagar with appropriate antibi-

otics and the number of E. coli/100 μg faeces after 16 h incubation at 37˚C calculated.

Results

Strong association between replicon type and addiction systems

A survey of the literature and available sequences confirmed that addiction systems are com-

mon among conjugative plasmids in the Enterobacteriaceae, with predictable associations

between addiction systems and replicon types (Table 4). All IncL/M and IncI1 plasmids avail-

able in GenBank (November 2016) were examined with tools designed to search for putative

addiction systems [46, 47]. A single addiction system (pemIK) was evident in 50/57 IncL/M

plasmid sequences, most (n = 42/50) encoding an identical PemI antitoxin, with a single con-

servative amino acid change (Val to Ala at position 79) in seven and this change plus Ala80Thr

in the eighth. Similarly, all 125 available IncI1 plasmid sequences had the pndBCA addiction

system with identical pndB antisense RNA (antitoxin) sequences. An additional putative relE-

RHH-like addiction system was found in 72 of these 125 IncI1 plasmids, including pJIE512b.

In vitro cure of antibiotic resistance plasmids from Enterobacteriaceae

The conjugative plasmids pEl1573 [40] and pJIBE401 [56] are almost identical (one nucleotide

difference in the MRR) representatives of an IncL/M plasmid type that is common in Sydney

the blaCMY-2 gene and flanking IS with fosA3 and then part of the pndA toxin gene with tetA. Numbers indicate the positions of the amplified

regions in GenBank accession nos. JX101693.1 (pEl1573) or HG970648.1 (pJIE512b). Blue and red arrows indicate overlapping primers,

black arrows indicate other primers.

doi:10.1371/journal.pone.0172913.g002
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hospitals [4, 39]. They carry genes encoding resistance to gentamicin (GEN) in addition to

blaIMP-4 encoding a metallo-β-lactamase that efficiently hydrolyses extended spectrum β-lac-

tams (e.g. cefotaxime, CTX) and carbapenems.

In order to evaluate plasmid stability, E. coli UB5201Rf carrying only pEl1573 [56] was pas-

saged in serial culture in LB without antibiotic selection for 100 consecutive days. All of 100

colonies retrieved on antibiotic-free growth media at the end of this period were resistant to

GEN and CTX on subculture and all were still positive by PCR with primers specific for

blaIMP-4 (CTXR) and the IncL/M plasmid replicon (S1 Table), confirming the long-term stabil-

ity of pEl1573 in the absence of antibiotic selection.

By contrast, provision of the specific antitoxin gene pemI from pEl1573 expressed in trans
from the unrepressed Plac promoter in a high-copy chloramphenicol-resistant (CHLR) vector

(pJIMK3; Table 1) transformed into the same strain (E. coli UB5201Rf with pEl1573) resulted

in significant loss of pEl1573. After six passages over 48 h in LB supplemented with CHL,

~30% of E. coli colonies recovered were GENS CTXS and no longer yielded blaIMP-4 or IncL/M

amplicons with specific PCR. The remainder retained the antibiotic-resistant phenotype and

genetic markers of pEl1573.

Table 3. Protocol for mouse experiments.

Day

(s)

Group 1 Group 2 Group 3 Group 5 Group 4 Group 6

Controls Antibiotics Antibiotics+resistance plasmid Antibiotics+resistance+interference plasmid

-6-0 acclimatization—unrestricted normal diet and water

1–3 run-in of gelatine food protocol (6 h fast, gelatine food 3 h, unrestricted normal diet and water)

4–6 gelatine gelatine

+CTX

gelatine+CTX

+(J53Azir+pEl1573)~2x106

cfu/cage/day

gelatine+CTX+

(UB5201Rf+pJIE512b)

~2x106 cfu/cage/day

gelatine+CTX

+(J53Azir+pEl1573)~2x106

cfu/cage/day

gelatine+CTX+ (UB5201Rf

+pJIE512b)~2x106 cfu/cage/

day

7 unrestricted normal diet and water

8–

10

gelatine gelatine

+TET

gelatine gelatine gelatine+TET+(UB5201Rf

+pJIMK46)~6x107 cfu/cage/

day

gelatine+TET

+(J53Azir+pJIMK56)~7x107

cfu/cage/day

11 unrestricted normal diet and water

12 move to clean cages

13–

22

unrestricted normal diet and water

23–

24

unrestricted normal diet and water CTX in water

28 end of experiment

doi:10.1371/journal.pone.0172913.t003

Table 4. Associated replicon types and addiction systems in Enterobacteriaceae plasmids.

