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Abstract

Introduction

Hydrocephalus is a complex neurological disorder with a pervasive impact on the central

nervous system. Previous work has demonstrated derangements in the biochemical profile

of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom

neurodevelopment is progressing in parallel with concomitant neurological injury. The objec-

tive of this study was to examine the CSF of children with congenital hydrocephalus (CHC)

to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers

of CHC with potential diagnostic and therapeutic value.

Methods

CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ,

Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total

protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups

were included: age-matched controls and children with other neurological diseases. Demo-

graphic parameters, ventricular frontal-occipital horn ratio, associated brain malformations,

genetic alterations, and surgical treatments were recorded. Logistic regression analysis and

receiver operating characteristic curves were used to examine the association of each CSF

protein with CHC.

Results

CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or

TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associ-

ated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR

in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects

�12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001,
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AUC = 0.95), tau, APP, and L1CAM. Among subjects�12 months, a normalized CSF

sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity =

0.94, specificity = 0.97); these infants were 32 times more likely to have CHC.

Conclusions

CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in

infants and young children, and provide insight into the pathophysiology of CHC during this

critical period in neurodevelopment.

Introduction

Hydrocephalus is a debilitating neurological condition affecting approximately 1 in every 1000

children born in the United States [1]. While traditionally viewed as an imbalance in the produc-

tion and absorption of cerebrospinal fluid (CSF), hydrocephalus is now recognized as a complex

disease with a pervasive impact on the central nervous system [2, 3]. Hydrocephalus results in

structural deformation, axonal stretch, ischemia, inflammation, and impaired precursor cell pro-

liferation/migration among other pathophysiological processes [1, 4–6]. Extensive derangements

in the biochemical profile of CSF are thus expected in the setting of hydrocephalus, particularly

in infants and children, in whom neurodevelopment is progressing in parallel with concomitant

neurological injury. Consequently, experimental analysis of CSF may provide unique insights

into the pathophysiology of hydrocephalus and also offer the opportunity to identify candidate

biomarkers of hydrocephalus with potential diagnostic and therapeutic value.

Our previous work in post-hemorrhagic hydrocephalus (PHH) of prematurity has shown alter-

ations in CSF levels of amyloid precursor protein (APP), L1 cell adhesion molecule (L1CAM),

neural cell adhesion molecule 1 (NCAM-1), and other protein mediators of neurodevelopment

which normalize after initiation of PHH treatment [7]. Further, we have found that CSF APP lev-

els, and to a lesser extent NCAM-1 and L1CAM, correlate with ventricular size and possibly intra-

cranial pressure in PHH, responding in parallel with ventricular decompression [8]. With this

foundational work in PHH in mind, the primary objective of the current study was to characterize

the CSF levels of APP and related isoforms/cleaved products, L1CAM, NCAM-1, tau, phosphory-

lated tau (pTau), and aquaporin 4 (AQP4) in non-hemorrhagic, congenital hydrocephalus (CHC)

in order to investigate the possibility of a larger relationship between these CSF proteins and

hydrocephalus.

Materials and methods

Ethics statement

Approval from the Washington University (WU) Human Research Protection Office (#201203151,

201203126) was acquired prior to initiation of this study. Informed Consent (IC) procedures were

in accordance with the approved WU HRPO parameters. Written IC was obtained where possible;

however, verbal consent was permitted in cases where parents/guardians were unable to travel to

Washington University/St. Louis Children’s Hospital. In all cases, a log was kept with subject ID

and date and individual providing IC.

Research subjects

All patients�18 years of age presenting to St. Louis Children’s Hospital/WU School of Medi-

cine for evaluation and/or surgical management of untreated, non-hemorrhagic CHC from
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2010–2014 were considered for recruitment. For inclusion, CHC subjects were required to have

ventriculomegaly on cranial imaging (frontal-occipital ratio (FOR)�0.4) [9] and at least one of

the following: head circumference >98th percentile for corrected age; bulging fontanel or splay-

ing of the cranial sutures; papilledema; refractory headache, vomiting, or lethargy without other

identifiable cause; or upgaze paresis/palsy. Exclusion criteria included previous surgical treat-

ment for hydrocephalus; history of central nervous system infection or neoplasm; history of

open spina bifida; hydranencephaly; and PHH of prematurity. Subjects meeting inclusion/

exclusion criteria underwent surgical management of hydrocephalus following routine clinical

care pathways at St. Louis Children’s Hospital. For a detailed record of clinical, radiographic,

and neurosurgical parameters from the patients recruited for CHC, please refer to Table 1.

Cerebrospinal fluid samples

A Neonatal CSF Repository was established at WU in 2008 (WU Human Research Protection

Office #201101887 and #201203126). For the purposes of this study, CSF samples were acquired

Table 1. Clinical, radiographic, and neurosurgical parameters for the 20 congenital hydrocephalic CSF samples used throughout this study.

Race Sex Birthweight

(grams)

Birth

EGA

(weeks)

Age at

Sample

(months)

Aqueduct

Status

Associated Developmental

Brain MalformationBrain

Malformation?

