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Abstract

Moderate traumatic brain injury (TBI) in children often happen when there’s a sudden blow

to the frontal bone, end with long unconscious which can last for hours and progressive cog-

nitive deficits. However, with regard to the influences of moderate TBI during children adult-

hood, injury-induced alterations of locomotive ability, long-term memory performance, and

hippocampal electrophysiological firing changes have not yet been fully identified. In this

study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor

and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and mem-

ory function, extracellular CA1 neural spikes were assessed during acute and subacute

phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the

effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 sub-

regions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at

the early stage in acute phase but gradually recovered later during adulthood. At the time

points in acute and subacute phase after TBI, novel object recognition (NOR) ability and

spatial memory functions were consistently impaired in TBI mice; hippocampal firing fre-

quency and burst probability were hampered. Analysis of the altered burst firing shows a

clear hippocampal theta rhythm drop. These electrophysiological impacts were associated

with substantially lowered NOR preference as compared to the sham group during adult-

hood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-

weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While

the locomotive ability progressively recovers, the cognitive deficits persisted while the mice

mature as adult mice. The cognitive deficits may be attributed to the general suppressing of

whole neural network, which could be labeled by marked reduction of excitability in hippo-

campal CA1 subregion.
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Introduction

TBI is a significant global public health problem and is a common condition affecting children

all over the world [1, 2]. Though Mild TBI comprises about 80% of incidence in the young

population [2], the outcome of moderate and severe TBI is often devastating. Although the

underlying cellular and molecular pathophysiology are not fully understood, TBI can cause

long-term motor sensory dysfunction and child death [1, 2], and often resulting in lasting seri-

ous cognitive sequelae [3].

Several moderate/severe pediatric TBI studies demonstrate frontal white matter damage,

including traumatic axonal injury in children with deteriorated several cognitive courses, such

as processing speed, working memory and executive deficits [4–6]. Besides cortical atrophy,

juvenile rats who suffered either repeat mild TBI or moderate TBI revealed marked overall loss

of neurons within cortical regions, including the motor and smatosensory cortex [7, 8]. These

clinical and experimental observations suggested that frontal white matter tracts were highly

vulnerable to pediatric TBI, the reduced microstructural integrity of the cortical and subregion

connection, may act as a neuropathological mechanism contributing to TBI induced cognitive

deficits.

Moderate/severe TBI causes neuronal cell and dendritic spines loss in mouse or rat hippo-

campus [9–11]. However, the association of cognitive function with neural activity is not well

documented. Regionally increased or decreased the synaptic efficacy and circuit excitability

was seen in the animal hippocampus following moderate/severe TBI [9–11]. No significant

change was reported in the overall mean firing and burst spike frequency in CA1 subregion

after mild TBI [12]. Bursting is one of the two main discharges of pyramidal neurons in the

hippocampal place field, and correlate with slow theta rhythm oscillations in the local field

potential of the hippocampus [13, 14]. While reductions in firing frequency and bursting of

CA1 and CA3 principal cells had been proposed to be one of the mechanisms underlying spa-

tial learning deficits [15, 16], clinical data also shows that theta burst stimulation (TBS) deliv-

ered to the dorsolateral prefrontal cortex [17], or fornix [18] may improve cognitive

performance [17, 18]. However, the electrophysiology data in TBI animal seems inconsistent

with the clinical results. With a mild TBI model in adult rat, recording in CA1 and CA3

revealed no significant change in firing or spike characteristics of single-neuron [19], but in a

similar TBI adult rat model, burst activity of single-neuron was found to be decreased [12].

Age at the time of TBI is an important factor affecting the long-term functional outcome.

Brain’s sensitivity to the deleterious effects of a TBI is varied across one’s lifetime [20]. A few

experimental TBI studies have evaluated and revealed prolonged cognitive deficits [21–23].

Little is known regarding the post TBI changes of cognitive function and hippocampal

electrophysiological firing during an animal transition from adolescence to adulthood. An epi-

demiologic study shows that across all age groups, the incidence of hospitalized and fatal brain

injuries consistently peaked among late adolescents [1]. Using a lateral fluid percussion (LFP)

method, which is one of the most often used experimental TBI models, and can faithfully repro-

duce concussion injury in human [24], our study attempts to examine how moderate TBI in the

motorsenory region affects the locomotion ability, cognitive memory, hippocampal burst firing

in the 6-weeks-old mice in acute and subacute phases, while the mice grow up into adult mice.

Materials and methods

TBI model

Male C57BL/6 mice (15–20 g, 6 weeks old at the time of injury, Research Animal Center of

Shanxi Medical University) were used for the experiments. Animals were randomly assigned
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to TBI (n = 15) or sham (n = 15) groups, but the final TBI group include fourteen mice by

excluding one mouse who died after LFP. Animals were housed under controlled conditions

with a 12-h light-dark cycle. The mice had free access to water and standard food. All animal

handling and procedures were approved by Animal Care and Use Committee of Shanxi Medi-

cal University, and complied with the US National Institutes of Health Guide for the Care and

Use of Laboratory Animals.

