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Abstract

Learning based on networks of real neurons, and learning based on biologically inspired

models of neural networks, have yet to find general learning rules leading to widespread

applications. In this paper, we argue for the existence of a principle allowing to steer the

dynamics of a biologically inspired neural network. Using carefully timed external stimula-

tion, the network can be driven towards a desired dynamical state. We term this principle

“Learning by Stimulation Avoidance” (LSA). We demonstrate through simulation that the

minimal sufficient conditions leading to LSA in artificial networks are also sufficient to repro-

duce learning results similar to those obtained in biological neurons by Shahaf and Marom,

and in addition explains synaptic pruning. We examined the underlying mechanism by simu-

lating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that

LSA has a higher explanatory power than existing hypotheses about the response of biologi-

cal neural networks to external simulation, and can be used as a learning rule for an embod-

ied application: learning of wall avoidance by a simulated robot. In other works,

reinforcement learning with spiking networks can be obtained through global reward signals

akin simulating the dopamine system; we believe that this is the first project demonstrating

sensory-motor learning with random spiking networks through Hebbian learning relying on

environmental conditions without a separate reward system.

Introduction

In two papers published in 2001 and 2002, Shahaf and Marom conduct experiments with a

training method that drives rats’ cortical neurons cultivated in vitro to learn given tasks [1, 2].

They show that stimulating the network with a focal current and removing that stimulation

when a desired behaviour is executed is sufficient to strengthen said behaviour. By the end of

the training, the behaviour is obtained reliably and quickly in response to the stimulation.

More specifically, networks learn to increase the firing rate of a group of neurons (output neu-

rons) inside a time window of 50 ms, in response to an external electric stimulation applied to

another part of the network (input neurons). This result is powerful, first due to its generality:

the network is initially random, the input and output zones’ size and position are chosen by
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the experimenter, as well as the output’s time window and the desired output pattern. A sec-

ond attractive feature of the experiment is the simplicity of the training method. To obtain

learning in the network, Shahaf and Marom repeat the following two steps: (1) Apply a focal

electrical stimulation to the network. (2) When the desired behavior appears, remove the

stimulation.

At first the desired output seldom appears in the required time window, but after several

training cycles (repeating steps (1) and (2)), the output is reliably obtained. Marom explains

these results by invoking the Stimulus Regulation Principle (SRP, from [3, 4]). At the level of

neural network, the SRP postulates that stimulation drives the network to “try out” different

topologies by modifying neuronal connections (“modifiability”), and that removing the stimu-

lus simply freezes the network in its last configuration (“stability”). The SRP explicitly postu-

lates that no strengthening of neural connections occurs as a result of stimulus removal.

The generality of the results obtained by Shahaf and Marom suggests that this form of

learning must be a crucial and very basic property of biological neural networks. But the SRP

does not entirely explain the experimental results. Why are several training cycles necessary if

“stability” guarantees that the configuration of the network is preserved after stopping the

stimulation? How does “modifiability” not conflict with the idea of learning, if we cannot pre-

vent the “good” topology to be modified by the stimulation at each new training cycle?

Importantly, there is no global reward signal sent to the network in Shahaf’s experiment or

in our experiments reproducing Shahaf’s results. This is a difference in the object of study

between existing papers about learning in spiking networks coupled with a dopamine-like sys-

tem [5–7] and the present paper. Accepting Shahaf and Marom’s macro phenomenological

description of the behavior, we provide a possible mechanism of the behavior at the micro

scale: the principle of Learning By Stimulation Avoidance (LSA, [8, 9]). LSA is an emergent

property of spiking networks coupled to Hebbian rules [10] and external stimulation. LSA

states that the network learns to avoid external stimulus by learning available behaviors e.g.

moving away from or destroying the stimulation sources only as a result of local neural

plasticity.

In opposition to the SRP, LSA does not postulate that stimulus intensity is the major drive

for changes in the network, but rather that the timing of the stimulation relative to network

activity is crucial. LSA relies entirely on time dependent strengthening and weakening of neu-

ral connections. In addition, LSA proposes an explanatory mechanism for synaptic pruning,

which is not covered by the SRP.