Replicon Associated addiction systems Associated resistance genes Source/Reference

IncF pemIK, ccdAB, hok-sok, vagCD blaCTX-M, blaKPC, blaCMY-2-like, blaDHA [20, 21, 48, 49]

IncL/M pemIK blaIMP, blaCTX-M, blaTEM [20, 21, 40]

IncI1 pndBCA, relE-RHHa (in some) blaCMY-2-like, blaCTX-M, blaTEM [20–22]

IncA/C relE-vapIa blaCMY-2-like, blaNDM, blaSHV, blaVEB

IncHI2 vagCD blaCTX-M, blaSHV [21]

IncN stbBC blaKPC, blaCTX-M, blaSHV [50, 51]

IncX hicA-hicB-like (in some) blaCTX-M, blaKPC, blaNDM [52–55]

a putative systems identified using RASTA-Bacteria (http://genoweb1.irisa.fr/duals/RASTA-Bacteria/) and TA-finder (http://202.120.12.133/TAfinder/

TAfinder.php).

doi:10.1371/journal.pone.0172913.t004
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The pEl1573 IncL/M replicon region (rep) was then added to pJIMK3 to generate

pJIMK25, in which pemI and IncL/M rep are constitutively expressed from Plac (Table 1),

which was transformed into E. coli UB5201Rf with pEl1573. After overnight incubation in LB

supplemented with CHL, as purifying selection for pJIMK25, all transformants were GENS

CTXS and blaIMP-4 was no longer detected by specific PCR. Complete loss of pEl1573 was con-

firmed by gel electrophoresis after S1 nuclease treatment of extracted DNA to linearise plas-

mids [57] (not shown). Complete loss of pEl1573 was also observed after specific expression of

IncL/M rep and pemI from an arabinose-inducible promoter in a low-copy vector (pJIMK39)

in E. coli UB5201Rf with pEl1573 (Table 2) after 6 h growth in the presence of arabinose

(expressing IncL/M rep and pemI). By contrast, pEl1573 and pJIMK39 stably coexisted in the

presence of glucose (the promoter-repressed state; data not shown), confirming that the effect

was wholly attributable to expression of specific rep and antitoxin.

Construction of conjugative interference plasmids

Having demonstrated plasmid displacement using small high copy number plasmids, specific

conjugative ‘interference plasmids’ were constructed. The resistance region and principal toxin

gene of pJIBE401 and pJIE512b were replaced with tetA or fosA3, retaining the antitoxin gene

and introducing resistance to tetracycline (TETR) and fosfomycin (FOSR) (Fig 2). Sequencing

of these specific interference plasmids (pJIMK46, pJIMK56) confirmed that each was otherwise

identical to their parent resistance plasmid (pEl1573/pJIBE401 and pJIE512b, respectively).

In order to gauge the likely impact of exclusion systems and the need for purifying selection

in favour of interference plasmids, the recovery of interference plasmids after prolonged (over-

night) in vitro filter mating was examined. Establishment of both IncI1 and IncL/M interfer-

ence plasmids was around 8-fold less efficient when incubated with cells in which the

incompatible resistance plasmid was already resident (Table 5).

Conjugation of the interference plasmid pJIMK46 (TETR) into rifampicin-resistant (RIFR)

E. coli, K. pneumoniae, Citrobacter freundii or Morganella morganii (Table 2) carrying the

respective CTXR resistance plasmid (pEl1573 or pJIE512b) appeared to result in loss of the

resistance plasmid only after purifying selection on RIF-TET agar, with bystander plasmids

preserved (Fig 3). Plasmid curing was confirmed by PCR for blaIMP-4 (pEl1573) or blaCMY-2

(pJIE512b). No CTXR (resistance) or TETR (interference) bacteria could be detected subse-

quently by selective subculture.