Moderate TBI was induced in mice using a modified LFP method [24]. Regarding the anes-

thetics used in surgical anesthesia, compared with pentobarbital, inhalational anesthetic such

as isoflurane was reported either having the potential of improvement for post injury recovery

[25], or having similar effects on TBI induced injury pattern and severity [11]. In this study,

we used the sodium pentobarbital (45 mg/kg i.p.) for animal anesthesia. In brief, under anes-

thesia with sodium pentobarbital, animals were fixated in a stereotaxic frame.

Given the prevalence damage of frontal white matter including motorsensory cortex in chil-

dren [4–6], also to avoid hippocampal varied condition of distortion and exposure due to later

on cortical necrosis and deletion, which often occurs in the popular parietal cortical LFP ani-

mal model, we choose to LFP site a little far away from the hippocampus. A 3 mm craniectomy

was performed on the right side of frontal motorsenory cortex, 1.5 mm anterior to the bregma,

1.5–2.0 mm lateral to the midline. A modified Luer-Lock (3mm inside diameter, made from a

19G needle cap) was glued to the craniectomy site and fixate with dental cement. The depth of

the anesthesia was monitored by checking the palpebral and paw withdrawal reflexes. During

the late period of animal anesthesia after the return of a withdrawal reflex to a paw pinch, TBI

was induced using a modified fluid percussion device (Jiaxing Bocom Biotech Inc, China). A

strike with the pre-adjusted pendulum generated rapid injection of saline into the closed cra-

nial cavity which was filled with saline, thus produced a pulse of 10–12 ms duration (Fig 1A

and 1C). The force of the pressure pulse was measured extracranially by a transducer and

recorded by the device equipped software. The percussion force is moderate (2.5–2.8 atm)

[24], which was also verified during our preliminary experiments of the cortical injury. Sham-

injured animals received identical anesthesia and craniotomy, but were not exposed to LFP

brain injury. Following TBI or sham injury, mice were disconnected from the device, the inci-

sion was sutured, and antibiotic ointment was applied to the wounds, the animals were kept

onto the blanket which was maintained at 37˚C until recovery of spontaneous motor activity.

Measure hypnosis time

After moderate TBI, we compared its effect of the duration of pentobarbital-induced loss of

righting reflex (hypnosis) between TBI and sham groups. The hypnosis time was measured as

the time from which righting reflex was lost until it was regained. The righting reflex was

deemed to be lost when an animal did not right itself within 15 s of being placed on its back

[26], and righting reflex was assessed every 60 seconds after TBI until a normal response was

observed.

Electrode implantation and verification

Four to Five days after LFP, sham and injured and sham animals were re-anesthetized (sodium

pentobarbital, 45 mg/kg i.p.), and transferred to a Kopf stereotaxic apparatus. According to the

atlas of mouse brain [27], a one-row array of 7 Teflon coated Nichrome microwire electrodes

(first microwire serve as the reference, 50 μm diameter, 250 μm inter-electrode distance, Bio-

graphics) was guided into the hippocampus CA1 subregion ipsilateral to the LFP side. The ste-

reotaxic coordinates were as following, 2.0 mm posterior to the bregma, 2.0 mm lateral to the

midline, 1.1–1.3 mm ventral to the skull surface. Ground electrodes were placed on the skull
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near the Lambda suture. A small amount of a mixture of mineral oil and bone wax was packed

around all the electrode penetration zones. One support screw was placed over the frontal part

of the skull, and the whole ensemble was secured with dental cement (Fig 1A).

At the completion of all experiments, the final electrodes position was marked by 20 s of

stimulation at 15 μA, mice were deeply anesthetized and intracardially perfused with ice-cold

sodium phosphate buffer saline followed by 4% paraformaldehyde (PFA). Brains were then

removed and post-fixed in PFA for at least 24 h. After hydrate and clear sections in alcohol

Fig 1. LFP, electrode implantation, injury, percussion trace and electrode location. (A), Positions of LFP and

recording electrodes. The large filled circle indicates the craniectomy site for LFP. The small black square shows where

the recording microwires implanted. The two stars represent the screws where grounding silver leads connected with.

The screw in the frontal skull, as well as the grounding screws, help to secure the whole electrode assembly. (B),

Macroscopic findings were seen in LFP injured mouse on DPI 16 showing the lesion confined to the cortex. (C), The

single LFP waveform demonstrates a rapid upstroke followed by a slower downstroke within 10 ms pulse duration. (D),

An example of cresyl violet staining shows the actual location of the recording electrode in mouse CA1 subregion.

doi:10.1371/journal.pone.0171976.g001
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and xylene respectively with 2 or 3 changes, paraffin-embedded sections of brain tissue (8 μm

thick) were stained with cresyl violet for microscopic examination of electrode placements

(Fig 1D). Only evidence obtained from electrodes confirmed to be within the target region

were used in further analysis.