LSA emerges from Spike-Timing Dependent Plasticity (STDP), which has been found in

both in vivo and in vitro networks. We take STDP as a one basic mechanism governing the

neural plasticity [11] and a Hebbian learning rule as a classical realization of STDP in our

model. STDP relies on processes so fundamental that it has been consistently found in the

brains of a wide range of species, from insects to humans [12–14]. STDP causes changes in the

synaptic weight between two firing neurons depending on the timing of their activity: if the

presynaptic neuron fires within 20 ms before the postsynaptic neuron, the synaptic weight

increases; if the presynaptic neuron fires within 20 ms after the postsynaptic neuron, the syn-

aptic weight decreases.

Shahaf postulates that the SRP might not be at work in “real brains”. Indeed, SRP has not

yet been found to take place in the brain, unlike STDP. Although STDP occurs at neuronal

level, it has very direct consequences on the sensory-motor coupling of animals with the envi-

ronment. In vitro and in vivo experiments based on STDP can reliably enhance sensory cou-

pling [15], decrease it [16], and these bidirectional changes can even be combined to create

receptive fields in sensory neurons [17, 18].

Learning by stimulation avoidance
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Therefore, although STDP is a rule that operates at the scale of one neuron, LSA can be

expected to emerge at network level in real brains as well as it emerges in artificial networks.

LSA at a network level requires an additional condition that is burst suppression. In this paper,

we have tested two mechanisms. One is that we add white noise to all neurons and we reduce

the number of connections in the network; the other is that we use a Short Term Plasticity rule

(STP [19]) that prevents global bursting.

The structure of the paper is as follows: we show that the conditions necessary to obtain

LSA are sufficient to reproduce biological results, study the dynamics of LSA in a minimal net-

work of 3 neurons and present burst suppression methods in Section 1. We show that LSA

works in a scaled up network of 100 neurons with burst suppression by additive noise in Sec-

tion 2. We show that LSA also works with burst suppression by STP with 100 neurons in Sec-

tion 3, even when there are no direct connections between input and output neurons. Finally

we implement a simple embodied application using LSA and STP for burst suppression in a

simulated robot in Section 4.

1 LSA is sufficient to explain biological results

In [8] we showed that a simulated random spiking network built from [20, 21] combined to

STDP could be driven to learn desired output patterns using a training method similar to that

of Shahaf et al. Shahaf shows that his training protocol can reduce the response time of a net-

work. The response time is defined as the delay between the application of the stimulation and

the observation of a desired output from the network. In Shahaf’s first series of experiments

(“simple learning” experiments), the desired output is defined by the fulfillment of one

condition:

Condition 1: the electrical activity must increase in a chosen Output Zone A. This is the

experiment we reproduced in [8], demonstrating that this learning behaviour is a direct effect

of STDP and is captured by the principle of LSA: firing patterns leading to the removal of

external stimulation are strengthened, firing patterns that lead to the application of an external

stimulation are avoided.

In this section we show that the same methods are sufficient to obtain results similar to the

second series of experiments performed by Shahaf (“selective learning” experiments), in which

the desired output is the simultaneous fulfillment of Condition 1 as defined before and a sec-

ond condition:

Condition 2: a different output zone (Output Zone B) must not exhibit enhanced electrical

activity. When both conditions are fulfilled, the result is called selective learning because only

Output Zone A must learn to increase its activity inside the time window, while Output Zone

B must not increase its activity. We reproduce the experiment as follows.

1.1 Network model

We use the model of spiking neuron devised by Izhikevich [22] to simulate excitatory neurons

(regular spiking neurons) and inhibitory neurons (fast spiking neurons) with a simulation

time step of 1 ms. The equations of the neural model and the resulting dynamics are shown in

Fig 1. We simulate a fully connected network of 100 neurons (self-connections are forbidden)

with 80 excitatory and 20 inhibitory neurons. This ratio of 20% of inhibitory neurons is stan-

dard in simulations [20, 22] and close to real biological values (15%, [23]). The initial weights

are random (uniform distribution: 0< w< 5 for excitatory neurons, −5< w< 0 for inhibitory

neurons). LSA may have different features with different network topologies and time delays;

however, we believe that the conditions simulated here are the simplest setup for having LSA.