In vivo cure of AbR plasmids from mouse gut

Having demonstrated in vitro efficacy and specificity of interference plasmids, BALB/c mice

were selected as a suitable model for in vivo study [58]. Groups of three mice per cage were

Table 5. Effect of entry exclusion on conjugative transfer efficiency.

Donor Recipient Donor(cfu/

ml)

Transconjugant(cfu/

ml)

Conjugation frequency

(transconjugants/donor)

Difference in

frequency(fold)

UB5201Rf (pJIMK46);

RIFR-TETR
J53Azi; AZIR 3.6x108 6.3 x107(AZIR-TETR) 1.75 x10-1 8.02

UB5201Rf (pJIMK46);

RIFR-TETR
J53Azi(pEl1573); AZIR-

CTXR
3.6x108 7.86x106 (AZIR-

TETR)

2.18 x10-2

J53Azi (pJIMK56);AZIR-

TETR
UB5201Rf; RIFR 5.6x107 1.9x106(RIFR-TETR) 3.39 x10-2 7.9

J53Azi (pJIMK56);AZIR-

TETR
UB5201Rf (pJIE512b);

RIFR-CTXR
5.6x107 2.4x105(RIFR-TETR) 4.28 x10-3

doi:10.1371/journal.pone.0172913.t005
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shown to be initially free of CTXR Enterobacteriaceae by faecal culture for three consecutive

days. Protocols based on published work [45] were used to introduce resistance and then inter-

ference plasmids in bacteria with different chromosomal resistance markers (rifampicin

Fig 3. Acquisition and loss of pEl1573 from K. pneumoniae 13883. Pulsed-field gel electrophoresis of

S1-endonuclease treated extracts of Kp13883 before (1) and after (2) acquisition of pEl1573 (horizontal

arrow) and after cure (3), showing other ‘bystander’ plasmids. M1, Mid-range and M2, Lambda PFG ladders

(New England Biolabs, USA).

doi:10.1371/journal.pone.0172913.g003
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(RIFR) or azide (AZIR; Table 3), to allow tracking of both strains and plasmids by differential

subculture. Mouse weights were stable throughout and no feeding disturbance or diarrhoea

was observed during the 28 day protocols (not shown).

In a preliminary experiment, mice received pEl1573 (TETS CTXR) in RIFR E. coli and then

pJIMK46 (TETR CTXS) in AZIR E. coli, the latter being administered either with or without

TET. In those mice that received pJIMK46 in AZIR E. coli, pJIMK46 was found in all culturable

E. coli after three days of purifying TET selection while pEl1573 was no longer detected. In

those mice that received pJIMK46 without purifying TET selection, the RIFR E. coli originally

used to introduce pEl1573 were found to contain both pEl1573 and pJIMK46 in an approxi-

mate ~10:1 ratio after three days. This relatively poor penetration of pJIMK46 into the RIFR E.

coli population in the absence of TET selection is consistent with exclusion by the resident

incompatible pEl1573 and confirms the need for purifying selection in vivo.

A more detailed experiment introducing either pEl1573 (IncL/M; CTXR) or pJIE512b

(IncI1; CTXR) and then the respective interference plasmid (pJIMK46/pJIMK56; TETR) was

next conducted. Host E. coli strains used to introduce pJIE512b (AZIR) or pJIMK56 (RIFR)

were switched for pEl1573/pJIMK46 to ensure that each E. coli strain was used both as initial

colonizer and also to introduce interference plasmid, to control for any strain-related effects as

experimental confounders.

Different CTXR E. coli populations were retrieved from faeces immediately after introduc-

tion of pEl1573 or pJIE512b resistance plasmid, indicating effective colonization of E. coli
already resident in the mouse gut in the presence of CTX selection (Tables 6 and 7). In those

groups of mice that then received specific interference plasmid with TET selection, TETR E. coli
with either RIFR or AZIR chromosomal markers (used to bring in resistance or interference

plasmid) or with no such markers (previously resident) were soon detected in approximately

equal proportions (Fig 4A and 4B; Tables 6 and 7). After the three days of administration of

interference plasmid (TETR) along with relevant antibiotic (TET) in water, CTXR Enterobacter-
iaceae were no longer culturable. None of 360 colonies of TETR E. coli (AZIR-TETR for curing

pEl1573 and RIFR-TETR for curing pJIE512b) subcultured from faeces in each experiment were

CTXR and CTXR genes (blaIMP-4 or blaCMY-2) could not be amplified from cultured bacteria or

faecal extracts. This indicated that no interference plasmids had acquired CTXR, nor had resis-

tance plasmids acquired TETR, nor did CTXR and TETR traits persist together in any isolate.

