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Abstract

We propose a multivariate genome-wide association test for mixed continuous, binary, and

ordinal phenotypes. A latent response model is used to estimate the correlation between

phenotypes with different measurement scales so that the empirical distribution of the Fish-

er’s combination statistic under the null hypothesis is estimated efficiently. The simulation

study shows that our proposed correlation estimation methods have high levels of accuracy.

More importantly, our approach conservatively estimates the variance of the test statistic so

that the type I error rate is controlled. The simulation also shows that the proposed test

maintains the power at the level very close to that of the ideal analysis based on known

latent phenotypes while controlling the type I error. In contrast, conventional approaches–

dichotomizing all observed phenotypes or treating them as continuous variables–could

either reduce the power or employ a linear regression model unfit for the data. Furthermore,

the statistical analysis on the database of the Study of Addiction: Genetics and Environment

(SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can

increase the power of identifying markers that may not be, otherwise, chosen using marginal

tests. The proposed method also offers a new approach to analyzing the Fagerström Test

for Nicotine Dependence as multivariate phenotypes in genome-wide association studies.

Introduction

Since the first genome-wide association study (GWAS) [1], more than 2,000 loci have been

identified to be significantly associated with one or more complex traits [2]. In the early days,

researchers have focused on genes associated with well defined functions or specific traits. A

systematic review showed that many loci are actually associated with multiple traits [3]. This

motivates researchers to study pleiotropy which is a condition in which a single gene affects

multiple traits. A well-known example published on Nature is a GWAS involving 107 pheno-

types that identified multiple pleiotropy genes [4]. From a statistical point of view, for complex
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diseases such as substance use disorders, a gene usually affects multiple traits and yet the effect

size on each trait is very small. A GWAS using marginal association tests tends to have low

power to detect these small effects. However, if a test can model the association between this

gene and multivariate phenotypes simutaneously, the statistical power would be greatly

increased [5].

When all the multivariate phenotypes are continuous, our team [6] recently conducted a

comprehensive review of relevant statistical methods commonly used in the field including the

principal component analysis (PCA), the multivariate analysis of variance (MANOVA), the

generalizing estimating equations (GEE), the trait-based association test involving the extended

Simes procedure (TATES), and the classical Fisher combination test. In the same study, we pro-

posed a new method that relaxes the unrealistic independence assumption of the classical Fisher

combination test and is computationally efficient. Our simulations also showed that the pro-

posed method has higher power than existing methods while controlling the type I error rate.

Most of the existing methods that we previously reviewed and compared were designed for

continuous multivariate phenotypes. However, it is pretty common in practice that multivari-

ate phenotypes are measured in different scales (i.e. non-commensurate). For example, in sub-

stance abuse research, the early onset use of a substance and the lifetime exposure to a

substance are both important traits and yet, the former is usually measured as a binary out-

come whereas the latter tends to be a continuous or ordinal outcome [7]. The methodological

challenge of modeling the association between a gene and non-commensurate phenotypes is

that there does not exist a multivariate distribution for mixed data types.

There are two approaches that can handle bivariate phenotypes with one continuous vari-

able and one binary variable [8]. The first approach is to model the bivariate phenotypes by

factoring the joint distribution into the product of conditional and marginal distributions [9].

The complexity of this approach, however, increases exponentially when the number of phe-

notypes increases. The other approach is based on a latent class model with the assumption

that conditioning on the latent variable, the bivariate phenotypes are independent. Hence, one

can write the joint distribution as a product of the two conditional distributions. Nevertheless,

one critical issue with this approach is that the parameters in the latent class model are not

identifiable without some constraints as demonstrated in the example in Teixeira-Pinto and

Normand (2009) [8].

In comparison to the methods reviewed above, meta-analysis is a more flexible alternative

for handling different types of phenotype data [10]. The first step of this approach is to carry

out separate analyses for different types of data (e.g. generalized linear models for continuous,

binary, or ordinal phenotypes). The p-values from these analyses are later aggregated into a

summary statistic. If this summary statistic is more extreme than the critical value, the signifi-

cance of association between a SNP and multivariate phenotypes is declared. However, the key

restriction of this approach is that the sample used to derived the p-value for one phenotype

cannot be used to derive the p-value for another phenotype. If we partition the entire sample

to multiple subsets for the purpose of meta-analysis, the statistical power would be greatly

reduced.

In this study, we extend the Fisher combination function method originally designed for

continuous multivariate phenotypes [6] to handle mixed continuous, binary, or ordinal multi-

variate phenotypes. This new method is also applicable to any number of phenotypes while

controlling the type I error rate. Furthermore, the majority of computation time for the pro-

posed method is used to calculate the marginal p-values, whereas the rest of computation time

for the Fisher combination function is minimal regardless of the number of phenotypes

involved. Therefore, this method is highly effective for exploring multiple combinations of

multivariate phenotypes with minimal extra computation time.
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This paper is organized as follows. In the next section, we review our previous work on con-

tinuous multivariate phenotypes and propose an extension of the previous method to handle

multivariate phenotypes with mixed measurement scales. We also show that our proposed

method controls the type I error rate. Because the proposed method requires estimation of the

correlations for various combinations of phenotypes, we propose the estimation methods in

the Estimation of the Correlation between Mixed Phenotypes section. In the Simulation Stud-

ies section, we present the results of simulation studies that evaluate the proposed method in

terms of the accuracy of correlation and variance estimation, the type I error rate and statistical

power. The Real Data Analysis section presents the results of statistical analysis on the Study of

Addiction: Genetics and Environment (SAGE) data to demonstrate the applications in the

substance abuse field. Discussions and concluding remarks are presented in the Discussions

section.

Methods

Previous Work on Continuous Multivariate Phenotypes

In this section, we review our previous work on continuous multivariate phenotypes [6] so

that the readers have sufficient background information to understand the proposed method

in the next section. For each individual i (= 1, . . ., N), let Zig (= 0, 1, 2) be the number of refer-

ence alleles for SNP g (= 1, . . ., G), and Rij, (j = 1, . . ., M) be the jth phenotypes. To simplify

notation, we define Z(g) = (Z1g, . . ., ZNg) as the gth genotypes; and R(j) = (R1j, . . ., RNj) as the jth
phenotype. Let pgj be the p-value from the marginal test of the association between Z(g) and

R(j). Thus, for the gth genotype, we have a collection of p-values {pg1, . . ., pgM} for theM pheno-

types. The purpose of this article is to construct an efficient and powerful method for testing

the association between the gth SNP and the multivariate phenotypes {R(1), . . ., R(M)} using

these marginal p-values {pg1, . . ., pgM}.