The neurons receive three kinds of input: (1) Zero-mean Gaussian noise m with a standard
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deviation σ = 3 mV is injected in each neuron at each time step; (2) External stimulation e with

a value of 1 mV and a frequency of 1000 Hz. The external stimulation is stopped when the net-

work exhibits the desired output. (3) Stimulation from other neurons: when a neuron a spikes,

the value of the weight wa,b is added as an input for neuron b without delay. All these inputs

are added for each neuron ni at each iteration as:

Ii ¼ I�i þ ei þmi : ð1Þ

I�i ¼
Xn

j¼0

wj;i � fj ;

fj ¼

(
1; if neuron j is firing

0; otherwise:

ð2Þ

We add synaptic plasticity in the form of STDP as proposed in [19]. STDP is applied only

between excitatory neurons; other connections keep their initial weight during all the simula-

tion. We use additive STDP: Fig 2 shows the variation of weight Δw for a synapse between con-

nected neurons. As shown on the figure, Δw is negative if the post-synaptic neuron fires first,

and positive the pre-synaptic neuron fires first. The total weight w varies as:

wt ¼ wt� 1 þ Dw : ð3Þ

The maximum possible value of weight is fixed to wmax = 10. if w> wmax, w is reset to wmax.

In the experiments with 100-neurons networks, we also apply a decay function to all the

weights in the network. The decay function is applied at each iteration t as:

8wt; wtþ1 ¼ ð1 � mÞwt ð4Þ

We fix the decay parameter as μ = 5 × 10−7.

1.2 Superficial selective learning experiment

In this section we reproduce in simulation the biological results obtained by Shahaf. A group

of 10 excitatory neurons are stimulated. Two different groups of 10 neurons are monitored

(Output Zone A and Output Zone B). We define the desired output pattern as: n> = 4

Fig 1. Equations and dynamics of regular spiking and fast spiking neurons simulated with the

Izhikevich model. Equations and dynamics of regular spiking and fast spiking neurons simulated with the

Izhikevich model.

doi:10.1371/journal.pone.0170388.g001
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neurons spike in Output Zone A (Condition 1), and n< 4 neurons spike in Output Zone B

(Condition 2). Both conditions must be fulfilled simultaneously, i.e. at the same millisecond.

We stop the external stimulation as soon as the desired output is observed. If the desired out-

put is not observed after 10,000 ms of stimulation, the stimulation is also stopped. After a ran-

dom delay of 1,000 to 2,000 ms, the stimulation starts again.

There are important differences with the biological experiment: the stimulation frequency

(Shahaf uses lower frequencies), its intensity (this parameter is unknown in Shahaf’s experi-

ment) and the time window for the output (in Shahaf’s results the activity of Output Zone A is

arguably higher even outside of the selected output window). We also use a fully connected

network, while the biological network grown in vitro is likely to be sparsely connected [24].

Despite these differences, we obtain results comparable to those of Shahaf: the reaction

time, initially random, becomes shorter with training (Fig 3). We also perform the experiment

with no stimulation at all and find a success rate of 0%; the statistics of the selective learning

experiment are summarized in Table 1.

As shown by these results, the network exhibits selective learning as defined by Shahaf. But

we also find that despite a success rate of 90% at exhibiting the desired firing pattern, both the

firing rates of Output Zone A and Output Zone B increase in equivalent proportions: the two

output zones fire at the same rate but in a desynchronized way. The task was to activate Output

Zone A and suppress the activity in Output Zone B. But the opposite result also occurs at the

same time, in an opposite phase. Although data about firing rates is not specifically discussed

in Shahaf’s paper, it is possible that bursting did happen. Shahaf himself reports in his experi-

ment that only half of the in-vitro networks succeeded at selective learning, while all succeeded

at the “simple learning” task. Our hypothesis is that bursts are detrimental to learning [25] and

explain the difficulty of obtaining selective learning. If this hypothesis is true, burst suppression

is essential to obtain learning. We explain why burst suppression is necessary by first explain-

ing how learning works in a small network. Then we study 100-neurons networks with global

bursting suppression.