After administration of interference plasmid (TETR) to mice in the treatment groups, all mice

were transferred into new cages to exclude reinfection from residual faecal contamination of their

environment. Ten days after cessation of TET, no TETR Enterobacteriaceae could be cultured

from mice who had received TETR interference plasmid (Fig 4A and 4B; Tables 6 and 7). None of

the specific resistance (blaCMY-2, blaIMP-4, tetA) or replicon (IncL/M and IncI1 rep) genes from

any of the introduced plasmids could be amplified from faecal pellets, confirming the loss of the

interference plasmid (which lacks the addiction toxin gene). Only antibiotic-susceptible (origi-

nally resident, TETS CTXS) E. coli, AZIR TETS CTXS E. coli and RIFR TETS CTXS E. coli (bacteria

used to introduce resistance or interference plasmid, now carrying neither) were retrieved, and

these were present in comparable proportions (~104−105 cfu/mg of faeces; Tables 6 and 7).

CTX was finally re-administered (days 23, 24) to select for any residual resistance CTXR

plasmids or transferred genes that may not have been detected by culture or direct PCR.

blaIMP-4 and blaCMY-2 (CTXR) remained undetectable in stool extracts, and neither CTXR or

TETR bacteria could be recovered (Fig 4, Tables 6 and 7). Elimination of CTXS E. coli popula-

tions further demonstrated the return of the efficacy of the antibiotic that had been rendered

ineffective by the presence of the resistance plasmids.

In control mice that received the resistance plasmid but not the interference plasmid, CTXR

bacteria remained (Fig 4C and 4D; Tables 6 and 7) and specific rep and resistance genes

Curing antibiotic resistance
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Table 6. In vivo cure of pEl1573-colonized mice.

Day Mouse no. Group 3 (resistance

plasmid)J53Azir+pEl1573

D4-6

Group 4 (resistance plasmid followed by interference plasmid)J35Azir+pEl1573 D4-6;