Given {pg1, . . ., pgM}, the Fisher combination statistic is defined as

SðgÞ ¼
XM

j¼1

� 2 log ðpgjÞ:

There are other choices of combination functions but the Fisher combination is chosen

because of its asymptotic optimality [11, 12]. Based on the Fisher combination statistic, we

may conduct a permutation test to examine the association between the gth SNP and the mul-

tivariate phenotypes {R(1), . . ., R(M)}. Although the permutation test is unbiased and asymptoti-

cally equivalent to the best parametric tests [13], it is extremely time consuming and thus not

feasible for carrying out a whole genome association test that would require performing more

than 106 permutations.

When the phenotypes {R(1), . . ., R(M)} follow a multivariate normal distribution, the test sta-

tistic S(g) is a sum of chi-squared statistics under the null hypothesis of no association between

the genotype and phenotypes. Since multivariate phenotypes are correlated (i.e. the p-values in

S(g) are correlated), the null distribution of S(g) follows a gamma distribution with the shape

parameter κ and the scale parameter ν [14, 15]. That is,

E½SðgÞ� ¼ kn;

Var ½SðgÞ� ¼ kn2:

If we can estimate κ and ν, we can calculate the p-value of S(g) using the gamma distribution

rather than the permutation method. This will greatly improve the computation efficiency.
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Because −2 log(pgj) follows a chi-squared distribution with 2 degrees of freedom, we have

kn ¼ E½SðgÞ� ¼ 2M; ð1Þ

kn2 ¼ Var ½SðgÞ� ¼ 4M þ
X

j6¼j0
covð� 2 log ðpgjÞ; � 2 log ðpgj0 ÞÞ: ð2Þ

Here, the covariance between the p-value of the jth phenotype and the j0th phenotype, cov(−2

log pgj, −2 log pgj0), is a function of the correlation between R(j) and R(j0) [6, 15]. Define ρjj0 to be

the correlation between R(j) and R(j0). Our previous work showed that cov(−2 log (pgj), −2 log

(pgj0)) can be accurately estimated as

covð� 2 log ðpgjÞ; � 2 log ðpgj0 ÞÞ �
X5

l¼1

clr
2l
jj0 �

c1

N
ð1 � r2

jj0 Þ
2
; ð3Þ

where c1 = 3.9081, c2 = 0.0313, c3 = 0.1022, c4 = −0.1378 and c5 = 0.0941. Note that this approx-

imation is very accurate as the maximum difference is less than 0.001. Thus, we can efficiently

estimate κ and ν using Eqs (1) and (2) with the cov(�) in Eq (2) substituted by the right-hand

side of Eq (3).

The Proposed Method for Multivariate Phenotypes with Mixed

Measurement Scales

The method reviewed in the previous section is based on the strong assumption that the multi-

variate phenotypes follow a multivariate normal distribution. Although we have demonstrated

its robustness against a long-tail multivariate distribution in a simulation study, it may not be

applicable to multivariate phenotypes with mixed measurement scales [6]. In this section, we

extend the method to handle mixed continuous, binary, or ordinal phenotypes.

The proposed method is a two-phase approach: the first phase conducts a marginal test for

each phenotype; and the second phase uses the Fisher combination function to combine the p-

values from the first phase and conducts a multivariate test. The prerequisite for the multivari-

ate test to be valid is that the marginal tests generating pgj are unbiased [16, 17]. In order to

meet this criterion, we propose to conduct the marginal tests based on the measurement scales

of the phenotypes: using the linear regression for continuous phenotype; the logistic regression

for binary phenotypes; and the cumulative logit model for ordinal phenotypes [18]. We pro-

pose to use those regression models in Phase 1 not only because they are unbiased but also

because we can add covariates in the models to increase the accuracy of testing as well as prin-

cipal components to correct for population stratification [19].

Once we obtain p-values {p1g, . . ., pMg} in Phase 1, the second phase is to calculate the corre-

lation ρjj0 between the phenotypes R(j) and R(j0), so that we can estimate cov(−2 log(pgj), −2 log

(pgj0)) using Eq (3). There are two issues that we need to address. First, we need to find appro-

priate methods for estimating ρjj0 when one or both phenotypes are binary or ordinal. This

issue is dealt with in detail in the next section where various estimation methods of correlation

are presented for all possible combinations of measurement scales. The second issue is to find

the relationship between cov(−2 log(pgj), −2 log(pgj0)) and
P5

l¼1
clr2l

jj0 �
c1
N ð1 � r2

jj0 Þ
2

when the

correlation ρjj0 estimated from non-continuous data is used in Eq (3). We propose a latent

response model to address this issue.

Assume that the response R(j) is viewed as a partial or full observation of a continuous latent
response R�(j). When the phenotype is continuous, R�(j) is fully observed and equal to R(j).

However, when the phenotype is binary or ordinal, a certain value of R(j) is observed when

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales
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R�(j) falls within an unknown fixed threshold. The binary phenotype is treated as a special case

when there is only one threshold. We further assume that (R�(1), . . ., R�(M)) follows a multivar-

iate normal distribution and the correlation between R�(j) and R�(j0) is ρjj0. Let pygj and pygj0 be the

p-values derived from observed binary or ordinal phenotypes. We propose to plug r̂ jj0 in

Eq (3) to estimate the true covariance covð� 2 logðpygjÞ; � 2 logðpygj0 ÞÞ. However, under the latent

response model, this approach is actually estimating covð� 2 log ðp�gjÞ; � 2 log ðp�gj0 ÞÞ, where p�gj
and p�gj0 are the p-values calculated from the latent variables R�(j) and R�(j

0). Since the binary or

ordinal R(j) and R(j0) are derived from the continuous R�(j) and R�(j
0), the covariance between

R(j) and R(j0) is smaller:

covð� 2 log ðpygjÞ; � 2 log yðpgj0 ÞÞ � covð� 2 log ðp�gjÞ; � 2 log ðp�gj0 ÞÞ:

Thus, this approach will over-estimate the covariance of the observed test statistic. In other

words, we conservatively estimate the variance of S(g) so that the type I error is controlled. In

the Simulation Studies section, we conduct a simulation study to examine the difference

between the true covariance and our estimates.