Motor performance

Motor function was evaluated with the well-established beam-walk task, and modified from

the model developed by Luong and his colleagues [28]. The beam device consists of 1-meter

long beam with a flat surface of 6 mm width resting 1.5 m high on two poles. The beam-walk

test consisted of training and assessing the time of mice walking across the beam to a darkened

goal box (30x18x22 cm), and reinforced with adverse bright light at the start end. The time of

animals to cross the center 80 cm is measured were automatically measured by two infrared

sensors. The mice were trained for five days with three trials per day until the animal could

run the length of the beam with no more than two-foot slips. The baseline performance was

recorded on the day prior surgery. The test was conducted on DPI 1, 3, 7, 9, 11, 14 and 16, and

consisted of three trials with 60 sec inter-trial interval. A slip is defined as the foot coming off

the top of the beam. Total hind limb steps/foot slips were manually counted, and all training

and testing procedure were videotaped for later finer analysis of slipping and other observable

motor deficits.

Novel object recognition test

On DPI 7 and 14, animals were assessed NOR test, which is grounded on ‘spontaneous novelty

preference’. Mice were allowed to freely explore the open field (40×40×40 cm) for 5 min, 24

hours before the test. No objects were placed inside the box during the habituation phase. Dur-

ing the acquisition phase, two identical objects (A and B), were placed in a symmetric position

within the field. The shapes of objects are like square building blocks which are 5x5x5 cm

approximately. Each animal was then placed inside the box and allowed to explore the objects

for 5 minutes, and the exploration was video tracked with a camera. Furthermore, the times

spent on exploring each object during acquisition and testing phase was manually recorded,

and verified using the captured video. Exploration of an object was defined as rearing on it or

sniffing it at a distance of less than 2 cm and/or touching it with the nose. If the mouse stands

on the object or grooms within 2 cm to the object, the results were excluded. Between trials,

the objects were washed with 70% ethanol solution to minimize olfactory cues. On NOR test

phase (DPI 9 and 16), which is 24 hr after acquisition phase, all the processes are the same as

those in acquisition phase except one of the old objects is randomly replaced with a new differ-

ent object (C), a round building block (5cm diameter x 6cm high). The preference rates are

measured by dividing the total exploration time by the time to explore an object. The formula

to calculate the object preference is: the preference % = time to explore the individual object /

total exploration time to objects x 100% [29]. The one-way ANOVA is used for statistical

analysis.

Morris water maze test

Spatial memory performance was evaluated in the Morris water maze (MWM) acutely (acqui-

sition trials on DPI1–5 and probe trial on DPI 6), subacutely (acquisition trials on DPI 8–12

and probe trial on DPI 13). The apparatus (Zhenghua Bio Instruments Ltd., Huaibei, China,)

consisted of a circular water tank (120 cm in diameter and 50 cm high) filled with water to 29

cm depth with several highly visible cues located on the inner walls of each of the four quad-

rants and the water temperature was maintained 23–25˚C. To improve the contrast to the
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black color of the C57BL/6 mice, the water of the pool was made opaque using milk. Mice had

to locate an invisible platform which was positioned at the midpoint of the target quadrant,

and submerged 1 cm below the water level. Data were monitored and achieved using a video

camera with a computerized video tracking system (Ethovision 3.0, Noldus Information Tech-

nology, Wageningen, the Netherlands). Each animal was trained four times per day for 5 con-

secutive days. For each trial, mice were randomized to one of four quadrants and placed in the

pool facing the wall. Mice were given a maximum of 60 seconds to find the submerged plat-

form. Mice who successively found the platform was allowed to rest on it for 10 sec, while mice

who failed to locate the platform within the time limit were guided to it and allowed to rest for

20 sec. On day 6, all mice also underwent a probe trial (retention phase), where the platform

was removed from the pool. Performance in the MWM was quantitated by latency to find the

platform, and the total time spent in the target quadrant (where the platform had been

removed) versus the other quadrants.

Electrophysiological recording and analysis

Electrophysiological recording was carried out while mice freely explore the open field on DPI

7 and 14. Since no “place cell” were recognized in a similar TBI animal model during NOR test

[12], and analyzing large quantity of cells is required to correctly identify “place cell” by assess-

ing the correlation between firings rate and animal’s spatial location [30], we haven’t attempted

to classify the “place cell” during NOR test. Burst firing has stronger “downstream” effects

than that of a single spike, including a summation of EPSP and synaptic plasticity. Bursting of

hippocampal principal cells has been implicated in spatial learning deficits [15, 16]. Burst firing

was assessed in this study while animals explored the open field, 24 hr before assessing NOR.

Through a microwire array connected samtec adaptor and light-weight cable, the spiking sig-

nal was digitized at 30 kHz using a 64-channel data acquisition system (Cerebus, Blackrock

Microsystems) with the band-pass filtering of 250–7500 Hz with a threshold set at 4 s.d. of the

background noise.

CA1 pyramidal neuron spike discharges were recognized by means of the waveform (Fig

2), spontaneous rate and distinctive phasic bursts as described previously [31]. Before includ-

ing neural signals in a data set, autocorrelograms were performed on each channel record to

assure those single neurons were separated from each other and from the background noise.