Genetic

Studies

Genetic

Group

Assignment

Specific

Genetic

Anomaly

Surgery

Type

FOR

Caucasian F NA 27 5 Stenosis None CMA 1 N/A VPS 0.49

Caucasian M 3465 40 0 Stenosis None None 1 N/A VPS 0.59

Black M 3033 38 8 Patent DWV None 1 N/A VPS 0.77

Caucasian M 3200 41 0 Stenosis None None 1 N/A VPS 0.62

Asian M 3600 39 9 Patent None None 1 N/A VPS 0.55

Caucasian F 2500 40 11 Patent None None 1 N/A VPS 0.55

Caucasian F 2948 39 4 Stenosis None None 1 N/A VPS 0.58

Caucasian M 3095 37 0 Stenosis pACC CMA;

L1CAM

2, 3 G847X

(L1CAM)

VPS 0.89

Caucasian M 2820 38 1 Stenosis MCD, meningocele CMA 2, 3 1q25.2 VPS 0.61

Caucasian M 710 31 1 Stenosis None CMA 2 11q24.2 VSGS 0.48

Caucasian M 4040 36 0 Stenosis Rhombencephalosynapsis,

MCD, pACC, cerebellar

tonsillar ectopia

CMA 3 N/A VPS 0.78

Caucasian F 3300 34 0 Stenosis MCD, syntelencephaly,

cerebellar tonsillar ectopia

CMA 3 N/A VPS 0.79

Caucasian F 2115 33 13 Patent None None 3 N/A VPS 0.42

Caucasian M 3900 40 0 Stenosis None None 3 N/A VPS 0.57

Caucasian F 4180 39 0 Stenosis Open lip schizencephaly

versus in utero infarct

CMA 3 N/A VPS 0.83

Caucasian F 3345 36 147 Stenosis None None 3 N/A ETV 0.45

Caucasian M 2800 37 29 Patent None None 3 N/A VPS 0.49

Other F 3970 38 0 Stenosis None CMA 3 N/A VPS 0.63

Caucasian M 3350 39 0 Stenosis None CMA 3 N/A VPS 0.6

Black M 4337 39 4 Stenosis Hypoplastic cerebellum,

focal periventricular cystic

dilation

CMA 3 N/A VPS 0.72

Genetic group assignment categories: 1 = CHC with no known associations; 2 = CHC with known genetic alteration; 3 = CHC with developmental anomaly

involving the CNS or non-CNS organ systems.

AS: aqueductal stenosis; CMA: chromosomal microarray; CNS: central nervous systems; DWV: Dandy Walker Variant; ETV: endoscopic third

ventriculostomy; MCD: malformation of cortical development; pACC: partial agenesis of the corpus callosum; VPS: ventriculoperitoneal shunt; VSGS:

ventriculosubgaleal shunt.

doi:10.1371/journal.pone.0172353.t001
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at the time of initial CHC treatment. This study was initiated before the introduction of endo-

scopic third ventriculostomy (ETV) at our institution; thus, 18 subjects underwent placement of

ventriculoperitoneal shunts while one patient had an ETV. One other CSF sample was acquired

from a patient born at 31 weeks estimated gestational age who underwent initial ventriculosub-

galeal shunting. In all cases, once CSF was acquired, the sample was immediately transported

on ice from the operating room to the WU Neonatal CSF Repository, where it was centrifuged

at 2500 rpm for 6 minutes, and the supernatant was aliquoted into microcentrifuge tubes (500μl

each) and stored at -80˚C until experimental analysis. For comparative analysis, age matched

control CSF samples were obtained from patients�18 years of age without known neurological

disease (corroborated on neuro-imaging) undergoing lumbar puncture for evaluation for infec-

tion, where cytological and microbiological (and in some cases PCR) evaluation of the CSF was

negative. Age matched lumbar CSF from infants and children with seizures or stroke, termed

other neurological diseases (OND), was also analyzed for an additional comparator group.

Measurement of candidate biomarkers

As described previously, enzyme-linked immunosorbent assays (ELISAs) were used to mea-

sure the CSF levels of each protein [7, 8]. The following commercially available ELISA kits

were used: APP (R&D Systems, Minneapolis, MN; catalog #DY-850); soluble APPα (sAPPα)

and soluble APPβ (sAPPβ) (IBL-International, Hamburg, Germany; catalog #27734 and

27732, respectively); amyloid-β42 (Aβ42), tau, and pTau (Fujirebio, Ghent, Belgium, catalog

#80177, 80226, 80062, respectively); NCAM-1 (R&D Systems; Minneapolis, MN; catalog #DY-

2408); L1CAM (DRG, Mountainside, NJ; catalog #EIA5074); AQP4 (USCN, Houston, TX, cat-

alog #SEA582Hu). Each CSF sample was run in duplicate for each ELISA, and the 96-well

plates were read at 450nm on a Versamax microplate reader (Molecular Devices, Sunnyvale,

CA). The Pierce Bicinchoninic Acid protein assay kit (Thermo Scientific, Waltham, MA) was

used to estimate the concentration of total protein (TP) in each CSF sample as previously

described [8]). Where noted, the CSF levels of each specific protein analyzed (APP, Aβ42,

sAPPα, sAPPβ, L1CAM, NCAM-1, tau, pTau, and AQP4) were normalized by total CSF pro-

tein to account for any non-specific changes in total CSF protein.

Statistical analysis

Data were expressed using mean ± standard deviation. Associations between continuous fac-

tors were assessed using the Pearson correlation coefficient. Simple logistic regression was

used to estimate predictive models of CHC with biomarkers. ANOVA with paired contrasts

was used to compare means across groups. Odds ratio (OR), sensitivity, and specificity were

calculated for candidate cut-points of normalized CSF proteins for predicting CHC. All data

analyses were performed using SAS1 9.3.

