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Abstract

Knowledge about the arrangement of visual elements is an important aspect of perception.

This study investigates whether humans learn rules of two-dimensional abstract patterns

(exemplars) generated from Reber’s artificial grammar. The key question is whether the

subjects can implicitly learn them without explicit instructions, and, if so, how they use the

acquired knowledge to judge new patterns (probes) in relation to their finite experience of

the exemplars. The analysis was conducted using dissimilarities among patterns, which are

defined with n-gram probabilities and the Levenshtein distance. The results show that sub-

jects are able to learn rules of two-dimensional visual patterns (exemplars) and make cate-

gorical judgment of probes based on knowledge of exemplar-based representation. Our

analysis revealed that subjects’ judgments of probes were related to the degree of dissimi-

larities between the probes and exemplars. The result suggests the coexistence of config-

ural and element-based processing in exemplar-based representations. Exemplar-based

representation was preferred to prototypical representation through tasks requiring discrimi-

nation, recognition and working memory. Relations of the studied judgment processes to

the neural basis are discussed. We conclude that knowledge of a finite experience of two-

dimensional visual patterns would be crystalized in different levels of relations among visual

elements.

Introduction

Humans collect information from the environment, often without conscious efforts or formal

instructions [1]. In that process, humans construct knowledge of categories, whereby we can

make judgment of a novel event as to whether it is a member of a group defined by previous

experience [2]. The arrangement of elements is one of the features that define a category, often

found in music, language and design. In the visual domain, objects in the two-dimensional

(2-D) visual field consist of components that make potentially infinite combinations. Knowl-

edge about which parts of scenes are likely to be in proximity [3, 4] and which individual

scenes are classified together [5, 6] facilitate our understanding of natural scenes. However, the

exact nature of the process in which humans organize initially nonsensical visual scenes into
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meaningful representations is not known. A key question is whether humans can construct

categorical knowledge from 2-D visual arrangement alone.

The process of the learning arrangement patterns of stimuli has been studied under sequen-

tial exposures to auditory [7, 8, 9] and visual [10, 11, 12, 13, 14] stimuli. Those stimuli are

abstract and initially nonsensical for subjects due to the exclusion of prior knowledge. Fiser

and Aslin presented multiple scenes that contain sequences of elements over time. Their sub-

jects exhibited sensitivity to conditional probability (i.e. P(A|B)) between elements (i.e. A and

B) of the sequences [10, 12], where the conditional probability was calculated over the tempo-

ral dimension. These studies typically focus on the temporal frequency of multiple stimuli over

time, and investigate subjects’ sensitivity to this type of information. In terms of cortical pro-

cessing, such analysis possibly involves the medial temporal lobe [15], where, computationally,

information embedded in the mutual relations between elements is processed.

Contextual information is important in the categorical judgment of visual scenes consist-

ing of a variety of elements projected to the retina. A scene containing some cars, lines in-

between, and streetlamps probably depicts a car park: A scene consisting of a house and a

few cars is likely to be a residential area. This kind of category judgment of scenes can be

done almost irrespectively of feature complexity, as scene judgment occurs before the identi-

fication of features in the scenes [6]. Category representation has been modeled in two lines

of theories. The prototype theory posits that categorization is accomplished by referencing to

a common representation or an averaged prototype from multiple exemplars [16]. In con-

trast, the exemplar theory relies on the references to exemplars themselves [17, 18, 19]. In

addition, there may be combined representations depending on the two approaches accord-

ing to task demands [20]. In the visual domain, the nature of category representation has

well been studied in the recognition of objects. Evidences suggest that both abstract category

representation (not specific to a particular object) and exemplar-specific representation

coexist in the left and right hemispheres, respectively [20], particularly in the fusiform corti-

ces [21]. In contrast to object-based and feature-based representations, less is known about

the representation of visual arrangement.

Effects of spatial frequency within each exemplar and collective information of multiple

exemplars may arise because it is possible that exemplar-based information influences catego-

rization, as suggested in the exemplar theory of category. Similarity of a probe to exemplars

influences category judgment, automatically and mandatorily [22]. Thus, it is important to

consider how learned exemplars affects judgment of a probe regarding similarity. Exemplar-

based knowledge of visual arrangement would enable the subjects to voluntarily find out rules

within the presented elements and attribute them to individual events [23]. A recent computa-

tional study suggests that humans may acquire such knowledge by learning parts of exemplars

as well as relations between them [24].