UB5201Rf+pJIMK46 D8-10; CTX D23-24

CTXR AZIR-CTXR CTXR AZIR-CTXR TETR RIFR-TETR AZIR-TETR CTXS

D5 M1 1.7x103 1.5x103 2.3x103 1.9x103

M2 2.1x104 1.9x104 3.5x103 2.9x103

M3 1.3x103 1.0x103 1.9x102 1.5x102

D6 M1 2.7x105 2.1x105 1.8x105 1.5x105

M2 3.4x105 2.2x105 3.6x105 3.1x105

M3 5.4x105 4.8x105 4.7x104 4.0x104

D7 M1 3.4x105 2.8x105 3.4x107 2.9x107

M2 3.7x106 3.2x106 3.7x105 3.5x105

M3 4.3x105 3.8x105 4.3x105 4.1x105

D9 M1 5.6x104 3.1x 103 3.6x104

M2 3.2x104 6.2x102 4.3x104

M3 2.5x104 4.7x103 5.4x104

D10 M1 nil 2.5x105 5.4x104 3.6x105

M2 4.0x101 2.9x103 2.1x103 3.8x102

M3 2.1x 102 1.9x105 1.5x104 4.8x104

D11 M1 1.8x104 nil 3.0x105 4.8x104 5.3x104

M2 2.3x103 1.0x101 1.0x105 1.2x104 8.9x103

M3 1.3x103 nil 1.2x105 3.1x104 3.5x104

D12 M1 nil 1.4x104

M2 nil 3.2x104

M3 nil 1.8x104

D14 M1 5.1x103 nil 1.1x103

M2 3.1x103 nil 2.0x102

M3 1.8x103 nil 4.3x103

D16 M1 nil 3.0x102

M2 nil 1.3x102

M3 nil 1.1x102

D18 M1 3.6x103 nil 1.3x102

M2 8.8x102 nil nil

M3 6.7x102 nil 2.0x101

D20 M1 nil 5.0x101

M2 nil nil

M3 nil nil

D21 M1 7.2x102 nil nil 2.4x103

M2 9.3x102 nil nil 5.6x102

M3 4.7x102 nil nil 3.1x103

D22 M1 nil nil 8.3x103

M2 nil nil 7.2x103

M3 nil nil 4.3x103

D27 M1 4.4x102 nil nil

M2 3.9x102 nil nil

M3 5.0x102 nil nil

E. coli/100 μg faeces with indicated antibiotic resistance/susceptibility phenotype. CTX, cefotaxime; AZI, azide; TET, tetracycline; RIF, rifampicin. Mice

were transferred to clean cages D12 and CTX re-administered D23-24 (Group 4 only). Blank, not applicable/not determined; nil, none cultured.

doi:10.1371/journal.pone.0172913.t006
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Table 7. In vivo cure of pJIE512b-colonized mice.

Day Mouse no. Group 5 (resistance

plasmid)UB5201+pJIE512b

D4-6

Group 6 (resistance plasmid followed by interference plasmid)UB5201+pJIE512b D4-6;

J35Azir+pJIMK56 D8-10; CTX D23-24

CTXR RIFR-CTXR CTXR RIFR-CTXR TETR RIFR-TETR AZIR-TETR CTXS

D5 M1 2.5x102 2.1x102 3.1x103 3.0x103

M2 1.9x102 1.5x102 1.1x104 9.5x103

M3 7.3x103 7.0x103 1.8x103 1.3x103

D6 M1 7.1x104 6.4x104 5.2x105 5.0x105

M2 1.6x105 1.5x105 3.9x105 3.2x105

M3 2.4x104 2.2x104 3.5x105 3.1x105

D7 M1 1.1x106 1.0x106 3.1x107 3.1x107

M2 6.1x105 5.7x105 1.3x105 1.2x105

M3 1.2x107 1.0x107 2.2x105 2.0x105

D9 M1 1.1x105 5.1x102 1.4X103

M2 6.5x104 3.7x102 3.9x104

M3 4.3x104 1.3x103 5.3x104

D10 M1 2.0x102 8.3x105 1.7x103 1.8x104

M2 4.0x101 3.3x105 2.3x104 1.5x104

M3 nil 4.2x105 1.9x104 3.1x103

D11 M1 1.3x103 5.0x101 8.4x105 1.6x104 1.4x105

M2 3.3x103 nil 3.8x105 1.9x104 3.1x105

M3 2.5x103 nil 7.2x105 3.0x104 8.7x104

D12 M1 nil 3.2x103

M2 nil 2.0x104

M3 nil 8.6x103

D14 M1 1.1x103 nil 2.5x103

M2 5.1x103 nil 1.5x103

M3 3.1x103 nil 2.0x103

D16 M1 nil 1.1x102

M2 nil 1.0x102

M3 nil 4.0x101

D18 M1 3.6x102 nil nil

M2 7.2x102 nil 3.0x101

M3 2.1x103 nil 5.0x101

D20 M1 nil nil

M2 nil nil

M3 nil 2.0x101

D21 M1 2.3x102 nil nil 5.3x103

M2 1.2x102 nil nil 6.4x103

M3 2.0x102 nil nil 2.1x103

D22 M1 nil nil 5.5x103

M2 nil nil 8.3x102

M3 nil nil 4.6x103

D27 M1 1.0x102 nil nil

M2 2.2x102 nil nil

M3 1.6x102 nil nil

E. coli/100 μg faeces with indicated antibiotic resistance/susceptibility phenotype. CTX, cefotaxime; AZI, azide; TET, tetracycline; RIF, rifampicin. Mice

were transferred to clean cages D12 and CTX re-administered D23-24 (Group 6 only). Blank, not applicable/not determined; nil, none cultured.

doi:10.1371/journal.pone.0172913.t007
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remained readily detectable throughout the experiment, confirming the addictive nature of the

resistance plasmids.