Neural spikes of identified principal cells with firing rates of 0.25–5.0 Hz were isolated using

Offline Sorter (Plexon Inc., Dallas, TX) and confirmed using NeuroExplorer (Nex Technolo-

gies, Littleton, MA). Low-frequency firing neurons of 0.25 Hz or less were excluded from the

study’s analyses due to the insufficient number of spikes. Legendy and Salcman [32] assumed

that the frequency of spike trains had a Poisson distribution, and defined bursts of spikes by

the value of the ‘Poisson surprise’ parameter. A burst is defined as at least three consecutive

spikes with two sequential interspike intervals (ISI) less than one-half of the mean ISI of all

spikes. In this study, bursting feature of spikes were characterized using NeuroExplorer

included bursting analysis function, which was based on ‘Poisson surprise’ method. Bursts

with Surprise values> 10 were used to analyze the burst per minute, mean burst duration,

mean spikes in burst, mean frequency in burst, mean ISI in burst and mean inter-burst interval

(IBI).

Histological

Once the behavioral assessment tests have been done on DPI 16, the mature adult mice were

pentobarbital anesthetized, transcardially perfused with isotonic saline followed by 4% para-

formaldehyde in phosphate-buffered saline (PBS, pH 7.2). Brains were removed, post-fixed in
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4% paraformaldehyde for 24 h at 4˚C, and sectioned coronally from 1 mm anterior to the

lesion site to the posterior margin of the lesion. Then, the brain tissues were dehydrated by

immersion in a series of aqueous alcohol solutions gradually moving to pure alcohol. After

clearing with several xylene washes, the tissues finally were paraffin-embedded (Sigma-

Aldrich). Using a microtome (Thermo Shandon Finesse ME+, Suzhou, China), the brain tissue

was cut into 6 μm-thick coronal sections (300 μm apart). The sections were Hematoxylin and

eosin (HE) stained using modified methods (0.5% hematoxylin for 8 min at 25˚C; 0.1% eosin

for 2 min at 25˚C). Images were acquired using an OLYMPUS IX71 microscope (Olympus,

Tokyo, Japan), and cortical lesion volumes were analyzed using NIH ImageJ software

(National Institutes of Health, Bethesda, MD, USA). The area of the lesion was determined by

subtracting the intact area of the ipsilateral hemisphere from the area of the contralateral hemi-

sphere. Ten sections at 300 μm intervals throughout the entire lesion and the lesion volume

Fig 2. A typical burst firing recording and its inter-spike interval histogram. (A), typically isolated burst

firing waveform recorded from CA1 pyramidal cell. (B), inter-spike interval histogram of the isolated burst firing

in CA1 cell.

doi:10.1371/journal.pone.0171976.g002
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was presented as a volume percentage of the lesion compared with the contralateral hemi-

sphere. Starting at coordinates AP −1.58 mm and ending AP −3.28 mm from bregma [27],

6 μm-thick coronal brain sections with 100 μm apart covering the whole dorsal hippocampus.

A total number of 5 sections per mouse were used. Cells presenting with nuclear and cyto-

plasmic staining (HE) were manually counted in the hippocampal CA1 neurons.

Statistical analysis

Student t-test, analysis of variance (ANOVA) were used for group comparison, as appropriate,

with Newman-Keuls or Tukey post hoc comparisons. p<0.05 was considered statistically sig-

nificant. Data are presented as means ± SEM. The strength of a linear association between two

group variables was determined using Pearson correlation coefficient.

Results

Injury

The injury severity in TBI animal is gauged by the biomechanical forces and the acute suppres-

sion of neurological reflexes. After moderate LFP strike, righting reflex was regain late in TBI

group mice compare with that in sham group mice, consequently, the hypnosis duration of

pentobarbital was prolonged (94±4 min, n = 7) for TBI group mice, compare with sham group

mice (71±2 min, n = 8).

Motor function

Beam-walk on a narrow beam (6 mm) was evaluated since mice with TBI at motor-sensory

cortex lesions intend to show movement dysfunction of the contralateral side of the body. The

narrow beam was chosen because C57BL/6 mice are typically active rodent animals [33]. No

pre-surgical differences in time to traverse the beam were revealed between TBI and sham

groups, as all mice were proficient and reached the goal box in approximately 6–7 sec. After

TBI, two-way ANOVA analysis of beam-walk data shown significant group (F1,80 = 83.52,

p< 0.0001) and day (F7,80 = 12.75, p< 0.0001) differences vs. sham controls; similarly two-

way ANOVA analysis of foot-fault data also confirmed significant group (F1,80 = 135.5,

p< 0.0001) and day (F 7,80 = 18.55, p< 0.0001) differences vs. sham controls. Exact daily

comparison of beam-walk and foot-fault function between TBI and sham groups was con-

ducted using multiple t tests, and results are shown in Fig 3. In addition, the beam-walk deficits

significantly correlated with the foot-fault performance from DPI 1 to 16 (Pearson correlation

r = 0.9749; p = 0.000937).