Results

Characteristics of study subjects

Data from 20 patients with untreated CHC were analyzed for this study (Table 1). Fifteen sub-

jects had MRI evidence of aqueductal stenosis (AS); the remaining 5 subjects demonstrated

patency of the cerebral aqueduct on MRI imaging. None had imaging findings suggestive of

4th ventricular outlet obstruction. Seven subjects had radiologic evidence of associated devel-

opmental brain malformations (Table 1). Six subjects had comorbid craniofacial anomalies,

six had developmental cardiopulmonary anomalies, and five subjects had comorbid genitouri-

nary anomalies. Ten subjects had chromosomal microarrays (CMAs) or targeted gene testing,

Cerebrospinal fluid biomarkers of congenital hydrocephalus
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3 of which subjects had identifiable genetic alterations (Table 1). The one subject with an

L1CAM mutation (G847X) was excluded from the L1CAM CSF biomarker analysis.

CSF total protein and ventricular size

There was a positive correlation of CSF TP levels with ventricular size in CHC (n = 20, r = 0.613,

p = 0.004) and in controls (n = 51, r = 0.48, p = 0.021) (Fig 1A and S1 Table). While CSF TP lev-

els appeared to decrease with subject age, the association was not significant in CHC (n = 20, r =

-0.252, p = 0.2847) but was significant in controls (n = 51, r = -0.43, p = 0.0017; Fig 1B and S2

Table). Interestingly, mean CSF TP levels were similar in control (356.55±277.6) and CHC

groups (512.38±450.22) (p = 0.65) but higher among subjects with OND than among control

and CHC subjects (p< 0.0001) (Fig 1C and Table 2).

Candidate CSF biomarkers of congenital hydrocephalus

CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or

TP were elevated in untreated CHC compared with age-matched controls or individuals with

OND (Table 2). In order to account for any potential influence of TP on specific biomarker

levels, each biomarker was normalized by CSF TP. With the exception of NCAM-1, CHC-

associated elevations in biomarkers persisted after normalizing each CSF biomarker by TP

(Table 2, Fig 2). Unless otherwise noted, CSF protein levels (APP, Aβ42, sAPPα, sAPPβ,

L1CAM, NCAM-1, tau, and pTau) are reported throughout the remainder of this study as nor-

malized by TP. With respect to ventricular size, normalized CSF tau levels were associated

with FOR in control subjects only (R = 0.52; p = 0.038) while normalized CSF L1CAM demon-

strated association with FOR in CHC subjects only (R = 0.55; p = 0.014) (S1 Table).

Age-dependence of CSF biomarkers of congenital hydrocephalus

Analysis of normalized CSF levels of APP, Aβ42, sAPPα, sAPPβ, L1CAM, NCAM-1, tau, and

pTau across the entire cohort of CHC subjects, ranging in age between 0 and 215 months,

demonstrated significant increases in CSF APP, Aβ42, sAPPα, sAPPβ, L1CAM, tau, and pTau

in CHC compared with control and OND subjects (Fig 2, Table 2). Normalized CSF tau levels

were associated with subject age alone in control subjects (R = -0.44; p = 0.009), while no other

biomarkers were associated with age in control or CHC subjects (S2 Table). However, the

Fig 1. Relationship of CSF total protein with ventricular size, subject age, and subject grouping. A. Association of CSF total protein (TP) with

ventricular size, estimated with frontal-occipital horn ratio (FOR) for control and congenital hydrocephalus (CHC) subjects. B. Association of TP with age for

control and CHC subjects. C. Comparison of TP among control, CHC, and other neurological disorders (OND) groups. Note the positive correlation of TP

with ventricular size (A) and the higher levels of TP in OND compared with control and CHC cases. *Denotes significance at p<0.05.

doi:10.1371/journal.pone.0172353.g001

Cerebrospinal fluid biomarkers of congenital hydrocephalus
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observed differences in normalized CSF biomarker levels, including APP, Aβ42, sAPPα,

sAPPβ, L1CAM, tau, and pTau, were greatest between CHC and control in subjects�12

months of age (Figs 3 and 4). Beyond 12 months, the separation became inconsistent. Given

the complex relationship between CSF biomarkers and age, the remaining analyses in this

study focus on CHC in infants�12 months of age.

Predictive ability of CSF biomarkers of congenital hydrocephalus in

infants�12 months of age

Higher CSF levels of APP, Aβ42, sAPPα, sAPPβ, L1CAM, tau, and pTau corresponded to

greater incidence of CHC compared with control subjects and subjects with OND (Table 3,

Figs 3–5). Among the specific CSF proteins examined, normalized sAPPα had the strongest

predictive ability for CHC versus control (Table 4 and Fig 6, p<0.0001, area under the curve

(AUC) = 0.99). When data from OND subjects were included, sAPPα remained effective in

predicting CHC. Though not as strong, normalized sAPPβ, tau, APP, and L1CAM were also

predictive for CHC over control and OND subjects (Table 4 and Fig 6). CSF TP alone showed

no predictive ability for CHC (OR: 1.00, AUC: 0.61; Table 4 and Fig 6).