In the actual environment, humans seldom see objects or sequences of objects in isolation.

Ensembles of objects constitute a scene, with various conditional probabilities between them.

Humans are sensitive to conditional probabilities of sequences in the scene [10, 12], which

reflect rules that generate them. Rules are embedded in the collection of sequences and contain

multiple elements with several conditional probabilities, which could be generated from a for-

mal grammar. To the best of our knowledge, there have not been sufficient experiments which

show how humans learn rules within and across scenes, and how they use the acquired knowl-

edge in later judgments of novel scenes. Such cognitive processes may share properties with

language acquisition, as both consist of elements (i.e. letters or words) with various conditional

probabilities between them. The artificial grammar (AG) learning [25] is a useful paradigm to

control such information and to study implicit learning. Patterns generated from AG are com-

posed of distinct elements, which can be quantified in terms of the occurrence of frequencies

Two-dimensional visual statistical learning
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known as n-gram probabilities (also known as transitional probabilities), and the Levenshtein

distance [26, 27]. Studies using AG have shown that humans are able to learn rules of visual

sequences along a single (spatial or temporal) dimension [14, 28]. It has been suggested that

vision is better at extracting spatial order statistics than temporal order statistics [28]. Visual

sequence learning was affected by element positions in sequences [28].

This study aimed to investigate whether humans can learn rules of 2-D abstract patterns

(exemplars) consisting of shapes in an implicit manner without explicit instructions, and if so,

how they use the acquired knowledge to judge new patterns (probes) in relation to their finite

experience of exemplars.

Methods

17 subjects (10 females and 7 males aged 18–34, with an average of 22.1 and standard deviation

of 5.8) participated in this experiment. The number of subjects seems adequate to test the cur-

rent hypothesis, in reference to artificial grammar studies that revealed human abilities of rule

learning [9, 15, 25, 26]. All subjects had normal or corrected-to-normal vision. They were

remunerated (1000 yen) for participating. They gave written informed consent after being

explained about the purpose and nature of the experiments. The experimental protocol was

approved by the Brain and Cognitive Sciences Ethics Committee of Sony Computer Science

Laboratories.

An artificial grammar with five letters described in Reber’s study [29] was used to generate

ruled strings in this experiment. The letters T/X/V/P/S in the original study were substituted

by shapes, i.e. square/plus/star/circle/triangle, respectively (Fig 1). The strings were diagonally

expanded to make units of tiles so that the resulting patterns were symmetric with respect to

the pi/4 and 3pi/4 lines. The units were recursively tiled to cover the computer display with a

resolution of 1680 x 1050 pixels, to eliminate information regarding apparent tile edges or ele-

ment positions.

The AG generated a total of 43 possible strings with lengths of up to eight, with correspond-

ing visual patterns. For each subject, 25 patterns (exemplars) were randomly chosen to repre-

sent all paths through the AG for the study phase, while the remaining 18 (probes) were

reserved for the test phase. As a control to the AG, 43 strings were randomly generated for

each subject using the same set of shapes, matching the AG strings in length. They were con-

verted to visual patterns in the same procedure as the AG generated patterns.

The patterns were presented on a computer display, which was placed at a distance of

approximately 60 cm from the subjects.

The experiment consisted of a study phase followed by a test phase.

For the study phase, 25 learning patterns (exemplars) were randomly divided into 5 sets,

each containing 5 patterns for each subject. The number of patterns was set to be 5, based on a

pilot study which indicated that most subjects completed the study phase in the first two con-

secutive sessions with four patterns, but did not with five patterns, possibly due to the limited

capacity of visual short-term memory storage depending on stimulus complexity [30].

Much of the procedure in the study phase was adapted from Reber’s work on AG [25],

which required the subjects to reproduce nonsensical words, with two consecutive correct

reproductions required to proceed to the next set. In the current experiment, after the presen-

tation of each pattern in a set, the subjects were instructed to answer the order of presentations,

instead of drawing up the patterns. This procedure was designed to control familiarities of pat-

terns at the same level [25], as well as to keep the subjects’ attention to the patterns [28]. The

control of familiarities was particularly important for exemplar-based analysis, assuming

familiarities of exemplars were the same.