Novel object recognition

During the acquisition phase, the exploration times for two identical objects are similar

(around 50%) in TBI and sham group mice. During NOR test phase on both DPI 9 and 16,

sham group mice spent significantly more time with higher preference rates on the novel

object demonstrating good NOR performance, while TBI group animal explored significantly

less than sham groups indicating damaged NOR performance (Fig 4). Thus, TBI injury

resulted in significant and consistent object memory impairment in TBI injured mice during

subacute phase while mice transit from late adolescence to young adult. Moreover, the injury

severity as measured by the prolonged loss of righting reflex after TBI significantly correlated

with the worse NOR performance on DPI 9 (Pearson correlation r = 0.778; p = 0.039), and on

DPI 16 (Pearson correlation r = 0.769; p = 0.043), as measured by the preference to the novel

object.

Moderate injury causes behavioral and electrophysiological dysfunctions in mice
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Spatial memory

Besides the long-term visual memory evaluation in NOR test, we also assessed spatial learning

and long-term memory in the moderate TBI mice using the MWM. During the acquisition

phase, mice from both groups showed daily progress in their abilities to locate the hidden plat-

form. However, moderate TBI mice displayed increased latencies versus the sham group mice

(Fig 5). At the acute time points (DPI 1 to 5), two-way ANOVA analysis showed that the

Fig 3. The Motor function changes after TBI. Mice motor performance in term of beam-walk latency (A)

and foot-fault (B) were significantly impaired due to moderate TBI. Multiple Holm-Sidak t test were used to

compare the daily based beam-walk or foot-fault between TBI and sham groups. Data are expressed as

mean±SEM (n = 7). * p<0.05, ** p<0.01 and ***, P < 0.001 vs. control.

doi:10.1371/journal.pone.0171976.g003
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group (F1,50 = 16.23, P < 0.001) and day (F4,50 = 13.83, P< 0.0001) differences were statisti-

cally significant vs. sham group (Fig 5A). The group (F 1,50 = 10.14, P< 0.01) and day

(F4,50 = 13.21, P< 0.0001) difference were also significant at subacute time points (DPI 8–12,

Fig 5B). Subsequent analysis was performed to evaluate the preference for the target quadrant

between sham and TBI group. The mice in the sham group spent significantly more time in

the target quadrant than the mice in TBI group on the probe trial days (DPI 6 and DPI 13,

Fig 5C).

Bursting changes in CA1

Applying the criteria and identify approaches mentioned in the method, 24 units were identi-

fied in sham and TBI group respectively on DPI 7, while 23 and 24 units were recognized in

Fig 4. Object preference (mean percent exploration time) evaluation on DPI 9 and 16. The sham group performs

significantly better than TBI group on the novel object (object-C) testing on both DPI 9 (A) and 16 (B), indicating TBI

consistently deteriorated cognitive memory after injury. Object-A, B, identical objects; Separate ANOVAs were used to

compare the preference for all the familiar and novel objects during the acquisition phase (object-A, B test) and following

novel object test phase (object-A/B and object-C test). Data are expressed as mean±SEM (n = 7–8). * p<0.05,

** p<0.01 vs. control.

doi:10.1371/journal.pone.0171976.g004
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sham and TBI group respectively on DPI 14. A representative isolated burst firing waveform

recorded from CA1 pyramidal cell, and its related inter-spike interval histogram are shown in

Fig 2. Compare with sham group, burst firing pattern of CA1 pyramidal cell was altered while

TBI mice moving freely in the open field, showing a trend of more unpredictable, which was

denoted by significantly increased burst surprise values on both DPI 7 (12.52 ± 0.45 and

19.82 ± 1.33 for sham and TBI group respectively, n = 24, p<0.001 vs. sham by unpaired t-
test.) and 14 (12.72 ± 0.46 and 25.58 ± 2.23 for sham and TBI group respectively, n = 23–24,

p<0.001 vs. sham by unpaired t-test.).

Moderate TBI significantly impaired the overall firing rate in TBI mice on DPI 14 (Fig 6A

left), while significantly suppressed burst per minute in TBI mice on both DPI 7 and 14 (Fig

6A right). In the meantime, the mean burst duration presented a trend of an increase (Fig 6B),

while the mean spikes in the burst (Fig 6C) showed a trend of decrease though both changes

were not significant. On the contrary, mean frequency in burst (Fig 6D), mean ISI in burst

(Fig 6E) and mean interburst interval (Fig 6F) was significantly increased in TBI group during

adulthood on DPI 7 and/or 14. Accordingly, parallel with the increased bursty feature, above

electrophysiological data demonstrate that CA1 cells in TBI group progressively fire fewer

bursts of spikes with longer intraburst and interburst interval. However, the TBI affected CA1

cell showed faster firing within the burst. Representative instant burst firings (Fig 7 left col-

umn), firing probability (Fig 7 middle column) and power spectral analysis (Fig 7 right col-

umn) are shown in Fig 7. The instant bursting firing rate was hampered in TBI mice at both

acute (DPI 7, Fig 7C) and subacute (DPI 14, Fig 7D) phase vs. control (DPI 7, Fig 7A; DPI 14,

Fig 7B). Moreover, the burst firing probability drops were also defined in autocorrelogram

(Fig 7 middle). Using neuroexplorer, the power spectral analysis of neural firing histograms

revealed that both sham and TBI groups’ firing show a clear hippocampal theta rhythm drop

(4–12Hz), and the spectral theta band energy substantially declined in TBI groups (Fig 7

right).