Among subjects�12 months old in the CHC, control, and OND groups, a normalized

sAPPα cut-point of 0.407 provided the best prediction of CHC (OR = 528, Sensitivity = 0.941,

Specificity = 0.971, Table 4). Infants with sAPPα> 0.407 had 32 times greater risk (95% CI:

4.6–221) of having CHC than those with values below this cut-point. With a cut point of 2.43,

normalized sAPPβ had a strong predictive association of CHC (OR = 255, Sensitivity = 0.88,

Specificity = 0.97, Table 4) and infants above this cut point were almost 17 times more likely to

have CHC. Normalized tau also demonstrated a high predictive value for CHC with a cut

point of 0.0076 (OR = 171, Sensitivity = 0.941, Specificity = 0.914, Table 4). Infants with n-tau

Table 2. Cerebrospinal fluid levels of candidate biomarkers of congenital hydrocephalus. Mean ± SD CSF levels of candidate biomarkers of congeni-

tal hydrocephalus (both absolute and normalized by total protein) for control, congenital hydrocephalus (CHC), and other neurological disease (OND) groups,

along with the p-value for the ANOVA with paired contrasts comparison among the groups.

Control CHC OND CHC—Control p-value CHC—OND p-value OND—Control p-value

TP (ug/ml) 356.55±277.6 512.4±450.2 2818±3113 0.6449 <0.0001 <0.0001

APP (ng/ml) 340.9±188.64 1117±957.1 328.3±166.52 <0.0001 <0.0001 0.9318

Normalized APP 1.31±0.93 2.59±1.64 0.3061±0.33 <0.0001 <0.0001 0.0027

Abeta42 (ng/ml) 0.461±0.37 1.101±0.79 0.430±0.59 <0.0001 0.0006 0.8479

Normalized Abeta42 0.0015±0.001 0.0031±0.0022 0.00065±0.0013 <0.0001 <0.0001 0.0705

sAPPα (ng/ml) 114.95±97.83 701.1±768.9 77.5±54.43 0.0001 0.0017 0.8376

Normalized sAPPα 0.26±0.218 1.19±0.878 0.077±0.123 <0.0001 <0.0001 0.4042

sAPPβ (ng/ml) 325.1±281.34 3703±3304 250.3±187.25 <0.0001 <0.0001 0.9226

Normalized sAPPβ 0.826±0.798 8.741±11.13 0.257±0.395 0.0002 0.0026 0.8260

L1CAM (ng/ml) 19.57±20.35 182.7±239.0 10.28±16.39 <0.0001 0.0001 0.8017

Normalized L1CAM 0.055±0.054 0.282±0.23 0.01118±0.023 <0.0001 <0.0001 0.2543

NCAM-1 (ng/ml) 161.3±92.31 266.7±220.9 155.9±119.66 0.0048 0.0232 0.8971

Normalized NCAM-1 0.657±0.558 0.626±0.511 0.1594±0.217 0.8133 0.0100 0.0017

Tau (ng/ml) 2.081±2.813 10.33±7.607 4.632±8.255 <0.0001 0.0138 0.2277

Normalized Tau 0.0038±0.0033 0.0319±0.0368 0.0044±0.0118 <0.0001 0.0020 0.9362

pTau (ng/ml) 0.76±0.926 1.97±2.137 0.3553±0.303 0.0040 0.0060 0.4518

Normalized pTau 0.0014±0.0012 0.0044±0.0042 0.0002323±0.0004 0.0002 <0.0001 0.2024

AQP4 (ng/ml) 0.5436±0.566 1.126±1.845 0.3146±0.3062 0.1867 0.1383 0.6407

Normalized AQP4 0.0016±0.0015 0.0024±0.0037 0.00032±0.00053 0.3811 0.0742 0.2245

doi:10.1371/journal.pone.0172353.t002
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values above 0.0076 were at 28 times more likely to have CHC. Normalized L1CAM levels

showed predictive ability, albeit somewhat less robust (OR = 56, Sensitivity = 0.88, Specific-

ity = 0.89), with levels above the cut point of 0.095 associated with 13 times greater risk of

CHC.

Congenital hydrocephalus subgroup analyses

In order to further characterize CSF biomarker increases within CHC, subjects were analyzed

for aqueduct of Sylvius status (AS or patent), the presence of developmental brain anomalies,

or a known genetic alteration. No differences were seen among the three groups with respect

to FOR or TP, and none of the CSF biomarkers demonstrated significant differences among

groups (Table 5).

Discussion

In the current study, levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, NCAM-1, AQP4,

and total protein were investigated in the CSF of children with and without congenital hydro-

cephalus. Of these candidate CSF biomarkers, all but CSF TP, AQP4, and NCAM-1 showed a

robust association with CHC. Normalized sAPPα demonstrated a particularly strong relation-

ship with infantile CHC, with high sensitivity and specificity. Soluble APPβ, tau, APP, and

L1CAM were also able to discriminate CHC, though not as strongly as sAPPα. While CSF TP

showed an association with ventricular size in controls and CHC, it did not exhibit predictive

ability for CHC.

The pathophysiology of hydrocephalus is multifactorial with a pervasive impact on the brain.