Two-dimensional visual statistical learning
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In the study phase, the subjects viewed a blank for 100 ms, a number indicating the order of

presentation for 1 s, and 1 out of 5 patterns (exemplars) for 5 s. This procedure was repeated 5

times without breaks to complete the 5 patterns of a set. The subjects then viewed one of the 5

patterns. They were instructed to answer the order of the presentation by pressing a number

key from 1 to 5. After answering, the subjects viewed the next pattern following a 100 ms

blank, until the completion of 5 patterns. These procedures constituted a single trial. No feed-

back of correct/wrong was given. Trials with the same stimulus set with shuffled orders for pre-

sentations and questions were repeated until the criterion of two consecutive correct answers

for all 5 orders was reached. When one set was completed, a new set of 5 patterns was learned

until all 5 sets were finished.

For the test phase, a set consisting of 79 patterns (probes) was prepared, which included 18

AG generated patterns (not used in the study phase) twice each, and 43 control patterns. The

79 patterns with shuffled orders were presented one by one until the subjects responded. The

subject’s task was to answer whether the rule of a pattern presented was the “same” or “differ-

ent” compared with the rule for previously learned 25 patterns in the study phase, in a two-

alternative forced-choice procedure. The subjects were specifically instructed as follows: “The

25 patterns you have seen were based on a rule. From now on, patterns will appear on the

screen one by one. Please answer by pressing a key whether the pattern is based on the same

rule or a different one.” No explicit remark about the construction of the rules was given, in

order not to interfere with the subjects’ own conceptions about the nature of patterns. The sub-

jects were instructed to place their index fingers on the “f” and “j” key as home positions. Half

of the subjects were instructed to press the “f” key if they felt a pattern presented was “same”

and the “j” key if “different”, while the other half was instructed vice versa in a counterbalance.

The subjects were initially informed only about the study phase and not about the test

phase, to avoid explicit categorization or rule searching when they tackled the study phase.

After finishing the study phase, they were given instructions about the test phase. After com-

pleting computer-based tasks, they answered a written questionnaire about the experiment.

Fig 1. Pattern generation and an example stimulus.

doi:10.1371/journal.pone.0172290.g001
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Analysis

The analysis was based on objective measures rather than predefined rules. In the categorical

judgment of visual arrangements, similarities among exemplars (patterns in the study phase)

and probes (patterns in the test phase) have been a particularly interesting subject for research

[22]. To analyze similarities among patterns, we introduced dissimilarity measures reflecting

relations between elements, namely the Levenshtein distance (hereafter LD) and n-gram prob-

abilities (also known as transitional probabilities). LD is defined as the minimum number of

operations (deletions, insertions and substitutions) required to convert one sequence into the

other [27]. We applied LD to analyze the relations of elements in the seed strings of the pat-

terns, which were in the bottommost row and the leftmost column of tiles. In addition, n-gram

probabilities were used to measure the 2-D relations of elements in tiles. An n-gram probabil-

ity represents a probability of the occurrence of an item conditioned on its n-1 contiguous

items (i.e. P(xi | xi-(n-1), . . ., xi-1)) [26]. We defined an n-gram dissimilarity of pattern A com-

pared with pattern B as follows. First, we picked up any n-grams from the unit tile of pattern

A. Next, we calculated n-gram probabilities for each of these n-grams in the unit tile of pattern

B. Finally, we obtained an n-gram dissimilarity as 1 minus the mean of the n-gram probabili-

ties (i.e. 1—∑ PA(xi,xi-1,. . .,xi-(n-1)) × PB(xi | xi-(n-1), . . ., xi-1) (x 2A, B), refer to S1 Fig for an

example). We calculated dissimilarities for 1-, 2- and 3-gram, taking the probes as A and the

exemplars as B in the aforementioned equation. Dissimilarities for n-grams with n>3 were not

calculated because most of n-grams in a pattern of more than 3 sequences are not found in

another pattern when n>3. A 1-gram probability had no conditional probability (i.e. P(xi))
and was equal to the mean frequency of five elements. In the 2- and 3- grams, every contiguous

sequence was taken from a unit tile to calculate possible combinations of n-grams. Note that

the resulting n-grams are the same regardless of whether the contiguous sequence was taken

horizontally or vertically, because of the symmetry of patterns along the pi/4 and 3pi/4 lines. If

an element of interest is near an edge of a unit tile and its conditional elements are outside of

the tile, the conditional probability was defined with the outside elements as the neighbor tiles.

The 3-gram was derived from averaging two ways of calculations depending on how condi-

tional elements were assigned, i.e., conditional-conditional-target and conditional-target-

conditional.