Estimation of the Correlation between Mixed Phenotypes

In this section, we specify various estimation methods of correlation for all possible combina-

tions of measurement scales. Table 1 summarizes the classification of correlation coefficients

based on the variable types. We define the following simplified notations for ease of interpreta-

tion. Suppose (Ui, Vi)0, i = 1, . . ., n, are independent and identical bivariate normal random

variables and the correlation between Ui and Vi is ρ. We would like to estimate ρ but either Ui,
Vi or both are latent variables. The observed data may be binary (coded 0 or 1) or ordinal

(coded as positive integers) depending on the practical situation. In the following sections, we

describe different approaches to estimate ρ depending on the types of observed variables. Sub-

scripts or superscripts may be omitted for convenience.

Kendall Correlation: Continuous-Continuous

Suppose we observe Xc
i and Yc

i where Xc
i ¼ Ui and Yc

i ¼ Vi. To estimate the correlation coeffi-

cient ρ, the natural estimator is Pearson’s sample correlation rp. Although Pearson’s sample cor-

relation is an asymptotically unbiased estimator of ρ and the variance of rp reaches the Cramer-

Rao lower bound as the sample size increases, it tends to over or underestimate ρ when the

sample distribution of ðXc
i ;Y

c
i Þ
0
deviates from the bivariate normal distribution or the regres-

sion of Yc
i on Xc

i (or vice versa) is nonlinear [20]. Moreover, it cannot handle incomplete data.

Our previous work demonstrated that Kendall τ is robust against these problems and thus is

chosen to estimate the correlation between continuous variables [6]. Kendall τ is defined as

t ¼
Kc � Kd

nðn � 1Þ=2
;

Table 1. Different types of correlation coefficients when the variables X and Y are continuous, binary, or ordinal.

X

Continuous Binary Ordinal

Y Continuous Kendall Biserial Polyserial

Binary Tetrachoric Polychoric

Ordinal Polychoric

doi:10.1371/journal.pone.0169893.t001
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where Kc is the number of concordant pairs (Xc
i and Yc

j ), and Kd is the number of discordant

pairs. To use kendall’s τ to estimate ρ, we can use this transformation [21, 22]:

rk ¼ sin
pt

2

� �
:

Thus, we adopt rk when both phenotypes are continuous.

Biserial Correlation: Continuous-Binary

Suppose we observed Yc
i ¼ Vi and Xb

i ¼ I½Ui�C�, where I is an indicator function and C is a fixed

unknown threshold. Pearson proposed the sample biserial correlation to estimate ρ [23]. How-

ever, its absolute value was shown to exceed 1 when |ρ|> 0.798 [24]. Brogden considered the

situation when ρ> 0 and proposed a better biserial estimator [25]:

rBrogden ¼
P

iY
c
i X

b
i � n�Xb �Yc

P
P

Xi
i¼1 Yc

ðn� iþ1Þ � n�Xb �Yc
;

where Yc
ð1Þ
� Yc

ð2Þ
� . . . � Yc

ðnÞ. Note that rBrogden � 1 but rBrogden may be less than −1 when

ρ< 0. Lord further modified Borgden’s estimator as Lord’s estimator [26]:

rL ¼
rBrogden if rBrogden � 0

ryBrogden if rBrogden < 0;

8
<

:

where ryBrogden ¼ � rBrogdenðXb
i ; � Y

c
i Þ. The Lord’s biserial estimator ensures that rL is always

between −1 and 1 and were shown by simulations to be more efficient in comparison to other

estimators [27]. Thus, in this study we adopt rL to estimate ρ for continuous and binary

variables.

Tetrachoric Correlation: Binary-Binary

Suppose we observe Xb
i ¼ I½Ui>C1 �

and Yb
i ¼ I½Vi>C2 �

for unknown thresholds C1 and C2. Let the

proportions in 2 × 2 contingency tables be p11, p12, p21, p22. Define the marginal proportions as

px = p11 + p12 and py = p11 + p21. Since the underlying variables follow a bivariate normal distri-

bution, Pearson proposed the following likelihood function to find the tetrachoric correlation

for ρ [28]:

Lðh; k; rÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

Z 1

k

Z 1

h
exp �

x2 � 2rxy þ y2

2ð1 � r2Þ

� �

dxdy

where h = F−1(px), k = F−1(py), and F−1 is the inverse of the standard normal distribution

function. The maximum likelihood estimate (MLE) for ρ is derived by solving

Lðh; k; rÞ ¼ p11:

In this study, we adopt the computational algorithm developed by Good (2006) [29] to calcu-

late this MLE.

Polyserial Correlation: Continuous-Ordinal

Let Yc
i ¼ Vi and Xo

i ¼ t if zt� 1 � Ui < zt , for a positive integer t (� 2), where −1 = z0 < z1

< . . .< zt−1 < zt =1. Cox derived the likelihood function of observations ðXo
i ;Y

c
i Þ
0
using the

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales
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following factorization [30]:

Pn
i¼1
f ðXo

i ¼ xi;Y
c
i ¼ yiÞ ¼ Pn

i¼1
f ðyiÞPr½xijyi� ð4Þ

where Yc
i is a normal random variable and the conditional probability of Xo

i jY
c
i is

Pr½xijyi� ¼ FðyjÞ � Fðyj� 1Þ;

where F is the standard normal distribution function and yj ¼
zj � rðyi� mÞ=s

ð1� r2Þ1=2 : The MLE is

obtained by maximizing the likelihood function in Eq (4). In this study, we adopt the computa-

tional algorithm developed by Olsson et al. (1982) [31] to calculate the MLE.

Polychoric Correlation: Binary-Ordinal or Ordinal-Ordinal

Suppose that the variables we observe are both ordinal. That is, the relation between Xi and Ui
is

Xi ¼ 1 if � 1 ¼ z0 � Ui < z1

Xi ¼ 2 if z1 � Ui < z2

..

.

Xi ¼ R if zR� 1 � Ui < zR ¼ 1:

The relation between Yi and Vi is similar to this. Pearson and Pearson (1922) [32] proposed

the polychoric correlation which can be applied to handle ordinal-ordinal and binary-ordinal

(special case) variables. If we arrange the data as a two-way contingency table with observed

frequencies nij, i = 1, . . ., R and j = 1, . . ., C. Define πij as the probability of observing nij. Then

the likelihood function is proportion to

LðrÞ / PR
i¼1

PC
j¼1

p
nij
ij ;

where πij = F(zi, ξj) − F(zi−1, ξj) − F(zi, ξj−1) + F(zi−1, ξj−1). Note that F(�, �) is the standard

bivariate normal distribution function which is also a function of ρ. Olsson developed an algo-

rithm to derive MLE which was shown by a simulation study to have a small bias with the vari-

ance being close to the theoretical value [33]. We adopt this algorithm to calculate the

polychoric correlation.