Fig 5. TBI impaired learning and spatial memory retention in mice. TBI mice demonstrated an increased latency to find the platform, compared to the

sham mice in acquisition phase (A, DPI 1 to 5 and B, DPI 8 to 12). During trials in probe phase (DPI 6, p<0.05 and DPI 13, p<0.05), TBI mice spent a

significantly less percentage of time in the target quadrant, compare to the sham mice. Data are expressed as mean±SEM (n = 7). * p<0.05, vs. control by

control by Multiple Holm-Sidak t test or ANOVA with Newman-Keuls post hoc test.

doi:10.1371/journal.pone.0171976.g005
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Histological

Sham animals had no volume loss. After pediatric TBI, there was an evident tissue loss with

numerous neuronal death at adulthood at the LFP region in the ipsilateral hemisphere

Fig 6. Several aspects of burst firing in CA1 were altered following moderate TBI. Significant decrease of overall

mean frequency on DPI 14 (A left inset), and burst per minute on both DPI 7 and 14 (A right inset), increase of burst

duration on DPI 14 (B), reduction of mean spikes in burst (C), significant increase of mean frequency in burst on 7 DPI

(D), significant increases of mean ISI in burst (E) and mean interburst interval (F) on DPI 14. Data are expressed as

mean±SEM (n = 23–24). * p<0.05, ** p<0.01, *** p<0.001 vs. control by unpaired t-test or ANOVA with Newman-Keuls

post hoc test.

doi:10.1371/journal.pone.0171976.g006
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(S1A–S1D Fig). The cortical tissue loss in TBI group, represented as the volume percentage of

the lesion compared with the contralateral hemisphere is 3.01 ± 0.64% (Mean ± SEM, n = 7).

Where dorsal hippocampal CA1 subregion is proposed to be involved in memory and rec-

ognition functions [34], we focus on the neural appearance in CA1 layer area. After moderate

Fig 7. Results of burst analysis in the CA1 subregion after moderate TBI. Representative instant firing, autocorrelogram and

power spectral density in CA1 pyramidal cell of sham mice on DPI 7 (panel A) and 14 (panel C). Decreases of instant burst firing

(left column) in CA1 pyramidal cell of TBI mice on DPI 7 (panel B) and on DPI 14 (panel D) are confirmed by the reductions of

frequency in autocorrelogram (1ms bin, middle column) and drops of power spectral density within theta range (right column).

Data in three graphs of each panel (A-D) are from the same cell.

doi:10.1371/journal.pone.0171976.g007
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TBI, the morphological alterations demonstrated by HE staining around pyramidal cell layer

in the ipsilateral CA1 were shown in S1E and S1F Fig. Moderate TBI didn’t cause significant

neural degeneration. The percent of shrunken cells with nucleus pyknosis in CA1 were 3 ± 1%

in the sham group, 6 ± 1% in TBI group (Mean ± SEM, n = 7–8, p = 0.06 by one tailed t test).

However, adverse cell morphological changes, such as irregular morphology, fading contour

and slightly swelled were seen in the ipsilateral CA1 pyramidal cell layer (S1E and S1F Fig).

Discussion

The primary damage of moderate/severe TBI can occur in specific brain areas; motor and

somatosensory cortices are among the most vulnerable targets in patient suffered moderate/

severe TBI with diffuse axonal injury. Secondary injury can dissipate progressively throughout

the brain [35]. The layered fundamental structure of the mouse cerebral cortex, layers 1, 2/3, 4,

5, and 6 are named by homology with other mammals, and have similar cell types in each layer

[36]. Further, the functions in frontal are similar between mouse and human, e.g. somatosen-

sory cortex in human also contribute to motor control, and similarly the mouse barrel field

controls retraction of the whiskers [37]. While there is currently a lot of ongoing researches on

the acute (DPI 1–6) phase of TBI, much less research has been done on the subacute (DPI

7–30) and the chronic (DPI 31–90) phases. Using a moderate (2.5–2.8 atm) LFP model of

brain injury in the 6-weeks-old mice, we have demonstrated that TBI at the motorsensory

region is associated with impaired motor and cognitive functions, decreased overall firing and

bursting probability in hippocampal CA1 subregion at both acute and subacute phases, where

the mice become adult mice. In addition, moderate TBI causes evident tissue loss and neural

cell death in the ipsilateral motor cortex, and causes cell stress, at large scale in hippocampal

CA1 subregion.

After TBI, the motor deficits were the worst on DPI 1 and gradually improved from DPI 1

to 16, the subacute and adulthood phase. Similar daily difference between beam-walk latency

(F7,80 = 12.75) and foot-fault (F7,80 = 18.55) from DPI 1 to 16. Moreover, the two deficits

recovery processes showed a close correlation (r = 0.9749), and tend to be stabilized from DPI

14 to 16. However, these deficits still maintain significant difference compare with the control.

The recovery of motor deficit transition in present TBI mouse model coincides with the previ-

ous findings that the locomotor ability of moderately parietal cortex injured mice [38], even

motor cortex ablated rats [39] mostly recovered within 3–4 weeks. The initial loss of motor

function and subsequent recovery may be the manifestation of a compensatory transition of

motor control to some intact areas.