The dissimilarity measures reflect context-dependency or levels of relations among ele-

ments [31]. 1-gram is a context-independent measure within patterns, and thus is an element-

based processing of the patterns, defined as the frequency of each element regardless of its spa-

tial configuration. N-grams with larger N implicates more context-dependency. Thus, 2- and

3-grams are based on configural processing, reflecting spatial configural relations among mul-

tiple elements within patterns. LD is also considered to be based on configural processing,

because editing an element requires positional information defined relative to non-target ele-

ments. For example, consider a case in which the string PPXS is converted to the string TXS.

To calculate LD, one would first need to compare these two strings, and arrive at a single

sequence, allowing for the possibilities of insertions or deletions. In this case, the last two let-

ters XS are the same. Next, one needs to know where different letters are located relative to XS.

In this case, they are on the left of X. After replacing P with T or deleting P, one would still

need to handle one more P located the leftmost, to be deleted or replaced with T. These manip-

ulations would necessarily involve relations among multiple elements.

In addition, to investigate how the knowledge of multiple familiarized exemplars is related

to subjects’ “same” and “different” judgments in the test phase, we applied three alternative

analyses of dissimilarity measures. 1) As exemplar-based analysis, dissimilarities for each

probe compared with each of 25 exemplars were calculated. Those dissimilarities were sorted

Two-dimensional visual statistical learning
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in an ascending order for each probe so that 25 exemplars were ranked in the order of similar-

ity. For instance, a rank 1 exemplar of LD was the most similar to, or the least distant from a

particular probe in the measure of LD. For each of the 61 probes in the test phase, the 25 exem-

plars were given the ranking of 1 to 25. When two exemplars had the identical dissimilarity

measure, they were assigned to consecutive ranks for the convenience of further analysis. The

probes were put into two ensembles, depending on whether the subjects classified them as

“same” or “different”. As the 18 AG generated probes were presented twice each, they were

sorted twice into the respective ensembles, with possibly inconsistent responses from the sub-

ject. Finally, dissimilarity measures between the probes and ranked exemplars (a particular

exemplars given a specific rank depending on the probe) were averaged over ranks and sub-

jects for the “same” and “different” ensembles. 2) The mean dissimilarities of all 25 exemplars

were calculated, which were equal to the average of dissimilarities for all ranks. The calcula-

tions were irrespective of the interaction between ranks and judgments, conveying alternative

information about knowledge regarding the average distance strategy [32]. 3) Dissimilarities

for each probe compared with the most prototypical exemplar were calculated. The most pro-

totypical exemplar was defined as the exemplar with the least average dissimilarity to other 24

exemplars. Here, dissimilarity measures were calculated using the equation 1—∑ PA(xi,xi-1,. . .,

xi-(n-1)) × PB(xi | xi-(n-1), . . ., xi-1) (x 2A, B), with A taken as the exemplar in question and B

taken as 24 other exemplars. The prototypical exemplar was considered to share the most attri-

butes with the most typical member of exemplars [16].

Although these dissimilarity measures grasp different aspects of patterns, they would also

share some common features. The mean dissimilarities were all significantly correlated with

each other (Fig 2). In addition, we separately performed statistical tests on these dissimilarities

to capture various aspects of the stimuli in each measure of relation among elements. Because

Fig 2. Pearson’s correlation coefficients among four measures of the mean dissimilarities. The four

dissimilarity measures are positively correlated.

doi:10.1371/journal.pone.0172290.g002

Two-dimensional visual statistical learning
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the weights of these dissimilarities on “same” and “different” judgment were not known, we

conducted the analysis focused on each dissimilarity rather than one between measures of dis-

similarity as multiple regressions.

Results

One subject was excluded from further participation in the experiment for not finishing the

study phase within one and half an hour. 16 subjects completed the tasks. None of the subjects

reported remembering any single patterns or unit tiles precisely.

For the study phase, Page’s L test [33] revealed that the mean number of errors in the ques-

tions of the orders in a set of 5 patterns had a statistically significant descending trend in

proportion to the number of sets (p = .0003) (Fig 3). Post hoc tests using the Bonferroni cor-

rection revealed that number of sets elicited a slight reduction in the mean errors from Set 1

(1.50 ± .58) to Set 3 (.93 ± .61, p = .041) and 5 (.69 ± .69, p = .052).