Discussion

Eradication of resistant bacterial populations by more powerful antibiotics continues the escala-

tion of the antibiotic arms race, leaves the microflora open to invasion by other species, and will

not save antibiotics trusted for decades. This study shows that addictive antibiotic resistance plas-

mids can be specifically and completely eradicated from enteric bacterial populations and these

bacterial populations recovered in their antibiotic-susceptible state in vivo. Effective targeting of

incompatibility and addiction may provide solutions for a variety of antibiotic resistance plasmids,

Fig 4. In vivo cure of antibiotic resistance plasmids. CTXSTETS E. coli (green) were detected in all four groups of mice at the start of

the experiments (A-D). All groups of mice were then fed bacteria carrying CTXR target plasmid (pEl1573 or pJIE512b) with CTX, days 4–6

(red lines, A-D) and CTXR E. coli (red) appeared. Two groups of mice (A, B) then received the corresponding TETR interference plasmid

(pJIMK46 or pJIMK56) with TET, days 8–10 (blue lines) resulting in a decline in number of CTXR E. coli. TETR E. coli (blue) also appeared

and then declined. CTXSTETS E. coli appeared again after curing of target and interference plasmids but were killed by CTX administered

on days 23–24 (black lines, A, B). CTXR E. coli persisted to end of protocol in control groups that did not receive interference plasmid (C,

D).

doi:10.1371/journal.pone.0172913.g004
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and high levels of conservation in these systems may even allow specific off-the-shelf solutions to

be developed in the future. Two representative antibiotic resistance plasmids with different repli-

con and entry exclusion systems and with the two most common types of addiction systems were

used to demonstrate this. IncL/M and IncI1 plasmids are found in different species of Enterobac-
teriaceae, often carry genes conferring resistance to important β-lactam and/or to aminoglycoside

antibiotics, and are typical examples of plasmids that require specific eradication.

The ability to generalize this approach to other replicons and addiction systems must now

be systematically tested: addiction systems are yet to be characterized, some may interact, and

not all apparently similar systems are interchangeable. PemI and PemK encoded by IncL/M

plasmids such as pEl1573, for example, differ by 4/84 amino acids and 10/133 amino acids

respectively from PemI and PemK encoded by IncF plasmids, in which they appear to function

in conjunction with the hok-sok addiction system [59]. Further, while the putative relE-RHH-

like addiction system identified in pJIE512b clearly does not prevent plasmid loss from mouse

gut microflora in vivo and neutralization of pndBCA alone was sufficient to cure this plasmid,

it is not known whether this would be true for microflora containing different host species

than those in the mouse gut model used here. Evidently this system is not essential for IncI1

plasmid stability in all E. coli populations in which it is found.

The results regarding the inhibitory effect of entry exclusion are at the lowest end of pub-

lished data [13] but are internally consistent both in vitro and in vivo and in both systems.

Entry exclusion of the IncI1 plasmid R64, which is closely related to the target plasmid

pJIE512b and derivative pJIMK56, has been reported to inhibit in vitro conjugative transfer by

~700-fold in 90 min surface mating studies [14]. The differences reported here may relate to

differences between pJIE512b (GenBank accession no. HG970648) and R64 (AP005147) in

both excA and the adjacent traY (13/220 and 91/744 amino acids, respectively), as these differ-

ences are in key functional regions of the proteins [14] (S1 Fig). Strains expressing standard

PSK/addiction system toxins may also have a relative fitness disadvantage in vivo and in a lon-

ger mating protocols such as used here, when compared to toxin-deleted interference plas-

mids, although this was not specifically tested here.

In the system used here, TET (or FOS) resistance can be used as purifying selection for bac-

teria which acquire and retain the interference plasmid at the expense of the incompatible

CTXR target plasmid. Cells from which the TETR interference plasmid is lost, or that it does

not enter at all (e.g. due to entry exclusion), are killed by TET (Fig 5). With the subsequent loss

of the non-addictive interference plasmid in the absence of specific selection, all cells are thus

free of both the interference plasmid and the original target resistance plasmid.