Fig 2. The Spike-Timing Dependent Plasticity (STDP) function governing the weight variationΔw of

the synapse from neuron a to neuron b depending on the relative spike timing s = tb − ta. A = 0.1; τ = 20

ms.

doi:10.1371/journal.pone.0170388.g002
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1.3 Dynamics of LSA in a minimal network

In [8] we showed that a minimal network of 2 neurons consistently follows the principle of

LSA; we also showed that a single neuron is able to prune one synapse and enhance another

synapse simultaneously depending on the stimulation received by the two presynaptic neu-

rons. In this experiment we examine the weights dynamics in a chain of 3 excitatory neurons

all connected to each other: one neuron is used as input, one as output, and they are separated

by a “hidden neuron”.

Neurons are labeled 0 (input neuron), 1 (hidden neuron) and 2 (output neuron). Fig 4

shows the results of experiments with different learning conditions and different initial states.

The results can be summarized as follows: (1) In the reinforcement condition, direct connec-

tions between input and output are privileged over indirect connections. All connections are

updated with the same time step (1 ms), therefore the fastest path (direct connection) will

always cause neuron 2 to fire before the longer path (made of several connections) can be

completely activated. When no direct connection exists, weights on longer paths are correctly

increased. (2) LSA explains a behaviour that is not discussed in the SRP: synapse pruning. LSA

predicts that networks evolve as much as possible towards dynamical states that cause the less

external stimulation. Here LSA only prunes weights of direct connections between the input

and output, as this is sufficient to stop all stimulation to the output neuron. (3) For neurons

that are strongly stimulated (here, neuron 0) the default behaviour of the output weights is to

increase, except if submitted to the pruning influence of LSA. Neurons that fire constantly bias

other neurons to fire after them, automatically increasing their output weights.

This raises concerns about the stability of larger, fully connected networks; all weights

could simply increase to the maximum value. But introducing inhibitory neurons in the net-

work can improve network stability [26]. In our experiments with 100-neuron networks, 20

Fig 3. Evolution of the reaction times of 2 successful neural networks at the selective learning task.

20 networks were simulated, 18 of which successfully learned the task (Table 1). Red lines represent when

there was no response from the network. A learning curve is clearly visible.

doi:10.1371/journal.pone.0170388.g003

Table 1. Statistical performance of the network.

Condition Success rate Learning time Attained reaction time

Selective learning 90% 187 ± 16 s 389 ± 54 ms

No external stim. 0% – –

Learning time: the task is learned when the reaction time of the network reaches a value inferior to 4,000 ms and keeps under this limit. The success rate is

the percentage of networks that successfully learned the task in 400,000 ms or less (N = 20 networks per condition). The attained reaction time is calculated

for successful networks after learning. Standard error is indicated.

doi:10.1371/journal.pone.0170388.t001
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are inhibitory neurons with fixed input weights and output weights. In addition, we make the

hypothesis that global bursts in the network can impair LSA, as all neurons fire together make

it impossible to tease apart individual neuron’s contributions to the postsynaptic neuron’s

excitation. Global bursts are also considered to be a pathological behaviour for in vitro net-

works, and do not occur with healthy in vivo networks [25].

In the remainder of this paper, we use two different methods to obtain burst suppression.

The first method is to add strong noise to the neurons and to reduce the initial number of con-

nections in the network. This produces a desynchronization of the network activity. In Section

2, we show that this method allows LSA to work in networks of 100 neurons. The second

method is to apply Short Term Plasticity to all the connections in the network. In Section 3

and 4 we show that this method of burst suppression allows proper selective learning even in

the absence of direct connections between input and output; we also show an application to a

robot experiment.

2 Burst suppression by adding noise

2.1 Selective learning with burst suppression

In this experiment, burst suppression is obtained in the 100-neuron network by reducing the

number of connections: each neuron has 20 random connections to other neurons (uniform

distribution, 0< w< 10), a high maximum weight of 50, high external input e = 10 mV and

high noise σ = 5 mV. Variations in the number of connections and the weight variance are

examined later in this paper. These networks are less prone to global bursts and exhibit strong

desynchronized activity, as shown in Fig 5.