For the test phase, we calculated the d-prime with a "hit" defined as a “same” judgment on

AG generated patterns and a “false alarm” as a “same” judgment on control patterns. As the 18

AG patterns were presented twice each, they were counted twice into "hit" and "false alarm" in

a respective manner, with possibly inconsistent responses from the subject. A one-sample t-

test across subjects revealed that the mean d-prime between AG generated and control judg-

ment was significantly above zero (Mean = .45, T(15) = 4.84, p = .0002, Cohen’s d = 1.21).

Thus the subjects were able to discriminate between the AG generated and control patterns in

the test phase. The results indicate that the subjects successfully learned aspects of the rules

under the 2-D patterns implicitly, while the explicit instruction was to learn the order of

presentations.

Next we looked at the nature of the acquired knowledge in regard to the similarity between

the exemplar and probe patterns (Fig 4). For each of four dissimilarity measures (i.e. LD, 1-, 2-

and 3-gram), we conducted two-way repeated measures ANOVA on the degree of dissimilari-

ties between the exemplar and probe patterns to examine the effect of similarity rank (see

Analysis) and “same”/“different” judgment. There were statistically significant interactions

between the effects of similarity rank and “same”/“different” judgment for all four measures of

dissimilarity (i.e. LD, 1-, 2- and 3-gram) (F(24, 360) = 9.457, 8.943, 1.627, 15.26; p< .0001, p<
.0001, p = .03, p< .0001, respectively). Further, we performed multiple paired t-tests between

Fig 3. Mean number of errors out of 5 sets tested in the study phase. The error rates represent the

overall average until the criterion of two consecutive correct answers for all 5 orders was reached. The error

bars indicate standard deviations.

doi:10.1371/journal.pone.0172290.g003

Two-dimensional visual statistical learning
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“same” and “different” judgments for each rank, in each of the four measures of dissimilarity.

We also performed paired t-tests between “same” and “different” judgments for the mean of

all examplers and the prototypical exemplar (see Analysis) altogether. We applied Bonferroni

correction of n = 27 for obtained p-values, as a conservative approach. The results showed that

in LD, there were significant differences in the degree of dissimilarities between “same” and

“different” judgments for ranks 1 to 5, 7 to 9, and the mean (“same” < “different” with p< .05

Fig 4. Difference between “same” and “different” judgments in four measures of dissimilarity: The x-

axis indicates ranks, the mean of 25 ranks and the prototypical. Rank 1 represents the exemplar most

similar to the probe, while rank 25 represents the least similar. The y-axis indicates the mean dissimilarities

between exemplar and probe patterns among the subjects. The black and gray line/bars are for the “same”

and “different” judgments, respectively. The asterisks indicate statistically significant differences in

dissimilarity measures between “same” and “different” judgments in multiple paired t-tests with Bonferroni

correction (where * p < .05, ** p < .01, *** p < .001, with the asterisks vertically represented in the graph).

Error bars indicate the standard deviations. No statistical tests were performed on ranks labeled "na" due to

the ceiling effect, where the dissimilarity measure took the saturated value of 1 for at least one subject. See S1

Table for statistical values.

doi:10.1371/journal.pone.0172290.g004
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and Cohen’s d> 0.8, for more details, see S1 Table). In 1-gram, there were significant differ-

ences in the degree of dissimilarities between “same” and “different” judgments for ranks 17 to

25 (“same” < “different” with p < .05 and Cohen’s d> 0.8). The results for 2-grams showed

that the degree of dissimilarities had significant differences between “same” and “different”

judgments for ranks 6 to 9, 25, and the mean (“same” < “different” with p< .05, Cohen’s

d> 0.8). In 3-gram, there were significant differences in the degree of dissimilarities between

“same” and “different” judgments for ranks 1 to 16, and the mean (“same” < “different” with p

< .05, Cohen’s d> 0.8). We also performed the Kolmogorov-Smirnov tests for normality for

each distribution of the degree of dissimilarity and found no violation of normality (S1 Table).

Taken together, across the measures of dissimilarity, there were variations regarding ranges of

ranks in which the subjects’ “same” and “different” judgments were related to the degree of

dissimilarities between the exemplar and probe patterns.