Results

Three simulation studies were conducted to evaluate (1) the accuracy of the proposed estima-

tion methods for correlations between phenotypes; (2) the accuracy of the proposed estimation

method for the variance of test statistic; and (3) the type I error rate and statistical power of the

proposed multivariate test in comparison to competing methods. A real data analysis was used

to identify pleiotropic genes for the risk of nicotine dependence.

Accuracy of the Estimation of Correlation between Phenotypes

We conducted a simulation study to evaluate the accuracy of different correlation estimation

methods for mixed continuous, binary, and ordinal data described in the previous section.

Because most genome-wide association studies contain more than 1,000 subjects, we simulated

1,000 individuals. For each individual, we simulated a pair of continuous phenotypes from

bivariate normal random variables. The correlation ρ for the bivariate normal distribution

ranges from −0.9 to 0.9. The binary variables were derived from the continuous variables by

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales
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dividing the observed values into two parts. Similarly, the ordinal variables were derived from

the continuous variables by dividing their values into five parts. We later created six different

combinations among continuous, binary or ordinal variables. For each simulated pair of phe-

notypes, we estimated its correlation using the corresponding method described in Estimation

of the Correlation between Mixed Phenotypes section. We repeated the process 10,000 times

to calculate the mean and standard deviation for each configuration. The simulation results in

Table 2 show that all the proposed methods estimate the true ρ well. The confidence intervals

cover the true ρ in all situations. The standard deviations are small. Even the largest standard

deviation, which occurred with both phenotypes being binary and the correlation being

around zero, is about 0.05. Therefore, the accuracy level is high for all of the proposed correla-

tion estimation methods.

Accuracy of the Estimation of Variance for Test Statistic

We conducted a simulation study to evaluate the relative accuracy of the proposed variance

estimation method when the phenotypes are a mixture of continuous, binary or ordinal vari-

ables. The simulation was based on 1,000 simulated individuals. Given the correlation ρ rang-

ing from −0.9 to 0.9, we simulated bivariate normal random variables (U, V)0 for each

individual. The binary and ordinal variables were generated from U or V following the same

procedure as the simulation study described in the previous section. We also independently

simulated the genotypes Z of all individuals with the minor allele frequency 0.5. We used the

linear regression to test the association between a genotype and a continuous phenotype; the

logistic regression for a binary phenotype; and the cumulative logit model for an ordinal phe-

notype. The process was repeated 10,000 times so that we have 10,000 pairs of p-values for

each of the six types of combination (i.e. continuous-continuous, continuous-ordinal, ordinal-

Table 2. Simulation results for the correlation estimation based on Kendall’s τ, biserial, polyserial, tetrachoric, or polychoric correlation. The

choice of correlation methods depends on the measurement scale. The values of ρ ranges from −0.9 to 0.9. The correlation estimates and standard deviations

for various methods are calculated based on 10,000 replications.

ρ Continuous-Continuous Continuous-Binary Continuous-Ordinal Binary-Binary Binary-Ordinal Ordinal-Ordinal

−0.9 −0.8999 (0.0066) −0.9003 (0.0112) −0.9009 (0.0082) −0.8999 (0.0159) −0.9007 (0.0149) −0.9004 (0.0120)

−0.8 −0.7997 (0.0124) −0.8002 (0.0185) −0.8006 (0.0136) −0.8000 (0.0249) −0.8007 (0.0213) −0.8008 (0.0160)

−0.7 −0.6999 (0.0172) −0.7004 (0.0238) −0.7007 (0.0183) −0.7000 (0.0315) −0.7009 (0.0269) −0.7008 (0.0206)

−0.6 −0.6000 (0.0218) −0.6004 (0.0287) −0.6004 (0.0225) −0.6002 (0.0374) −0.6009 (0.0312) −0.6008 (0.0252)

−0.5 −0.4999 (0.0253) −0.5001 (0.0324) −0.5005 (0.0263) −0.5000 (0.0418) −0.5009 (0.0350) −0.5006 (0.0287)

−0.4 −0.4000 (0.0281) −0.4005 (0.0351) −0.4005 (0.0289) −0.3998 (0.0453) −0.4005 (0.0380) −0.4005 (0.0311)

−0.3 −0.3001 (0.0302) −0.3004 (0.0371) −0.3004 (0.0310) −0.3003 (0.0477) −0.3005 (0.0407) −0.3005 (0.0333)

−0.2 −0.2004 (0.0317) −0.2010 (0.0388) −0.2005 (0.0327) −0.2010 (0.0493) −0.2004 (0.0418) −0.2009 (0.0352)

−0.1 −0.1006 (0.0330) −0.1008 (0.0398) −0.1008 (0.0337) −0.1008 (0.0509) −0.1010 (0.0428) −0.1011 (0.0359)

0.0 −0.0000 (0.0331) 0.0002 (0.0397) 0.0001 (0.0339) −0.0001 (0.0506) −0.0004 (0.0428) 0.0002 (0.0364)

0.1 0.0998 (0.0324) 0.0999 (0.0392) 0.0998 (0.0331) 0.1000 (0.0499) 0.0999 (0.0420) 0.1000 (0.0354)

0.2 0.1996 (0.0317) 0.2003 (0.0390) 0.1998 (0.0323) 0.1997 (0.0494) 0.1995 (0.0414) 0.2000 (0.0348)

0.3 0.2999 (0.0298) 0.3002 (0.0370) 0.3003 (0.0304) 0.3001 (0.0477) 0.3004 (0.0398) 0.3006 (0.0326)

0.4 0.3993 (0.0279) 0.3996 (0.0352) 0.4000 (0.0287) 0.3994 (0.0449) 0.4003 (0.0372) 0.4003 (0.0311)

0.5 0.4997 (0.0249) 0.5004 (0.0319) 0.5001 (0.0259) 0.5001 (0.0416) 0.5005 (0.0347) 0.5006 (0.0284)

0.6 0.6000 (0.0217) 0.6006 (0.0285) 0.6004 (0.0226) 0.6000 (0.0377) 0.6003 (0.0314) 0.6009 (0.0249)

0.7 0.6999 (0.0172) 0.7004 (0.0237) 0.7006 (0.0184) 0.6999 (0.0317) 0.7005 (0.0269) 0.7008 (0.0206)

0.8 0.8000 (0.0124) 0.8004 (0.0184) 0.8008 (0.0137) 0.8003 (0.0250) 0.8006 (0.0215) 0.8011 (0.0162)

0.9 0.8997 (0.0066) 0.9001 (0.0113) 0.9007 (0.0082) 0.8996 (0.0160) 0.9005 (0.0152) 0.8997 (0.0112)

doi:10.1371/journal.pone.0169893.t002
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ordinal, binary-binary, binary-ordinal, and continuous-binary). Based on these simulated p-

values, we can calculate their covariance which is considered the true covariance for the pur-

pose of comparison. Since the values of ρ are known in the experiment, they were plugged in

Eq (3) to produce the estimate of the covariance based on the proposed method. Fig 1 summa-

rizes the simulation results with the solid curves being the estimates and the dotted curves

being the true covariances. The findings from this simulation study are summarized as follows:

1. The covariances depend on the values of ρ. When ρ = 0, the covariance is zero. When |ρ|

increases, the covariance increases.