Fig 4. Dynamics of weight changes induced by LSA in small networks of 3 neurons. A) Reinforcement:

spiking of neuron 2 stops the stimulation in neuron 0. The direct weight w0,2 grows faster than other weights,

even when starting at a lower value. B) Artificially fixing the direct weight w0,2 to 0, a longer pathway of 2

connections 0! 1! 2 is established. C) Pruning: spiking of neuron 2 starts external stimulation to neuron 0.

As a result, w0,2 is pruned.

doi:10.1371/journal.pone.0170388.g004
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We monitor two output zones and fix two independent stimulation conditions:

(Stop Condition) Input Zone A is stimulated. After n> = 1 neurons in Output Zone A

spike, the external stimulation to Input Zone A is stopped. If the desired output is not observed

after 10,000 ms of stimulation, the stimulation is also stopped. After a random delay of 1,000

to 2,000 ms, the stimulation starts again.

(Stimulus Condition) After n> = 1 neurons spike in Output Zone B, the whole network

(excluding inhibitory neurons and Output Zone B itself) is stimulated for 10 ms. The goal is to

obtain true selective learning, by increasing the weights to Output Zone A and prune those to

Output Zone B, therefore obtaining different firing rates. This Stimulus Condition is opposite

to the Stop Condition. It requires stimulus when a neuron in the output region fires. Here we

use the minimal threshold (= 1) for the Stop Condition, but for later experiments we use a

threshold of 4 neurons.

Only a few (comparatively to the network size) spiking presynaptic neurons are necessary

to make a postsynaptic neuron fire if the connection weights are high. In consequence, the

Stimulus Condition must be able to prune as many input synapses to Output Zone B as possi-

ble. It is therefore important to suppress global bursts: they cause Output Zone B to fire at the

same time as the whole network, making it impossible to update only relevant weights without

also updating unrelated weights.

As a result of LSA, the network must move from a state where both output zones fire at the

same rate, to a state where Output Zone B fires at lower rates and Output Zone A fires at

higher rates. This prediction is realized, as we can see in Fig 6a: the trajectory of firing rates

goes to the space of low external stimulation. In Fig 6b, we show for comparison the trajectory

for networks with only the Stop Condition applied: on average the firing rates of both output

zones are equivalent, with individual networks trajectories ending up indiscriminately at the

top left or bottom right of the space.

These results could potentially be reproduced in a network in vitro: the Izhikevich model of

spiking network that we use has been found to exhibit the same dynamics as real neurons, and

our experiments with STDP can reproduce some results of biological experiments; therefore

there is a probability that this results predicted by LSA still holds in biological networks with

suppressed bursts, especially since we have shown that LSA gives promising results on biologi-

cal networks embodied in simple robots [9].

Fig 5. Raster plots of a regular network (activity concentrated in bursts) and a network of which

parameters have been tuned to reduce bursting and enhance desynchronized spiking. The

desynchronizing effect of sparsely connecting the network and increasing the noise are clearly visible.

doi:10.1371/journal.pone.0170388.g005

Learning by stimulation avoidance

PLOS ONE | DOI:10.1371/journal.pone.0170388 February 3, 2017 8 / 16



2.2 Parameter exploration

We perform a parameter search to explore the working conditions of the “simple learning”

task. In this section, we vary the number of connections in the network and the variance v of

the weights. For each neuron an output connection is chosen at random and the weight is initi-

alised at w = 5 + ω (w = −5 + ω), with ω following a uniform distribution between −v and v.

This process is repeated M times for each neuron, 0< M< 150. The same connection can be

chosen twice at random, so the actual number of connections can be inferior to M.