Previous studies of CSF composition in hydrocephalus (reviewed in [10–16] have suggested

that periventricular axonal damage and demyelination [13, 17, 18], apoptosis [19], disruption of

the blood-brain barrier [20], reduced cerebral blood flow accompanied by hypoxia and ischemia

[14], altered metabolism [21], reductions in neurotransmitters and neuromodulators [18, 22–

24], and neuroinflammation [13, 25–31] may all play important roles in the progression of

hydrocephalus. Older studies of various biomarkers associated with these mechanisms in devel-

oping brains have suggested that none were robust enough to predict clinical outcome [10, 32],

Fig 2. CSF biomarker levels in control, congenital hydrocephalus, and other neurological diseases. Box and whisker plots comparing normalized

levels of CSF biomarkers measured in control, other neurological diseases (OND), and congenital hydrocephalus (CHC) subjects across all ages. Note

the significant (*, p<0.05) increases in APP, Aβ42, sAPPα, sAPPβ, L1CAM, NCAM-1, tau, and pTau in CHC compared to both control and OND cases.

doi:10.1371/journal.pone.0172353.g002
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but more recent reports, especially those on adult and aging patients with idiopathic normal

pressure hydrocephalus (iNPH), indicate that CSF levels of Aβ42 and tau, correlate well with

clinical signs and symptoms [11, 12, 15, 18, 32–39]. Since APP must be delivered to synaptic

membranes via axonal transport for cleavage into various isoforms [40, 41], and because peri-

ventricular white matter almost always exhibits impaired axonal transport and cytopathology

during ventriculomegaly [2], it is understandable that CSF APP could originate from white mat-

ter axons and their terminal synapses. Experimental studies have shown that axoplasmic trans-

port is impaired in hydrocephalus [42], synaptogenesis is modulated by APP[43, 44], and APP

serves as a neurodevelopmental trophic factor [43]. Further, the processing of APP is highly reg-

ulated at multiple levels, and alterations in these pathways are etiologic in pathological condi-

tions [45]. For example, cleavage of APP by α-secretase (e.g. ADAM10) releases sAPPα, whereas

cleavage by the β-secretase β–site APP-cleaving enzyme (BACE-1) elaborates sAPPβ, yet only

the latter is believed to be amyloidogenic. Any CHC-associated alteration of such balance could

thus result in differential abundance of these isoforms in the CSF. The microtubule-associated

protein tau stabilizes the axonal cytoskeleton [46]. Finally, the neuroepithelial cells of the ventric-

ular zone and the ependymal lining of the ventricular wall rely on cell adhesion molecules such

as L1CAM and NCAM for structural integrity, and ventricular zone junctional proteins are

Fig 3. Relationship of CSF biomarker levels to congenital hydrocephalus and age at CSF sample. Regression analysis of normalized CSF APP,

Aβ42, sAPPα, sAPPβ levels and age at sample (in months) in congenital hydrocephalus (CHC, shown in red) and non-CHC groups (control and other

neurological diseases subjects, shown in blue). In general, APP, Aβ42, sAPPα, and sAPPβ levels were most different between CHC and control subjects

<12 months of age.

doi:10.1371/journal.pone.0172353.g003
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known to be impaired in hydrocephalus [47–49]. Therefore, while reduced CSF flow and protein

flux in hydrocephalus could be responsible for our findings (discussed below), it is also possible

that the changes we have observed in CSF biomarkers reflect pathological alterations in periven-

tricular tissue as much as changes in CSF flow.

The CSF biomarkers selected for study in the current report have been previously examined

in PHH of prematurity [7, 8] and represent a natural starting point for targeted investigation

of CSF biomarkers in CHC. However, CSF alterations in CHC may vary significantly from

other etiologies of hydrocephalus, including hemorrhagic, infectious, or other causes. Indeed,

the classification of CHC itself may include a range of etiologies for hydrocephalus, each with

different biological underpinnings. Seminal research studies reported over the last several

years have implicated alterations in cell junction pathology [4, 48], precursor cell migration

[49], ependymal polarity and cilia [50–53], and other mechanisms in the pathogenesis of

hydrocephalus (reviewed in [1] and [6]). In a related project, we have used CSF proteomics to

conduct a higher-level survey of pathophysiology at play in CHC; results from that effort are

forthcoming.

Fig 4. Relationship of CSF biomarker levels to congenital hydrocephalus and age at CSF sample. Regression analysis of normalized CSF L1CAM,

NCAM-1, tau, and phosphorylated tau (pTau) levels and age at sample (in months) in congenital hydrocephalus (CHC, shown in red) and non-CHC groups

(control and other neurological diseases subjects, shown in blue). Note that these proteins exhibited a similar pattern as APP and its isoforms by being most

different in CHC <12 months of age.

doi:10.1371/journal.pone.0172353.g004
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Novel biomarkers of CHC and other forms of hydrocephalus are urgently needed to

improve the clinical care and treatment of children affected by these conditions. At present, a

diagnosis of hydrocephalus is usually made based on symptoms (e.g. irritability, nausea/vomit-

ing, or headaches in a child able to convey symptoms), signs (e.g. tense fontanel, macroce-

phaly, papilledema, cranial nerve deficits), and ventricular enlargement on neuro-imaging.

However, the symptoms and signs used in the diagnosis of hydrocephalus are nonspecific, and

ventricular size may be affected by a number of conditions common to infants and children at

risk for hydrocephalus, including brain malformations, intracranial hemorrhage, and hypoxia/

ischemia. Clinically, the diagnosis of hydrocephalus and the optimal timing of initiation of

treatment (CSF shunting or ETV) are often unclear. Once implemented, treatment is invari-

ably challenging to assess, since imaging is frequently unreliable after shunting, and few other

tools are available to provide insight into CSF shunt or ETV function or, importantly, optimiz-

ing the child’s neurodevelopmental trajectory.