2. The true covariance is always less than or equal to the covariance estimate using the right-

hand side of Eq (3).

3. When both phenotypes are continuous (the top-left panel), the covariance estimates match

the true covariances.

Fig 1. The relationship between the covariance cov[−2log(pu), −2log(pv)] and the correlation ρ. The title in each panel indicates the types of data

simulated. The solid curve in each panel corresponds to our covariance estimates using Eq (3). The dotted curves are the true covariances calculated from

the simulated data.

doi:10.1371/journal.pone.0169893.g001
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4. When one or both phenotypes are not continuous, the covariance estimates tend to over-

estimate the true covariances.

5. The difference between the true covariances and the estimates varies across different data

types. For example, the difference for continuous-ordinal data is relatively small. On the

other hand, the difference for binary-binary data is the largest among all six combinations.

In summary, the results indicate that our proposed estimation method tends to slightly

over-estimate the true covariance. For example, when ρ = 0.5 and both the observed pheno-

types are binary, our estimate of Var[S (g)] is 9.9956 which over-estimates the target value of

8.813 by 13%. Nevertheless, when one or both phenotypes are continuous or ordinal, the dif-

ference is much smaller. Furthermore, because our approach conservatively estimates the vari-

ance of the test statistic S(g), the resulting type I error rate is controlled.

Type I Error Rate and Statistical Power of the Proposed Multivariate Test

A simulation study was conducted to evaluate the performance of the proposed method in

terms of the type I error rate and statistical power. We considered a pleiotropic gene model in

which multivariate phenotypes were modeled as a function of the candidate gene with varied

effect sizes. For each individual, we simulated the genotype Z = (0, 1, 2) based on the minor

allele frequency (MAF) which is uniformly distributed on [0.1, 0.5]. Therefore, Z represents

the number of reference alleles for a SNP. A total of 100 individuals were generated. The latent

phenotypes were simulated from multivariate normal (MVN) random variables. We consid-

ered (V1, V2, . . ., V6)0 *MVN((μ1, μ2, . . ., μ6)0, S) where the diagonal elements of S are 1 and

the off diagonal elements of S are ρ. The value of μi(i = 1, . . ., 6) was defined as

mi ¼

� ei if Z ¼ 0

0 if Z ¼ 1

ei if Z ¼ 2;

8
><

>:

where ei is the genetic effect size.

The observed phenotypes (U1, U2, . . ., U6)0 with mixed measurement scales were derived

from the simulated latent variables (V1, V2, . . ., V6)0. Let Ui = Vi(i = 1, 2) represent the continu-

ous measurements. By dividing Vi(i = 3, 4) into two intervals with the cut-off value C, we

derived binary measurements: Ui = 1 if Vi> C or Ui = 0 if Vi� C(i = 3, 4). For the ordinal

scale, we divided Vi(i = 5, 6) into five intervals using 4 cut-off points and assigned the values of

1 to 5 to Ui(i = 5, 6) accordingly.

The values of ρ were set at 0, 0.35 and 0.75 to represent independent, moderate dependent,

or highly dependent multivariate phenotypes. We also manipulated the values of e1, . . ., e6 to

be 0, 0.5, 0.7, or 0.9 to represent different genetic effect sizes. Note that the configuration of all

e1, . . ., e6 being equal to zero represents the null condition of no genetic effect.

We compared the proposed method (labelled asMixed), with three alternative approaches.

When there was no method available for handling mixed phenotypes, people tended to analyze

them as phenotypes in the same measurement scale. One commonly adopted approach is to

dichotomize each of (U1, U2, . . ., U6)0 and carry out the analysis with the marginal p-values

derived from a logistic regression model (labelled as Dichotomous). Another naive approach is

to treat each of (U1, U2, . . ., U6)0 as continuous measurements and carry out the analysis with

the marginal p-values derived from a linear regression model (labelled as Continuous). We also

compared our method with the ideal situation when the analysis is conducted on the latent
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phenotypes (V1, V2, . . ., V6)0. This approach is labelled as Latent and serves as our gold

standard.

The empirical type I error rates were set at 10−4. In order to evaluate the performance of

competing methods in terms of controlling the type I error, we carried out 106 replications

under the null conditions. For the conditions with non-zero effect sizes, 104 replications are

sufficient to show the differences in power. The simulation results are shown in Table 3. The

findings are summarized as follows:

1. Based on 106 iterations, a half of the width of 95% confidence interval is 0.00139. Therefore,

under the null conditions when all the effect sizes are zero (ei = 0, i = 1, . . ., 6), all the four

methods control the type I error.

2. When some or all effect sizes (ei) are nonzero, the power of all methods decreases as the cor-

relation ρ increases. The decrease in power is expected because highly correlated pheno-

types contain less information than phenotypes with low correlations.

3. Among all four methods, the Latent has the highest power and the Dichotomous has the

lowest power. When mixed measurement scales are observed, dichotomizing all observed

measurements could reduce the power by half.

4. The power of the proposed method (Mixed) is very close to that of the Latent which is the

gold standard. Because the true values of latent phenotypes are unknown in real situations,

this result demonstrates that our proposed method can provide an efficient and powerful

way to conduct multivariate testing with phenotypes in mixed measurements in practice.

5. If we treat all mixed measurement scales as continuous variables and apply the proposed

method to it (i.e. the Continuous), the power is close to that of the proposed method. In

Table 3. Simulation results for the empirical power with varied correlations ρ and genetic effect sizes (e1, . . ., e6). The Latent column is the power with

the proposed method applied to 6 latent phenotypes. The Mixed column is the power with the proposed method applied to 6 observed phenotypes. The

Dichotomous column is the power when the observed phenotypes are dichotomized. The Continuous column is the power when the phenotypes in mixed

measurements are treated as continuous variables. The number of iterations is 106 when all genetic effect sizes are zero and 104 for other situations.