For each set (ω, M) we perform N = 20 experiments (with Stop Condition but no Stimulus

Condition) of length T = 500 seconds. Learnability is defined as the average difference between

the firing rate of the Output Zone during the first 100 seconds and the last 100 seconds and is

reported on the heat map Fig 7. This figure shows that the variance in the initial weights has

low influence on the final learning results, but the ideal region to obtain good learning results

is between 20 and 30 connections per neuron. Above these values, the increased connectivity

of the network might cause too many bursts, affecting the learning results. Below these values,

Fig 6. Trajectory of the network in the two-dimensional space of the firing rates of Output Zone A and

Output Zone B. Using LSA, we can steer the network in this space; by contrast, the “reinforcement only”

experiment maintains the network balanced relatively to the two firing rates. (a) leads to the low external

stimulation region but (b) does not. Statistical results for N = 20 networks.

doi:10.1371/journal.pone.0170388.g006
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we there may not be a path connecting the input neurons to the output neurons, making the

learning task impossible. This does not mean that direct connections between input and out-

put are necessary to obtain learning: in the next section we show that LSA works even without

direct connections between input and output.

3 Burst suppression by short term plasticity

In this section we set all weights from input neurons to output neurons to 0. The initial weights

are random (uniform distribution: 0< w< 5 for excitatory neurons, −5< w< 0 for inhibitory

neurons). Zero-mean Gaussian noise m with a standard deviation σ = 3 mV is injected in each

neuron at each time step. The maximum possible value of weight is fixed to wmax = 20. The

external stimulation value is e = 10 mV. Burst suppression is obtained by adding a phenome-

nological model of Short Term Plasticity (STP, [27]) to the network, as a way to suppress

bursts despite the network being fully connected. STP is a reversible plasticity rule that

decreases the intensity of neuronal spikes if they are too close in time, preventing the network

to enter a state of global synchronized activity (details in the Appendix).

As in Section 1.2 the goal is for Output Zone A to increase its firing rate and Output Zone B

to decrease it. The conditions are as follows:

(Stop Condition) Input Zone A is stimulated. After n> = 4 neurons spike in Output Zone

A and if only n< 4 neurons spiked in Output Zone B, the external stimulation to Input Zone

A is stopped. After a random delay of 1,000 to 2,000 ms, the stimulation starts again.

(Stimulus Condition) After n> = 1 neurons in Output Zone B spike, the whole network

(excluding inhibitory neurons and Output Zone B itself) is stimulated for 10ms.

The conditions are therefore stricter than in Section 2.1. Fig 8 shows the distribution of fir-

ing rates before and after learning the task. Before learning, only the input neurons have a high

firing rate due to the external simulation. After learning, 50% of the Output Zone A is con-

tained in the highest firing rate zone (region II of Fig 8), and 50% of the Output Zone B in the

lowest firing rate zone (region I). Even if the stimulus condition is controlled by a single

Fig 7. Performance of learning depending of network connectivity and initial weights variance.

Learnability is defined as the average difference between the firing rate of the Output Zone during the first 100

seconds and the last 100 seconds. The ideal region of the parameter space to obtain good learning results is

between 20 and 30 connections per neuron. By comparison, the variance has less influence. Statistical

results for N = 20 networks for each parameter set.

doi:10.1371/journal.pone.0170388.g007

Learning by stimulation avoidance

PLOS ONE | DOI:10.1371/journal.pone.0170388 February 3, 2017 10 / 16



neuron in the region B, the average firing rate in output regions A and B is sufficiently distin-

guished as is shown in Fig 8.

This experiment shows that LSA works with a different burst suppression method, even

when direct input-output connections are cut. In the next section, we propose a simple appli-

cation of LSA in a simulated robot.

4 Embodied application: wall avoidance with a robot

We show that LSA can be used in a practical embodied application: wall avoidance learning.

The principle of this experiment is that a robot has distance sensors that stimulate the network

when the robot is close to walls: the more the robot learns to avoid walls, the less stimulation it

receives. Burst suppression is achieved through STP.