It is possible that these variations reflect the same phenomenon viewed from different per-

spectives due to the nature of the current stimuli, such that the rank numbers of 1-gram was

inversely correlated with that of 3-gram. To verify this point, we further calculated correlation

coefficients of rank numbers, which each exemplar scored, among the measures of dissimilar-

ity. All pairs of the measures of dissimilarity showed significant positive correlations of rank

numbers (Fig 5), indicating that the variations across the measures of dissimilarity arose from

the nature of subjects’ judgments beyond that of simple inverse correlations.

Discussion

We used a visual AG paradigm [25] to investigate whether human subjects can extract statistical

regularity of 2-D patterns, when the explicit instruction (i.e. to memorize the presentation

order) was not about the learning of regularity. AG learning approach to implicit rule extraction

Fig 5. Spearman’s rank correlation coefficients among ranks in the four measures of dissimilarities.

Gray scales indicate numbers of exemplars for each dot. The x and y axes are ranks of each dissimilarity.

doi:10.1371/journal.pone.0172290.g005
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has been validated in previous studies, which showed that statistical learning occurs in familiari-

zation [7, 9, 26], including one-dimensional visual patterns [14, 25, 28], visual temporal orders

[11, 13] and temporal frequencies of visual spatial configurations [10, 12]. Neural correlates of

visual statistical learning indicate that statistical learning occurs implicitly with little exposure to

stimuli, independent of subsequent explicit familiarity [15]. These studies would suggest that

humans are able to extract statistical regularity of 2-D patterns. Consistent with previous studies

[7–15, 25, 26, 28], this study showed rule extraction over 2-D patterns in human subjects as

demonstrated by the result of significant learning effects in the study phase (Fig 3) and positive

d-prime value. Regarding the AG learning of the visual-spatial format, the current experiment

is an extension of a previous study, in which Conway and Christiansen showed that humans

could learn rules from horizontally displayed visual sequences that were generated by AG [28].

Their study used horizontally displayed one-dimensional sequences and found that the rule

learning was affected by elements at the left end of the sequences. This effect was excluded in

the current experiment by using tiled patterns in which only the spatial relations between ele-

ments were relevant. Thus, it is suggested that humans are able to learn rules in spatial relations

between elements without explicit reference to specific element-position relations, at least in

the case of 2-D arrangement.

The small value of d-prime between AG generated and control patterns indicates that there

is possibly no fine-grained categorization according to the predefined rules. The predefined

rules are not derivable precisely from the limited number of exemplars, as arguments concern-

ing poverty of stimulus often suggest in formal language theory [34, 35]. In the current study,

the subject successfully made categorical judgment (“same” or “different”) of probes: Categori-

zation might proceed by the subjects’ individual definitions based on their own experience of

exemplars [36]. In the study phase, learning was unsupervised, where the rule extraction

occurred in implicit learning in a task in which discrimination, recognition and working

memory are required for the presentation order task without explicit instructions about rule

extraction. Previous studies showed that unsupervised category learning occurs automatically

or spontaneously during exposure to visual objects [37, 38]. The current experiment demon-

strated that unsupervised category learning also occurs during discrimination of 2-D visual

arrangement. Although unsupervised category learning typically involves ill-posed problems

and demands conjecture or instinct to learn meaningful categorical knowledge [39], it has

been suggested that instinctive learning or reasoning has validity [36]. The nature of subjects’

judgments observed in the current study is in line with its validity, shedding light on the nature

of human perception of the visual arrangement.

Importantly, the subjects’ “same” and “different” judgments were related to the degree of

dissimilarities between the exemplar and probe patterns (Fig 4), indicating that subjects were

sensitive to the similarity between probe and exemplar patterns. It is possible that there are sev-

eral aspects of cognition reflected by alternative dissimilarity measures (LD, 1-gram, 2-gram,

and 3-gram). The subjects were able to base the judgment (“same” or “different”) on the

probes based on exemplars most similar to the probes as represented by LD and 3-gram, two

measures with high context-dependency. This tendency was also moderately exhibited in char-

acteristics represented by 2-gram. These characteristics possibly reflect the nature of configural

processing in the subjects. On the other hand, in terms of characteristics represented by

1-gram, the subjects were shown to be sensitive to information derived from exemplars least

similar to the probes. These results, taken together with the result of positive correlations of

rank numbers between the measures (Fig 5) would suggest that element-based and configural

processing coexist in the processing of visual arrangement. This result is consistent with a

lesion study suggesting the notion that local and global processing are separable in visual per-

ception [31], and a study indicating human sensitivity to single elements and sequence of
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elements extracted from scenes [10]. The subjects in the current study seemingly utilized these

processing to judge new patterns implicitly, while they were not necessarily conscious of what

they remembered according to the post-experiment report, in line with AG learning studies

[25, 29]. It is suggested that the processing of visual arrangement can be conducted implicitly,

with parallel processes regarding how many elements are taken into account at once.