While the most direct effect of these novel CSF biomarkers for CHC may be their diagnostic

and therapeutic potential, the results reported herein also open new lines of scientific inquiry

into the pathogenesis and pathophysiology of CHC. Elevations in CSF biomarkers, APP and

tau in particular, may suggest recent or ongoing neurological injury, for example axonal

stretch-related injury or synaptic disruption, as has been proposed in traumatic brain injury

and other conditions (reviewed in [54]). In particular, Del Bigio and colleagues have repeatedly

stressed the importance of periventricular white matter injury as a major factor in the patho-

physiology of hydrocephalus [2, 55, 56]. Further, differential regulation of APP processing and

amyloid isoforms may provide insight into specific pathways involved in the pathogenesis of

hydrocephalus and its neurological sequelae and/or the repair mechanisms at play in neuro-

logical recovery. The finding of early elevations, but later normalization, of APP and other

CSF biomarkers is in agreement with the notion of acute and chronic stages of hydrocephalus

Table 3. Cerebrospinal fluid levels of candidate biomarkers of congenital hydrocephalus in infants�12 months of age. Mean ± SD CSF levels of

candidate biomarkers of congenital hydrocephalus (both absolute and normalized by total protein) for CSF samples�12 months of age, for control, congenital

hydrocephalus (CHC), and other neurological disease (OND) groups, along with the p-value for the ANOVA with paired contrast comparison among groups.

Control CHC OND CHC—Control p-value CHC—OND p-value OND—Control p-value

TP (ug/ml) 506.2±306.4 562.9±469.4 3597±3673 0.9039 <0.0001 <0.0001

APP (ng/ml) 409.7±197.55 1276±953.44 348.9±135.09 <0.0001 0.0002 0.7795

Normalized APP 1.05±0.658 2.834±1.64 0.257±0.273 <0.0001 <0.0001 0.0552

Abeta42 (ng/ml) 0.6747±0.389 1.232±0.789 0.5653±0.716 0.0047 0.0100 0.6415

Normalized Abeta42 0.00159±0.0011 0.0033±0.0024 0.0007±0.0014 0.0016 0.0003 0.1578

sAPPα (ng/ml) 113.26±99.46 819.00±776.85 77.49±54.43 <0.0001 0.0002 0.8404

Normalized sAPPα 0.2227±0.132 1.365±0.827 0.077±0.123 <0.0001 <0.0001 0.4477

sAPPβ (ng/ml) 319.6±285.41 4348±3165.18 250.3±187.25 <0.0001 <0.0001 0.9221

Normalized sAPPβ 0.7288±0.629 10.24±11.45 0.257±0.395 <0.0001 0.0006 0.8533

L1CAM (ng/ml) 25.85±22.70 216.6±246.57 15.6±18.63 <0.0001 0.0010 0.8473

Normalized L1CAM 0.0544±0.051 0.3327±0.219 0.015±0.0278 <0.0001 <0.0001 0.4275

NCAM-1 (ng/ml) 171.1±63.28 307±215.27 195.7±126.05 0.0032 0.0608 0.6524

Normalized NCAM-1 0.4572±0.337 0.705±0.514 0.1598±0.225 0.0478 0.0014 0.0547

Tau (ng/ml) 2.70±3.035 10.84±7.552 4.632±8.255 <0.0001 0.0134 0.3988

Normalized Tau 0.00455±0.0036 0.0272±0.0228 0.0044±0.0118 <0.0001 0.0003 0.9849

pTau (ng/ml) 0.8747±0.9711 2.196±2.2356 0.355±0.303 0.0055 0.0036 0.3618

Normalized pTau 0.0015±0.0013 0.0042±0.0037 0.00026±0.0004 0.0005 0.0001 0.1757

AQP4 (ng/ml) 0.5436±0.5661 1.126±1.844 0.3146±0.3062 0.1867 0.1383 0.6407

Normalized AQP4 0.0016±0.0015 0.0024±0.0037 0.0003±0.0005 0.3811 0.0742 0.2245

doi:10.1371/journal.pone.0172353.t003
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advanced by McAllister [6] and others[57, 58]. Experimental models have demonstrated an

acute phase to hydrocephalus, in which there occurs an active pathophysiological insult and

ensuing inflammation as well as a chronic phase in which ventriculomegaly stabilizes, the

Fig 5. Logistic probability of CSF biomarkers for congenital hydrocephalus. Shown are logistic probability curves of normalized CSF levels of APP,

sAPPα, sAPPβ, tau for congenital hydrocephalus (CHC) or no CHC (control and other neurological diseases subjects). Note that sAPPα, followed by

sAPPβ, had the highest predictive ability for differentiating CHC.

doi:10.1371/journal.pone.0172353.g005

Table 4. Evaluation of the predictive relationship between CSF biomarkers and congenital hydrocephalus. Logistic regression parameters for nor-

malized levels of all potential biomarkers measured in this study are shown. The strongest predictors of CHC were normalized levels of sAPPα, sAPPβ, and

Tau using cut points of 0.407, 2.43, and 0.0076 respectively. The weakest predictors of CHC were normalized pTau and NCAM-1. ROC AUC: receiver operat-

ing characteristics area under the curve; CI: confidence interval; Bonferroni corrected threshold (0.0055).