We simulate a simple robot moving inside a closed arena. The robot has two distance sen-

sors on the front (right and left), allowing it to detect walls (Fig 9). A 100-neuron network

takes the two sensors’ values as respective input for two input zones (10 excitatory neurons

each). Activity in two output zones of the network (10 excitatory neurons each) allows the

robot to turn right or left. In these conditions, steering when encountering a wall can stop the

stimulation received by the input zones from the distance sensors, if the new direction of the

robot points away from the walls. The behaviour enhanced by LSA should therefore be wall

avoidance. We call this experiment a “closed loop” experiment, because steering away from

the walls automatically stops the external stimulation at the right timing.

The arena is a square of size 1000 px (pixels). The robot is a 25 px radius circle, constantly

moving at 1 px/ms except in case of collision with a wall. The robot has two distance sensors

oriented respectively at π/4 and −π/4 from the front direction of the robot. The sensors have a

range of 80 px; they are activated when the robot is at less than 80 px from a wall, on the direc-

tion supported by each sensor’s orientation. Two input zones in the network (10 neurons

each) receive input in mV at a frequency of 1000 Hz from the sensors as input = sensitivity/

distance.

Fig 8. Firing rate distribution. This figure shows the cumulative number of neurons in each firing rate bin for

20 networks. Before learning (first 100 s, blue), most neurons have a very low firing rate (leftmost peak)

except for the input neurons (rightmost peak). After learning (last 100 s, red), the neurons are distributed in 2

groups: low firing rate (2nd peak from the left) and medium firing rate. 50% of the Output Zone B neurons are

contained in the zone marked I; 50% of the Output Zone A neurons are contained in the zone marked II.

doi:10.1371/journal.pone.0170388.g008
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The sensitivity of the sensors is fixed at a constant value for the duration of each experiment.

For simplicity, the robot’s steering is non-differential. It is controlled by the spikes of two out-

put zones in the network (10 neurons each). For each spike in the left output zone, the robots

steers π/6 radian (to the left); for each spike in the right output zone, the robots steers −π/6

radian (to the right).

We compare the results of this experiment (closed loop experiment, sensor sensitivity = 8

mV) with a control experiment where a constant stimulation (8 mV) is applied to the net-

work’s input zones, independently of the distance or orientation of the robot relative to the

walls (open loop experiment). Both conditions are tested 20 times and averaged. Fig 10 shows

two important effects: (1) Constant stimulation leads to higher activity in the network, provok-

ing random steering of the robot which leads to some level of wall avoidance, but (2) Closed

loop feedback is necessary to obtain actual wall avoidance learning. Indeed, by the end of the

closed loop experiment the robot spends only 43% of its time at less than 80 pixels from any

wall (the range of the distance sensors), against 64% in the open loop experiment. The impor-

tance of feedback over simply having high stimulation is further demonstrated by the fact that

the open loop robot is receiving overall a greater amount of stimulation than the closed loop

robot. At 400 s, when the learning curve of the closed loop robot starts sloping down, the robot

has received on average 1.54 mV of stimulation per millisecond. The open loop robot, which

by that time has reached its best performance, has received 16 mV/ms. In a different experi-

ment, we give to open loop robots the same amount of average stimulation that is received by

closed loop robots; by the end of the experiment (1000 s) the open loop robots still spend more

than 80% of the time close to arena walls.

We further study the effect of stimulation strength and feedback on learning performance

by varying the sensitivity of the distance sensors. The average state in the last 300 seconds of

Fig 9. Robot simulation. The robot has distance sensors and must learn to stay away from the arena’s walls.

doi:10.1371/journal.pone.0170388.g009
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each task (total duration: 1000 s) is reported on Fig 11. The open loop result of the previous

experiment is included for reference. Fig 11 indicates that the learnability of the task is

improved by having more sensitive sensors, up to a limit of about 40%. Having sensors with a

sensitivity of more than 7 mV does not improve the performance of the robot. This result is in

direct contradiction with the SRP’s leading hypothesis, which postulates that the intensity of

stimulation is the driving force behind network modification. If that was the case, more sensi-

tive sensors should always lead to better learnability. By contrast, LSA emphasizes timing, not

strength of the simulation. The 40% limit could be due in part to unreliable feedback, as steer-

ing away from a wall can put the robot directly in contact with another wall if it is stuck in a

corner: the same action can lead to start or removal of stimulation depending on the context.