ρ e1 e2 e3 e4 e5 e6 Latent Mixed Dichotomous Continuous

0 0 0 0 0 0 0 0.00009 0.00008 0.00004 0.00009

0.35 0 0 0 0 0 0 0.00057 0.00024 0.00005 0.00025

0.75 0 0 0 0 0 0 0.00027 0.00007 0.00002 0.00012

0 0.5 0.5 0.5 0.5 0.5 0.5 0.96 0.91 0.77 0.91

0.35 0.5 0.5 0.5 0.5 0.5 0.5 0.84 0.73 0.49 0.73

0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.51 0.36 0.19 0.39

0 0 0.7 0 0.7 0 0.7 0.94 0.88 0.68 0.88

0.35 0 0.7 0 0.7 0 0.7 0.82 0.68 0.42 0.70

0.75 0 0.7 0 0.7 0 0.7 0.36 0.20 0.08 0.25

0 0.9 0.9 0 0 0 0 0.94 0.94 0.67 0.94

0.35 0.9 0.9 0 0 0 0 0.84 0.84 0.42 0.83

0.75 0.9 0.9 0 0 0 0 0.37 0.37 0.05 0.38

0 0 0 0.9 0.9 0 0 0.95 0.71 0.68 0.74

0.35 0 0 0.9 0.9 0 0 0.85 0.43 0.41 0.49

0.75 0 0 0.9 0.9 0 0 0.37 0.05 0.05 0.09

0 0 0 0 0 0.9 0.9 0.95 0.90 0.69 0.92

0.35 0 0 0 0 0.9 0.9 0.85 0.72 0.42 0.78

0.75 0 0 0 0 0.9 0.9 0.38 0.16 0.05 0.30

doi:10.1371/journal.pone.0169893.t003
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some situations, it had even higher power than the proposed method. However, modeling

binary or ordinal responses as continuous variables is both mathematically and practically

questionable. For instance, in the binary case, the mean response value is within 0 and 1 but

the predicted values from a linear regression model would cover the entire real line [18].

Furthermore, Guisan and Harrell (2000) [34] provided four reasons why applying a linear

regression model is statistically incorrect when the outcome is ordinal. Therefore, we do

not recommend the use of the Continuous approach.

6. In comparison to the situation when all phenotypes are associated with the pleiotropic

gene, the power of all methods tends to be reduced when a half of the phenotypes are not

associated with the gene (e1 = e3 = e5 = 0). Even when the nonzero effect sizes (e2, e4, e6)

increase from 0.5 to 0.7, the power is still lower than that in the situation when all genetic

effects are at the 0.5 level. This implies that selecting relevant phenotypes is a prerequisite

for maintaining the power level of a multivariate test.

7. We also investigated whether the power varies with different measurement scales, and

found that the power for continuous phenotypes (e1 = e2 = 0.9, ej = 0, j = 3, 4, 5, 6) is the

highest; the power for ordinal phenotypes (e5 = e6 = 0.9, ej = 0, j = 1, 2, 3, 4) is the next high-

est; and that for binary phenotypes (e3 = e4 = 0.9, ej = 0, j = 1, 2, 5, 6) is the lowest. Such

reduction in power from continuous to ordinal is relative small in comparison to the reduc-

tion from ordinal to binary. Thus, collecting phenotype data in continuous or ordinal mea-

surement scales has the advantage of increasing statistical power.

Real Data Analysis

We conducted real data analysis using the database from the Study of Addiction: Genetics and

Environment (SAGE). The SAGE is a case-control study that gathered data from three large

scale studies in the substance abuse field: the Collaborative Study on the Genetics of Alcohol-

ism (COGA), the Family Study of Cocaine Dependence (FSCD), and the Collaborative Genetic

Study of Nicotine Dependence (COGEND). The total number of individuals with individual

level data available is 4,121. Each individual was genotyped using the Illumina Human

1M-Duo beadchip which contains over 1 million SNP markers.

The Fagerström Test for Nicotine Dependence (FTND) is a commonly adopted instrument

for assessing the intensity of physical addiction to nicotine [35]. It consists of six items of

which some are ordinal and the others are binary:

1. ftnd_1: How soon after you wake up do you smoke your first cigarette? (3 = within 5

minutes; 2 = 6–30 minutes; 1 = 31–60 minutes; 0 = after 60 minutes)

2. ftnd_2: Do you find it difficult to refrain from smoking in places where it is forbidden?

(1 = yes; 0 = no)

3. ftnd_3: Which cigarette would you hate most to give up? (1 = the first one in the morn-

ing; 0 = all others)

4. ftnd_4: How many cigarettes per day do you smoke? (0 = 10 or less; 1 = 11–20; 2 = 21–

30; 3 = 31 or more)

5. ftnd_5: Do you smoke more frequently during the first hours after waking than during

the rest of the day? (1 = yes; 0 = no)

6. ftnd_6: Do you smoke when you are so ill that you are in bed most of the day? (1 = yes;

0 = no)
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The items are summed to yield a total score of 0–10. The higher the total score, the more

intense is the patient’s physical dependence on nicotine. Clinically, the score of 6 or higher

indicates high nicotine dependency and represents individuals who would be particularly likely

to benefit from tapering and/or the prescription of nicotine replacement therapy as an adjunct

to standard counseling. The score of 5 or less, on the other hand, suggests low to moderate nic-

otine dependency and represents individuals for whom standard counseling is most appropri-

ate. The total score, ftnd_total, or the binary variable, ftnd_total(binary), coded

as 0 or 1 depending on whether ftnd_total< 6 would be popular choices for the phenotype

measure. However, they have some important issues including (1) throwing away potentially

important information; (2) assigning different weights to the items; and (3) choosing an arbi-

trary cutoff. Our proposed method, therefore, provides a new approach to conduct a multivari-

ate test based on the original six items in mixed measurement scales.

From the original 4,121 individuals, we eliminated individuals whose FTND phenotype infor-

mation was not available. Since a few individuals were related family members, the KING pro-

gram [36] was used to identify and select unrelated individuals. The final number of unrelated

individuals included in the analysis was 2,775 (1,288 males, 1,487 females). Our analysis only

included 22 autosomes and the 753,238 SNP’s that passed the quality control procedures [37].

The phenotype distributions among the 2,775 individuals are presented in Fig 2 using bar-plots.

Four of the FTND items (ftnd_2,ftnd_3,ftnd_5, and ftnd_6) are binary and the other

two FTND items (ftnd_1 and ftnd_4) are ordinal ranging from 0 to 3. The FTND total score

ranges from 0 to 9. The sample correlations among the 6 FTND items are shown in Table 4. The

correlations range from 0.44 (ftnd_2 and ftnd_5) to 0.77 (ftnd_1 and ftnd_6).