Normalized

APP

Normalized

Aβ42

Normalized

sAPPα
Normalized

sAPPβ
Normalized

L1CAM

Normalized Tau Normalized

pTau

Total

Protein

p-value <0.0001 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1069

ROC AUC 0.931 0.805 0.986 0.948 0.913 0.945 0.850 0.612

Cut Point 1.334 0.0015 0.407 2.43 0.095 0.0076 0.0021 900.0

Odds Ratio (95%

CI)

31.07 5.72–

168.5

34.91 4.10–

297.49

528.0 30.99–

8995.5

255.00 21.44–

3033.3

56.00 9.17–

342.13

170.67 16.42–

1774.19

22.56 4.91–

103.71

1.0833

0.28–4.18

Relative Risk

(95% CI)5% CI)

10.57 2.68–

41.61

14.81 2.12–

103.68

32.00 4.62–

221.48

16.87 4.36–

65.28

13.22 3.37–

51.88

27.79 3.99–

193.35

7.47 2.45–

22.77

1.06 0.42–

2.68

Sensitivity 0.8824 0.9412 0.9412 0.8824 0.8750 0.9412 0.8235 0.7647

Specificity 0.8056 0.6857 0.9706 0.9714 0.8889 0.9143 0.8286 0.2500

doi:10.1371/journal.pone.0172353.t004
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changes noted in the acute phase subside, and perhaps compensatory mechanisms become

involved [57–59].

Fig 6. Receiver operating characteristic curves for CSF biomarkers of congenital hydrocephalus. Receiver operating characteristic (ROC) curves

for normalized levels of APP, sAPPα, sAPPβ, tau, and CSF total protein (TP) in infants� 12 months. Normalized sAPPα had the strongest predictive ability

for congenital hydrocephalus (CHC), followed by normalized sAPPβ and tau; CSF TP alone showed no predictive ability for CHC (see also Table 4).

doi:10.1371/journal.pone.0172353.g006

Table 5. Mean ± SD CSF levels of candidate biomarkers of CHC for CSF samples�12 months of age, for samples that showed aqueductal steno-

sis, CHC with developmental anomalies, or CHC with a known genetic alteration. All values shown are the normalized levels of proteins.

CHC + Aqueduct

Stenosis

CHC–Aqueduct

Stenosis

CHC + Developmental Brain

Malformation

CHC without Brain

Malformation

CHC + Genetic

Alteration

CHC–Genetic

Alteration

FOR 0.642±0.132 0.604±0.101 0.648±0.154 0.600±0.106 0.660±0.209 0.606±0.121

TP (ug/

ml)

608.1±480.0 339.6±305.5 627.0±519.8 443.8±382.7 929.1±603.4 455.2±380.7

APP 2.903±1.77 2.416±1.502 2.560±1.775 2.634±1.590 1.908±0.747 2.621±1.678

Abeta42 0.003±0.002 0.004±0.002 0.003±0.002 0.004±0.002 0.002±0.002 0.003±0.002

sAPPα 1.462±0.843 0.896±0.743 1.088±0.710 1.219+0.908 1.193±0.432 1.182±0.902

sAPPβ 11.25±11.84 3.62±2.89 8.066±10.91 8.569±9.70 10.97±4.28 8.95±11.39

L1CAM 0.371±0.207 0.232±0.225 0.325±0.237 0.257±0.198 0.375±0.189 0.282±0.233

NCAM-1 0.713±0.564 0.512±0.272 0.585±0.598 0.5678±0.320 0.431±0.155 0.636±0.523

Tau 0.027±0.024 0.039±0.046 0.032±0.043 0.035±0.042 0.015±0.002 0.033±0.038

pTau 0.005±0.004 0.005±0.006 0.005±0.004 0.005±0.005 0.006±0.004 0.004±0.004

AQP4 0.003±0.004 0.001±0.0005 0.003±0.004 0.001±0.0004 0.002±0.002 0.002±0.004

doi:10.1371/journal.pone.0172353.t005
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The relationships between increased CSF proteins and CSF physiology is likely to be com-

plex. From a traditional perspective, obstructions that decrease CSF flow and/or absorption

would be expected to impair clearance and cause CSF protein concentrations to rise. Fifteen of

20 of our patients exhibited aqueductal stenosis, potentially implicating CSF stasis in high TP

and biomarker levels (though our limited analysis of 15 subjects with aqueductal stenosis ver-

sus 5 with patent aqueducts suggested no difference in TP or biomarker levels). In addition, an

increase in total protein could have impacted CSF-parenchymal osmotic gradients and pro-

moted ventriculomegaly in the same way that and dextrose- or sucrose-induced gradients

cause mild-moderate ventriculomegaly in adult rats, dogs and cats [60–62]. Furthermore, clin-

ical studies have shown that levels of surfactant proteins, specifically types A and C, increase

significantly in hydrocephalus with and without aqueductal stenosis [63]. Surfactant protein A

is associated with the blood-brain and blood-CSF barriers, while surfactant protein C is located

in choroid plexus epithelial cells and ependyma. Thus, it is conceivable that CSF protein eleva-

tions, initially caused by periventricular tissue damage and/or CSF stasis, could exacerbate

ventriculomegaly by impeding CSF flow and absorption as well as by drawing interstitial fluid

from the parenchyma into the ventricles.