Discussion

In this paper, we introduce LSA, a new principle explaining the dynamics of spiking neural

networks under the influence of external stimulation. LSA is not just an another theoretical

neural learning rule, but provides a new interpretation to the learning behavior of neural cells

in vitro. In particular LSA is most efficient for sensory-motor coupling systems. The model

presented in this paper is very simplified compared to biological neurons, as it uses only two

types of neurons, one type of STDP, no homeostatic mechanism, etc. Nevertheless, the model

is able to reproduce key features of experiments conducted with biological neurons by Shahaf

et al. and explain results obtained in vitro with neurons submitted to external stimulation. LSA

also offers an explanation to a biological mechanism that is ignored by the theory of SRP,

namely the pruning of synapses. LSA has direct practical applications: by engineering causal

relationships between neural dynamics and external stimulation, we can induce learning and

change the dynamics of the neurons from the outside.

LSA relies on the mechanism of STDP, and we demonstrated that the conditions to obtain

LSA are: (1) Causal coupling between neural network’s behaviour and environmental stimula-

tion; (2) Burst suppression. We obtain burst suppression by increasing the input noise in the

model or by using STP. We assume that in healthy biological neurons, the neuronal noise may

Fig 10. Learning curves of the wall avoidance task. The robot is considered to be “close” to a wall if it is

less than 80 pixels from the wall, which corresponds to the range of its distance sensors. The results show

that random steering due to high random activity in the network leads to spending 64% of the time close to

walls, while learning due to LSA leads to only 43% time spent close to walls. Statistical results for N = 20

networks, standard error is indicated.

doi:10.1371/journal.pone.0170388.g010
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be introduced by spontaneous neuronal activity. As we have shown, LSA does not support the

theory of the Stimulus Regulation Principle. It could be closer to the Principle of Free Energy

Minimisation introduced by Friston [28]. The Free Energy Principle states that networks strive

to avoid surprising inputs by learning to predict external stimulation. An expected behaviour

of networks obeying the Free Energy Principle, or obeying LSA is that they can fall into the

dark room paradox, avoiding incoming input by cutting all sources of external simulation. A

key difference between LSA and the Free Energy Principle is that our network does not predict

incoming input. Most importantly, LSA automatically let stimuli from environment terminate

at the right timing, so that a network can self-organize using environmental information.

Appendix

STP is a reversible plasticity rule that decreases the intensity of neuronal spikes if they are too

close in time, preventing the network to enter a state of global synchronized activity. As in the

original paper, we apply STP to the output weights from excitatory neurons to both excitatory

and inhibitory neurons.

w�i;j ¼ uxwi;j ð5Þ

dx
dt
¼

1 � x
td
� uxfi ð6Þ

du
dt
¼

U � u
tf
þ Uð1 � uÞfi ð7Þ

where the initial release probability parameter U = 0.2, and τd = 200 ms and τf = 600 ms are

respectively the depression and facilitation time constants. Briefly speaking, x is a fast depres-

sion variable reducing the amplitude of the spikes of neurons that fire too often, while u is a

slow facilitation variable that enhances the spikes of these same neurons. As a result of the

Fig 11. Learnability of wall avoidance based on sensor sensitivity. High numbers on the x axis indicate

high sensitivity. Under 5 mV, the task cannot be learned; learnability improves until 7 mV, leading to the

maximum performance of the robot. The open loop and closed loop results for the same sensitivity of 8 mV

are reported from Fig 10. We have omitted the open loop cases as they are insensitive to the walls, but shown

for the case at the sensor sensitivity = 8 mV. Statistical results for N = 20 networks with standard error.

doi:10.1371/journal.pone.0170388.g011
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interplay of x and u, neurons constantly firing at high frequency are inhibited, while neurons

irregularly firing at high or low frequency are unaffected (the maximum value of ux is 1). STP

acts as a short term reversible factor on the original synaptic weight, with the side effect of pre-

venting global bursting of the network. Eq (2) becomes

I�i ¼
Xn

j¼0

w�j;i � fj ;

fj ¼

(
1; if neuron j is firing

0; otherwise:

ð8Þ
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