Reed’s categorization strategies [32] explain the characteristics of element-based and con-

figural processing. He documented four important strategies of subjective categorization;

prototype, proximity algorithm, cue validity and average distance. The average distance

strategy entails judgment based on the mean distances between a probe and all exemplars. In

his study, the average distance strategy, as well as the prototype strategy, explained subjects’

behavior in categorizing multidimensional faces. The mean dissimilarity of 25 ranks (Fig 4)

in the current analysis is equivalent to the average distance strategy. The proximity algorithm

could work within the framework of the exemplar theory. It predicts that judgment is based

on the most similar exemplar to a probe, which is equivalent to the k-nearest neighbor (k-

NN) method. The K-NN method is one of useful computational models of pattern recogni-

tion, where k in k-NN represents the number of exemplars taken into account for a given

classification. In the current analysis, the subjects’ sensitivity to characteristics derived from

exemplars with high ranks (most similar to the probes) and the mean dissimilarity of 25

ranks represented in LD and 3-gram, helps to explain the characteristics of highly context-

dependent or informative configural processing. The subjects’ judgments may be primarily

based on the proximity or the k-NN algorithm strategy in configural processing. On the

other hand, the subjects’ sensitivity to dissimilarities in exemplars with low ranks (least simi-

lar to the probes) in element-based processing is similar to distal algorithm. Therefore it is

possible that judgment is based on the elimination of highly dissimilar exemplars regarding

element-based processing. These possibilities can be proposed on the premise that each dis-

similarity analysis is separately discussed. All the measures of dissimilarity are positively cor-

related (Fig 2). Exemplars in high ranks in LD and 3-gram would be different from those in

low ranks in 1-gram (Fig 5). Further studies will be necessary to elucidate issues concerning

which strategy most contributes to judgment.

Effects of dissimilarity on judgment of new patterns were larger in 3-gram than 2-gram in

which exemplars in a fewer number of ranks (rank 6 to 9) showed significant differences (Fig

4). This discrepancy between 2- and 3-gram was possibly due to the fact that characteristics of

rules was more effectively represented in 3-gram than 2-gram, while the memory of embedded

sequences in larger spatial configurations was inhibited [12]. There were few common n-

grams for n> = 4 between patterns in the current experiment. Thus, 3-gram was the largest

informative sequence in this context, whereas 2-gram was less informative. 2-gram not embed-

ded in 3-gram might have contributed to the significant differences observed in the result of

2-gram. Fiser and Aslin asked their subjects to judge familiarity of a single sequence of ele-

ments embedded in scenes [10, 12]. The subjects were able to remember element sequences

better with perfect conditional probability p = 1.0, compared to non-perfect conditional proba-

bility p = 0.5 or 0.66, when those two types of sequences were presented equal times. The cur-

rent study additionally indicates that humans are sensitive to various conditional probabilities

between elements of spatial sequence.

In contrast to many studies in statistical learning which have focused on temporal frequen-

cies, the current study investigated spatial frequency of element sequences within patterns. As

a result, we were able to analyze categorical judgment based on relations between probes and

exemplars, keeping knowledge of individual exemplars [23]. The analysis was extended to

comparison and accumulation of exemplars, reflected in ranking and the mean dissimilarity of

25 ranks, respectively. The subjects repeatedly learned each exemplar through within-category
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discrimination, until they reached a certain learning criteria. Accordingly, we could assume

that the subjects were familiarized to the exemplars equally.

The results suggest that no prototypical representation was constructed, where there were

no relation between the subjects’ “same” and “different” judgments and the degree of dissimi-

larities between the prototypical exemplar and probe patterns (Fig 5). It is possible that the

prototypical exemplar, which is the most similar to other exemplars on the average, does not

represent the actual prototype [16]. The prototypical approach assumes that a generalized

knowledge is formed in category learning, whereas the exemplar approach requires memory

of individual exemplars. Both approaches have advantages depending on the nature of the task

[19, 40]. Briscoe and Feldman showed that humans perform a middle point of both extreme

approaches in a supervised category learning with multiple feature dimensions [41]. They

claimed that prototype and exemplar models are in a trade-off relationship, the former starting

from a simple conceptual model while the latter had high variance to fit any predefined rules.