High CSF protein concentrations also could be related to alterations in the CSF glymphatic

system (reviewed in Iliff et al [64–66]). This recently-described system helps mediate CSF

absorption via paravascular pathways associated with both penetrating arterioles and micro-

vessels within the cortical parenchyma. Impairment of these pathways during traumatic brain

injury increases CSF levels of tau and this effect is exacerbated in mice lacking aquaporin-4

channels [67, 68]. Likewise, clearance of soluble amyloid-beta and intraventricular adeno-asso-

ciated viruses is reduced in these knockout mice[69, 70]. While this mechanism of CSF absorp-

tion has not been well-studied in immature brains, aged rats with amyloid-beta injected into

cortical parenchyma show diminished glymphatic/paravascular clearance[71]. Since aqua-

porin-4 channels are closely associated with the glymphatic system, it is worth noting that CSF

aquaporin-4 levels were not changed in this limited study, making the role of glymphatic dis-

turbance less certain.

In addition to PHH, many of the CSF biomarkers examined in the current report have been

investigated in the setting of Alzheimer’s disease, Parkinson’s disease, and notably, iNPH,

among other conditions (reviewed in[72]). For example, sAPPα and sAPPβ, but not tau and

pTau, may also be useful in distinguishing iNPH from Alzheimer’s disease or possibly other

conditions that affect this older population[33, 73–76]. Interestingly, we found previously that

CSF sAPPα was an excellent predictor of PHH, though the sAPPα levels that we observed in

PHH (lumbar CSF: mean 1667±1227 ng/ml, ventricular CSF mean 932.9±781.51 ng/ml) and

in CHC in the current report (ventricular CSF, mean 701.1±768.9), are considerably higher

than those described by Miyajima et al. for lumbar samples from patients with iNPH (152

±60ng/ml), which were in their work decreased from levels in controls and Alzheimer’s

patients. These differences may suggest very different pathophysiological processes in PHH,

CHC, and iNPH but certainly suggest involvement of APP processing pathways in the patho-

genesis of hydrocephalus more broadly.

A number of limitations must be acknowledged in this research project. While, to our

knowledge, this study represents the largest study of CSF in non-hemorrhagic CHC, it none-

theless details an investigation of a modest sample size from a heterogeneous group of patients

with likely myriad etiologies for hydrocephalus. The samples themselves span a wide range of

ages with relatively fewer samples coming from individuals older than two years. Also contrib-

uting to the heterogeneity is the number and variability of associated brain abnormalities,

non-CNS conditions, and genetic findings in the study population. It is likely that as we learn

more about genetic alterations and their relationship to hydrocephalus that many of those

Cerebrospinal fluid biomarkers of congenital hydrocephalus
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individuals in this study in which no genetic etiology was identified will indeed have had a

genetic cause and we were simply not yet able to detect it. While narrowing the scope of the

project somewhat, subjects with hydrocephalus associated with myelomeningocele were delib-

erately excluded from the study, since factors such as active CSF leak or fluid shifts and uncer-

tainty of infection presented challenging confounds to the current analysis. An inevitable

limitation and challenge to studies of human CSF in children is the absence of true age-

matched control CSF samples; the current study relies on CSF samples from human infants

and children who underwent a lumbar puncture for clinical evaluation for sepsis or other diag-

nostic assessment where the CSF cultures and evaluation were negative. Ethical principles

clearly prohibit routine CSF collection from asymptomatic patients. Another limitation inher-

ent to this and similar studies is the potential for bias in cross-group comparisons introduced

by rostrocaudal protein gradients, since control and OND CSF samples were acquired via lum-

bar puncture and CHC samples were acquired by ventricular cannulation. Reiber et al have

demonstrated that different sources of CSF proteins exhibit different hydrodynamics, espe-

cially in relation to CSF flux variations associated with blood-brain and blood-CSF barriers

[77–80]. For example, CSF tau clearly originates from cortical axons and oligodendrocytes

even when measured in lumbar samples and is not dependent upon blood-CSF barrier dys-

function [81]. We recently addressed this bias in the setting of PHH of prematurity, where lum-

bar punctures are frequently performed early in the treatment of the condition, and CSF can be

conveniently compared between PHH, control, and OND [82]. In PHH, differences observed

in APP and derivative isoforms, L1CAM, and TP were found to be robust versus other condi-

tions, even when controlling for CSF access site. Lumbar punctures are not commonly per-

formed in infants and children with CHC, however, so a direct comparison is not possible. It is

worth noting that our samples were not affected by the use of ventricular catheters because they

were obtained prior to the initiation of surgical treatment. Likewise, intracranial pressure mea-

surements are not commonly obtained in CHC patients, since patients are under general anes-

thesia at the time of surgery, and numerous factors (e.g. anesthetic agent, respiratory rate/pCO2,

body position, fluid loss in dural opening or ventricular cannulation) impact intracranial pres-

sure under these conditions. The relationship between intracranial pressure and CSF biomark-

ers is of great interest, however, and our basic science efforts are directed at delineating this

relationship in an experimental model where such factors can be rigorously controlled.

Conclusions

CSF biomarkers including APP, sAPPα, sAPPβ, tau, and L1CAM hold promise as biomarkers

of CHC in infants and young children. Soluble APPα in particular demonstrated a strong rela-

tionship with infantile CHC, with high sensitivity and specificity. In addition to supporting

potential diagnostic and therapeutic roles for the care of children with CHC, the results of this

study provide insight into the pathophysiology of CHC during this critical period in

neurodevelopment.
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