We conducted marginal genome-wide association tests on the six FTND items and the two

derived FTND scores. We also conducted the multivariate test based on the six FTND items.

For the binary variables, the logistic regression was employed. For the ordinal variables, the

cumulative logit model was used. Because the ftnd_total score was treated as a continuous

variable, the linear regression was applied. For all the regression models, in addition to the

genotype (coded as 0, 1, or 2), we included each individual’s age (from 18 to 74 years old), gen-

der, and race (850 black and 1,925 white) as covariates to eliminate potential confounders. We

also carried out the principal component analysis [19] to examine population stratification but

did not include any principal components in the model because the first principal component

perfectly matches with race (i.e. the multicolinearity issue). The marginal p-values are summa-

rized using QQ-plots in Fig 3; the p-values based on the multivariate test using the proposed

method are shown in Fig 4. The fact that more observed p-values are above the diagonal line in

Fig 4 (in comparison to Fig 3) indicates that the multivariate test is more powerful and thus

may identify more significant SNPs associated with the six FTND items.

To identify the SNPs associated with susceptibility to FTND, we set the reduced type I error

rate at 10−6. Based on the marginal p-values, we identify 1 SNP (rs821722, p = 9.54 × 10−7) to

be associated with ftnd_1 and 1 SNP (rs3138134, p = 7.94 × 10−7) with ftnd_3. The other

four FTND items are not associated with any SNP. The derived phenotype based on

ftnd_total is also not associated with any SNP. Besides, the SNP that is associated with

ftnd_1 is also associated with ftnd_total(binary). On the other hand, using the pro-

posed multivariate test, we identify 9 SNPs (rs17538699, rs17798885, rs2245261, rs4077464,

rs4658846, rs4658847, rs6553017, rs7672047, rs944582) to be associated with the six FTND

phenotype variables. This demonstrates that combining multiple phenotypes can increase the

power of identifying markers that may not be, otherwise, chosen using marginal tests. In addi-

tion, marginal tests may identify those SNPs that only contribute to a particular phenotype.

Therefore, if our goal is to identify the genes that contribute to the common risk shared by the

six FTND items, the proposed method is a better approach than marginal tests.
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Discussion

In this study, we propose a new multivariate method for GWAS when the multivariate pheno-

types are a mixture of continuous, binary, or ordinal variables. We use a latent response model

to unify different data types for estimating correlation between phenotypes. The first phase of

Fig 2. The distributions of phenotypes: FTND 1, FTND 2, . . ., FTND 6, FTND total, and FTND total (Binary). FTND total (Binary) is derived from FTDN

total according to whether FTND total score is less than 6 or not.

doi:10.1371/journal.pone.0169893.g002

Table 4. The correlations among the 6 FTND items.

correlation ftnd_2 ftnd_3 ftnd_4 ftnd_5 ftnd_6

ftnd_1 0.6815 0.6758 0.7528 0.6446 0.7770

ftnd_2 0.4579 0.5895 0.4403 0.6838

ftnd_3 0.4822 0.6394 0.5294

ftnd_4 0.4452 0.6702

ftnd_5 0.5110

doi:10.1371/journal.pone.0169893.t004
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our method uses regression models with different link functions to accommodate different

measurement scales of the phenotypes. These regression models not only enable us to evaluate

the goodness-of-fit but also provide a way for adding covariates to adjust for potential con-

founders. The second phase of our method employs continuous latent responses to handle the

correlation estimation of mixed data types. The simulation study demonstrates that our pro-

posed correlation estimation methods have high levels of accuracy. The results also show that

our approach conservatively estimates the variance of the test statistic so that the type I error

rate is controlled.

We conducted a simulation study to evaluate the proposed multivariate test in terms of the

type I error rate and statistical power when the observed phenotypes are in mixed measure-

ment scales, in comparison to three competing methods: (1) the ideal analysis when the latent

phenotypes are known; (2) a conventional approach that dichotomizes all phenotypes; and (3)

a conventional approach treating all phenotypes as continuous. The simulation result shows

that the proposed method maintains the power at the level very close to that of the ideal

Fig 3. The Q-Q plots of observed p-values versus expected p-values based on the marginal tests.

doi:10.1371/journal.pone.0169893.g003
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analysis while controlling the type I error. Furthermore, when mixed measurement scales are

observed, dichotomizing all observed measurements could reduce the power by half. Although

the power for treating all mixed measurement scales as continuous variables is close to that for

the proposed method, this conventional approach is not recommended because fitting a linear

regression model on categorical variables is both mathematically and practically questionable.

Our real data analysis using the well-known database, SAGE, in the addiction field demon-

strates that conducting a multivariate test on multiple phenotypes can increase the power of

identifying markers that may not be, otherwise, chosen using marginal tests. The proposed

method also offers a new approach to analyzing the items rather than the total score of FTND

as multivariate phenotypes in GWAS. In summary, the proposed method is a better approach

than marginal tests to identify pleiotropic genes that contribute to the common liability to

complex diseases such as substance use disorders.

Although the proposed method was designed to handle continuous, binary, and ordinal

phenotypes, it can be extended to deal with count data. Under the framework of our two-

phase approach, the first phase would employ a Poisson or negative binomial regression

Fig 4. The Q-Q plot of observed p-values versus expected p-values based on the multivariate test.

doi:10.1371/journal.pone.0169893.g004
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model to conduct a marginal test on count data; and the second phase would treat the count

data as continuous in calculation of pairwise correlations, because both Poisson and negative

binomial distributions can be approximated by a normal distribution based on the large sam-

ple theory [38]. The proposed method involving Kendall τ is also robust against deviation

from a normal distribution. Nevertheless, future research is needed to further extend the

method to handle zero-inflated count data such as the number of alcohol use disorder symp-

toms [39, 40]. It is also important to extend the proposed method to deal with nominal pheno-

types such as disease subtypes. For example, Zucker (1994) [41] proposed a well-known

developmental theory that classifies alcoholism into 4 subtypes: antisocial alcoholism, develop-

mentally limited alcoholism, negative affect alcoholism, and the primary alcoholism (isolated,

episodic, and developmentally cumulative).

In standard case-control studies, the proportion of cases in the sample may be much higher

than that in the population. To deal with this ascertainment bias, many studies employed a lia-

bility threshold model [42] assuming an underlying latent random variable, which is normally

distributed in the population and has a certain threshold that determines the disease status.

Zöllner and Pritchard (2007) [43] proposed another approach to correct the ascertainment

bias directly based on population prevalence of the disease phenotype and sampling scheme.