24 hr after the acquisition phase, LFP injured mice showed similar poor performance dur-

ing NOR test at two subacute time points (DPI 9 and 16). Additionally, the poor NOR perfor-

mance in TBI mice is significantly correlated with their injury severity. Unlike the motor

deficits, the NOR performances appear to worsen similarly on DPI 9 or 16. Furthermore, there

was a close correlation between NOR performance and the initial injury severity (r = 0.778 on

DPI 9, r = 0.769 on DPI 16) which was indicated by the loss of righting reflex after TBI. There-

fore, the basic locomotion ability was largely recovered, while the visual-based memory deficit

is more established in the subacute period, while the 6-weeks-old mice grow up.

Our observation on NOR agreed with previously published findings. When long-term

memory performance was also tested by defining the NOR 24 hr after the acquisition trial,

controlled cortical impact (CCI) injury at moderate degree induces severe NOR deficits in

adolescent rat during adulthood at three weeks [21, 22] and six weeks [21] post injury. Further,

the worse long-term NOR performance at three weeks did not differ with respect to the perfor-

mance at six weeks [21]. However, the NOR performance was varied in a weight drop TBI
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model similarly at moderate degree, injured mice showed better NOR performance on DPI 28

compared to the performance on DPI 3 [23].

We also evaluated the long-term spatial learning and memory change using Morris water

maze after moderate TBI. The long-term spatial memory was damaged in acute phase in

young adult TBI mice, and consistently damaged in subacute phase when young mice grew up

into adult mice.

Previous investigations of the neural basis of recognition memory have implicated several

brain regions, including perirhinal cortex, medial prefrontal cortex, hippocampus and medial

dorsal thalamus [40]. Structures in the medial temporal lobe, including the hippocampus and

perirhinal cortex, are known to be essential to the formation of long-term memory. Stimula-

tion of perirhinal cortex at specific frequencies can predictably modify recognition memory

[41]. The functional interaction between the hippocampus and medial prefrontal cortex (PFC)

is also important for executive function and working and long-term recognition memory [42,

43]. In humans and non-human primate’s injury to the medial dorsal thalamus also yields rec-

ognition memory deficits [44, 45]. The consistent findings of long-term memory deficit above

mentioned indicate that moderate TBI may cause damage to long-term neural circuitry.

Hippocampus is critical during cognitive development in children from procedure-based

to memory-based problem-solving strategies; parallels increased hippocampal-neocortical

functional connectivity, increased hippocampal and decreased prefrontal-parietal engagement

[46]. However, the exact role of the hippocampus within recognition memory neural circuit

has not been fully elucidated. The patient data also deliver a contradictory conclusion on the

contribution of hippocampal volume reduction in cognitive deficits [47–50], and there is

insufficient literature about electrophysiological aberrations that may add to the TBI induced

cognitive dysfunction.

In the present study, we demonstrated that moderate TBI is associated with firing signifi-

cant decrease of overall firing and bursting probability in hippocampal CA1 subregion during

adulthood. After TBI, the burst firing pattern is less organized with longer burst duration,

higher frequency in burst, wider ISI in burst, broader interburst interval in the hippocampal

CA1 subregion. The burst probability was dropped in TBI group mice, defined with signifi-

cantly increased burst surprise values. In similar TBI rat models, TBI cause massive increases

in extracellular potassium ion ([K+]e) [51, 52], induce long-lasting (1 to 30 days after TBI) ele-

vations in intracellular free calcium ([Ca2+]i)[53–55] in hippocampus, and this increase of

[K+]e may be related to the indiscriminate release of glutamate following TBI [51]. In addition,

the mild TBI induced increase of [K+]e could be blocked by tetrodotoxin, suggesting that this

rise in [K+]e is related to neuronal firing. These two critical ion concentration changes might

alter the transmembrane ion equilibrium, e.g. hyperpolarizing outflow of K+ could be slowed

down due to a reduced K+ gradient, and the membrane potential could subsequently be

changed. These TBI induced abnormal ion distribution might be the neurochemical signs for

neural cell firing changes, and there should be a reciprocal relationship between these abnor-

mal neurochemical and neural cell firing changes. We postulate that the re-establishing pro-

cess of the ionic equilibrium after neuronal firing may be longer in TBI injured hippocampus.

Therefore, the bilateral interaction mentioned above may contribute to the altered burst firing

pattern, as we found in hippocampal CA1 of TBI mice, e.g. increased mean frequency in burst,

wider ISI in burst and broader interburst interval. Furthermore, these long-term alterations in

Ca2+ dynamics were associated with the TBI impaired cognitive function [55]; administration

of VGCC antagonists could reduce cell death and improved cognitive function [56].