This process should therefore be generally efficacious even at low plasmid transfer efficien-

cies in the presence of brief positive selection for the interference plasmid, but there are poten-

tial risks to be considered. Theoretically, homologous recombination might restore toxin or

antibiotic resistance genes to an interference plasmid, although a less resistant addictive plasmid

or a non-addictive resistance plasmid both seem preferable options to persistence of the original

addictive resistance plasmid. Nevertheless, no evidence of recombination was found in any

experiments here. This is not unexpected as large co-integrates of interference and resistance

plasmids would be subject to multimer resolution mechanisms and to the relative plasmid insta-

bility that evidently arises from specific antitoxin excess. Simultaneous antibiotic selection for

both (mutually incompatible) plasmids might also favour chromosomal acquisition of resis-

tance genes from the interference plasmid. The associated genetic elements that usually mobi-

lize these genes were deliberately removed and transfer of fosA3 or tetA was not observed.

It is also theoretically possible that strong and simultaneous co-selection for both target and

interference plasmids might select for a mutation in the replication region that restores com-

patibility. However, replicon diversity is naturally limited by strong functional constraints.
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Even closely evolutionarily related compatible plasmids with cross-complementing primases

and helicases have highly specific oriV-Rep DNA binding requirements [60]. Even if target

plasmids develop oriV mutations so that they are no longer incompatible and can then co-

inhabit a cell with the interference plasmid, these plasmids are still expected to be rendered rel-

atively unstable by specific antitoxin excess. It is also noteworthy that not all plasmid T/A sys-

tems are simple addiction mechanisms nor will they necessarily behave identically in different

hosts or conditions. Likewise, simple antitoxin excess, evidently effective in these experiments,

may also be insufficient in some systems.

Purifying selection using antibiotics is not ideal, both because of the effects of the drug

on other cells and because effective antibiotics for this purpose may be increasingly hard to

identify in future. TETR bacteria are not uncommon in the human gut but TETR (or FOSR)

populations that arise by plasmid acquisition will not only lose their TETR or FOSR plasmids

spontaneously but are made immediately vulnerable to other commonly used antibiotics (e.g.

GEN, CTX) in the process. A target plasmid that acquires FOSR by recombination with the

interference plasmid will likely acquire the immediately adjacent antitoxin (see Fig 2). An

important future challenge is to develop interference plasmids with non-antibiotic selection

but the inclusion of fosA3 also means that plasmid eradication is compatible with existing use

of fosfomycin as a ‘rescue’ therapy of last resort [61]. A final caveat is that not all antibiotic

resistance is carried on large plasmids that can be manipulated in this way. Nearly half of all

severe sepsis is due to Gram-positive bacteria such as Staphylococci and Streptococci, in which

much of the important resistance is chromosomally encoded, as it is in many clinically impor-

tant Gram-negative bacteria such as Pseudomonas and Acinetobacter.
Specific plasmid interference is not only a useful research tool but may be suitable for clini-

cal use in colonized individuals. The ability to eradicate plasmids detected in the gut flora of

patients may prevent later development of antibiotic resistant sepsis, a condition with poten-

tially lethal consequences [5]. Hospitals managing critically ill people at high risk of infection

now routinely screen for antibiotic resistance using genetic methods and could similarly pro-

vide rapid identification of specific plasmid markers. The simple oral administration route

makes in vivo plasmid curing approaches highly feasible, and may allow us to protect impor-

tant medical advances from the growing threat of antibiotic resistance.
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S1 Table. Primers used in this study.
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Fig 5. Exclusion and incompatibility. Replicon (solid circle), antitoxin and toxin genes (arrowhead, arrow) and antibiotic

resistance genes (CTXR, orange and TETR, black solid blocks). Interference plasmid not excluded by entry exclusion system

(EES) is incompatible (INC) with resident CTXR plasmid and is selected by TET.

doi:10.1371/journal.pone.0172913.g005
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S1 Fig. Comparison of TraY and Exc amino acid sequences of R64 and pJIE512b. The inter-

nal variable region of TraY (A, aa 430–522) and C-terminal region of Exc (B) are shown. Vari-

able amino acids are shown by black shading, numbers correspond to amino acid positions in

proteins.
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