The current result is in favor of exemplar-based representation as shown in the subjects’ sensi-

tivity for several ranks across measures of dissimilarity (Fig 4). These findings are consistent

with natural language categories [17] and evidence from neural data [18].

The mean dissimilarity of 25 ranks, was a product of the collective information of relations

between exemplars and probes [32]. This computation necessarily involves exemplar-based

representation because it is necessary to calculate 25 dissimilarities between probe and exem-

plar patterns in each rank before calculating the mean of dissimilarity. Thus the significant dif-

ferences observed in the mean dissimilarity of 25 ranks indicate the existence of exemplar-

based representation. It is possible that the mean dissimilarity measures reflect a more abstract

category representation of multiple exemplars in contrast to exemplar-specific representation

[21]. A study investigating neural correlates with a visual identification task demonstrated that

abstract category is represented in the left occipital cortex and IT, while specific exemplars

are represented in the right occipital cortex and IT [20]. More specifically, the core areas of

abstract category representation and exemplar representation may be left and right fusiform

gyri, respectively [21]. Garoff et al. [21] showed that specific minus non-specific recognition

and non-specific recognition minus forgetting are associated with activities in the right and

left fusiform gyri during encoding, respectively. In their study, subjects viewed and judged pre-

sented visual objects, choosing from three alternatives, "same", "similar" or "new", with respect

to knowledge in a prior study phase, which was conducted in a very similar manner to the cur-

rent experiment. They designated a "same" response to a "same" object as specific recognition,

a "same" response to a "similar" object or a "similar" response to a "same" object as non-specific

recognition. The present results are consistent with the view that exemplars contributing to

strong exemplar-based representation lead to specific recognition accompanied by the right

fusiform activation while exemplars contributing to abstract category representation such as

average distance lead to non-specific recognition accompanied by the left fusiform activation.

In addition, the characteristics of exemplars would be already determined by the fusiform cor-

tices in the study phase [21].

Humans understand global as well as local relations [31, 42]. It is, however, not known

whether spatial statistical arrangement is processed in a similar manner to temporal one,

engaging brain areas associated with episodic memory [15]. The global and local processing of

visual input shows some similarity to temporal statistics regarding how animals tend to process

[43, 44], and thus some shared mechanisms would be involved. One region possibly involved

in spatial arrangement processing is the fusiform cortex [44]. Extensive familiarization facili-

tates categorical selectivity in the fusiform. Not only faces but also objects of visual expertise

activate the lateral side of the fusiform, also known as the fusiform face area [45]. Extensive

training of tool-like novel objects elicits focal activation of the medial fusiform gyrus, a region
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known to be tool-selective [46]. These familiarization effects indicate that the fusiform may

aggregate information of objects and categorize according to their statistics of features. On the

other hand, the perirhinal cortex (PRC) plays a prominent role in discrimination between

semantically similar objects [47] and between objects in the context with high degree of feature

ambiguity [48]. Thus, it is possible that the fusiform cortex is involved during familiarization,

such as in the study phase in this study, whereas PRC is involved when decision is required,

such as in the test phase.

Finally, the results of the current study suggest the existence of element-based and configural

processing in visual arrangement in humans, which is consistent with a computational study

[24]. The co-existence of them in exemplar-based representation suggests that visual represen-

tation would be distributed along two axes, spatial relations within exemplars and multiple indi-

vidual exemplars. The spatial axis is responsible for levels of processing, from the element-

based to the configuration of multiple elements within each exemplar. This axis reflects the

online analysis of spatial and perceptual information. The axis of multiple individual exemplars

is for categorical knowledge, and is subserved by several factors from a single exemplar (exem-

plar-specific representation) to conjoint representation of multiple exemplars (abstract category

representation). Categorical knowledge of exemplars involves the memory system and serves as

the basis for judgment of forthcoming events. Although it is possible that there are other axes or

measures that capture better aspects of visual representation, this objective analysis sheds light

on human judgment of visual arrangement regarding exemplar-based representation. Specifi-

cally, the current analysis provides the evidence of both axes within a single experiment.

Conclusion

This study shows that humans are able to learn rules of 2-D arrangement in a statistical man-

ner. The rules contain categorical knowledge that is dominated by exemplar-based representa-

tion, and is used in later judgment of new patterns.
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