The hippocampal theta rhythm is a well-studied correlate of memory function. Theta

power and peak theta frequency were reported significantly attenuated in the LFP injured ani-

mals [57]. Burst firing in the hippocampus was stated locking a preferred phase of either main
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slow oscillations or theta rhythms within the local field potential [58]. Theta burst stimulation

delivered to the fornix of mTBI rats improved learning and memory [59], similarly, theta burst

stimulation supplied to the medial septal nucleus of mTBI rats improved spatial working

memory [60]. Changes in theta activity in this study were evaluated by analyzing of neural fir-

ing histograms in the hippocampus while mice exploring the open field. The results demon-

strated that moderate TBI is associated with steadily attenuated theta band (4–12Hz) firing at

both subacute time points (DPI 7 and 14) during adulthood. In summary, the TBI deteriorated

neural cell firing may further destabilize the transmembrane ionic equilibrium, and the dis-

turbed key ion levels and Ca2+ homeostasis may partially bridge the altered neuronal firing

and cognitive deficits. Thus specifically patterned stimulation of one or multiple targets in the

memory related neural circuitry may provide a novel approach to the treatment of memory

loss and cognitive deficits after TBI.

Our results of moderate TBI in mice also agree with a previous finding of mild traumatic

brain injury (mTBI) in adult rats. In that research, the author has proven that mTBI (1.4–1.6

atm) is associated with significantly less hippocampal bursting with longer bursts and lower

interburst spike frequency [12]. Bursts with shorter intervals in hippocampal CA1 are identi-

fied to provoke LTP [61] and have a crucial role in synaptic plasticity [62], thus lower burst

firing with wider ISI in the burst and broader interburst interval suggested TBI retarded infor-

mation coding in the hippocampus. Further, TBI may selectively disrupt circuit excitability in

hippocampal subregions. In a hippocampal slice with moderate TBI, decreased net synaptic

efficacy and excitatory postsynaptic potential-spike relationship [9] were also shown in CA1

area, while increased net synaptic efficacy [9] or hyperexcitability [11] were revealed in the

dentate gyrus. With similar recording approach in moderate TBI brain slice, a decrease of

excitatory synaptic inputs was also reported in granule cells [10], while reduced compound

action potential amplitudes were found in the corpus callosum [8], suggesting a reduction of

excitability at the global level. In a mild LFP injured rat model, the mean and burst firing was

reported no change in CA1 subregion [12].

It should be noted that the TBI fabrication site is different between our study at motorsen-

sory cortex and popular TBI investigations usually at the parietal cortex [12, 21, 38]. Histo-

logical findings in present study showed generally an evident tissue loss at LFP site in the

ipsilateral motor cortex, but failed to show a significant cell degeneration in hippocampal

CA1 subregion. It should be mentioned that TBI induces injury by compression of the cortex

and underling brain tissues and does not directly causes hippocampal damage. The LFP site

for this study is at motorsenory cortex and is a little far away from the hippocampus than the

LFP location in other parietal cortex models [12, 21, 38]. Consequently, mouse hippocampus

is more intact and fewer deformations though moderate TBI was introduced in the model,

thus the exact injury severity and cell degeneration in the hippocampus may be primarily due

to secondary but chronic brain injury, e.g. neuroinflammation [38] induced necrosis. In pres-

ent study, moderate TBI causes neural cell stress but does not obviously change the architec-

ture of the hippocampus, and the majority of the mature pyramidal neurons in the CA1

subregion survived but stressed at this level of TBI injury.

In summary, experimental moderate TBI by means of LFP in young adult mouse causes

marked motor dysfunction in the acute phase after TBI, and the motor function gradually

recovered in the subacute phase where the mice gradually mature as an adult mouse. Moder-

ate TBI consistently caused long-term memory deficits, steadily decreased firing frequency,

burst probability in hippocampal CA1 in both acute and subacute phases during adulthood.

Depressed of overall firing and altered bursting properties in CA1 subregion may further dete-

riorate the neuronal ionic equilibriums, disturb the long-term memory related neural circuit

at the whole hippocampal level. The adverse outcomes could be confirmed with the damaged

Moderate injury causes behavioral and electrophysiological dysfunctions in mice

PLOS ONE | DOI:10.1371/journal.pone.0171976 February 14, 2017 16 / 20



NOR and spatial performance seen in the same animals during adulthood. Longer follow-up

studies should be carried out after young adult LFP injury to inspect the hippocampal and/or

cortical electrophysiological changes, the temporal evolution of memory deficits, and whether

the altered firing profile progressively correlates with the memory deficits.

Supporting information

S1 Fig. HE staining of the ipsilateral motor cortex and hippocampus from sham (A, C, E)

and TBI group (B, D, F) on DPI 16. The morphology of motor cortex (A) and neural cells

(C) in the sham group appear normal. HE staining shows an evident tissue loss in the ipsilat-

eral motor cortex (B, D), and numerous neural cell death in the adjacent region of TBI (D).

Pyramidal cells in CA1 layer in sham group were contour-clear, arranged regularly with nor-

mal nuclei and cytoplasm (A). Neural cells in TBI group arranged disorderly, with unclear

nuclear structure, and a large number of cells slightly swelled (B). As black arrows denoted, a

few of focal nuclei pyknosis and/or eosinophilic neurons with H–E stain were observed in

sham or TBI group. Scale bar, 100μm; magnification 40 x in A and B; scale bar, 50μm; magnifi-

cation 100 x in C and D; Scale bar, 100μm; magnification 400 x in E and F.

(TIF)
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