They also conducted a simulation study showing that when the association test is powerful or

the sample size is in thousands (applicable to our setting), the ascertainment bias is negligible

and thus the correction may not be necessary. These existing methods and simulation results

are, however, based on GWAS with the case-control design involving a binary phenotype.

How to extend these methods to handle GWAS with multivariate phenotypes is, therefore, a

very important and yet complex question for future research because the definition of “case” is

unclear, especially when the phenotypes are continuous.

The method proposed in this study was designed for GWAS with independent subjects.

Due to reduced costs for SNP arrays, in recent years, many family studies have collected

GWAS data [44–46] so relatedness has become a new component to account for in modelling.

The linear mixed model (LMM) has been used to adjust for correlation between related sub-

jects with a univariate phenotype [47]. When multivariate phenotypes from related subjects

are considered, the association test between a SNP and multivariate phenotypes needs to

account for an additional level of correlation. Since the computational bottleneck is to estimate

genetic correlation matrix, direct implementation of the LMM can only handle a sample size

in hundreds. Thus, the computation becomes very expensive when LMM is extended to multi-

variate phenotypes. Zhou and Stephens (2014) [48] proposed an efficient matrix-variate linear

mixed model (mvLMM) to identify pleiotropic genes while controlling for correlation among a

large sample of related subjects. Theoretically, their method is applicable to any number of

phenotypes. However, the complexity of their method and computational speed increase with

the number of phenotypes. Specifically, th number of parameters in the mvLMM and the

computational time for the EM algorithm is quadratically proportional to the number of phe-

notypes. Therefore, mvLMM is only applicable to a modest number of phenotypes (fewer than

10 traits). A future direction of research is to extend the proposed method to handle related

subjects and compare it with mvLMM on performance.

Acknowledgments

We acknowledge the Study of Addiction: Genetics and Environment (SAGE), which is part of

the Gene Environment Association Studies (GENEVA) initiative supported by the National

Human Genome Research Institute (dbGaP study accession phs000092.v1.p1).

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales

PLOS ONE | DOI:10.1371/journal.pone.0169893 January 12, 2017 17 / 20



Author Contributions

Conceptualization: JJY LKW AB.

Formal analysis: JJY AB.

Funding acquisition: LKW AB.

Investigation: LKW AB.

Methodology: JJY AB.

Software: JJY.

Writing – original draft: JJY.

Writing – review & editing: LKW AB.

References
1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism

in age-related macular degeneration. Science. 2005 Apr; 308(5720):385–389. doi: 10.1126/science.

1109557 PMID: 15761122

2. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a

curated resource of SNP-trait associations. Nucleic Acids Research. 2014 Jan; 42(D1):D1001–D1006.

doi: 10.1093/nar/gkt1229 PMID: 24316577

3. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al. Abundant Pleiot-

ropy in Human Complex Diseases and Traits. American Journal of Human Genetics. 2011 Nov; 89

(5):607–618. doi: 10.1016/j.ajhg.2011.10.004 PMID: 22077970

4. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study

of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010 Jun; 465(7298):627–631. doi: 10.

1038/nature08800 PMID: 20336072

5. Allison DB, Thiel B, St Jean P, Elston RC, Infante MC, Schork NJ. Multiple phenotype modeling in

gene-mapping studies of quantitative traits: Power advantages. American Journal of Human Genetics.

1998 Oct; 63(4):1190–1201. doi: 10.1086/302038 PMID: 9758596

6. Yang JJ, Li J, Williams LK, Buu A. An efficient genome-wide association test for multivariate phenotypes

based on the Fisher combination function. BMC Bioinformatics. 2016; 17(1):1–11. doi: 10.1186/

s12859-015-0868-6

7. Flory JD, Manuck SB. Impulsiveness and Cigarette Smoking. Psychosomatic Medicine. 2009 May; 71

(4):431–437. doi: 10.1097/PSY.0b013e3181988c2d PMID: 19251874

8. Teixeira-Pinto A, Normand SLT. Correlated bivariate continuous and binary outcomes: Issues and

applications. Statistics In Medicine. 2009 Jun; 28(13):1753–1773. doi: 10.1002/sim.3588 PMID:

19358234

9. Fitzmaurice GM, Laird NM. Regression models for mixed discrete and continuous responses with

potentially missing values. Biometrics. 1997 Mar; 53(1):110–122. doi: 10.2307/2533101 PMID:

9147588

10. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and

strategies. Nature Reviews Genetics. 2013 Jul; 14(7):483–495. doi: 10.1038/nrg3461 PMID: 23752797

11. Littell RC, Folks JL. Asymptotic Optimality of Fisher’s Method of Combining Independent Tests. Journal

of the American Statistical Association. 1971; 66(336):802–806. doi: 10.1080/01621459.1971.

10482347

12. Littell RC, Folks JL. Asymptotic Optimality of Fisher’s Method of Combining Independent Tests II. Jour-

nal of the American Statistical Association. 1973; 68(341):193–194. doi: 10.1080/01621459.1973.

10481362

13. Hoeffding W. The Large-sample Power of Tests Based on Permutation of Observations. Annals of

Mathematical Statistics. 1952; 23(2):169–192. doi: 10.1214/aoms/1177729436

14. Brown MB. Method For Combining Non-independent, One-sided Tests of Significance. Biometrics.

1975; 31(4):987–992. doi: 10.2307/2529826

15. Yang JJ. Distribution of Fisher’s combination statistic when the tests are dependent. Journal of Statisti-

cal Computation and Simulation. 2010 Jan; 80(1–2):1–12. doi: 10.1080/00949650802412607

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales

PLOS ONE | DOI:10.1371/journal.pone.0169893 January 12, 2017 18 / 20

http://dx.doi.org/10.1126/science.1109557
http://dx.doi.org/10.1126/science.1109557
http://www.ncbi.nlm.nih.gov/pubmed/15761122
http://dx.doi.org/10.1093/nar/gkt1229
http://www.ncbi.nlm.nih.gov/pubmed/24316577
http://dx.doi.org/10.1016/j.ajhg.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22077970
http://dx.doi.org/10.1038/nature08800
http://dx.doi.org/10.1038/nature08800
http://www.ncbi.nlm.nih.gov/pubmed/20336072
http://dx.doi.org/10.1086/302038
http://www.ncbi.nlm.nih.gov/pubmed/9758596
http://dx.doi.org/10.1186/s12859-015-0868-6
http://dx.doi.org/10.1186/s12859-015-0868-6
http://dx.doi.org/10.1097/PSY.0b013e3181988c2d
http://www.ncbi.nlm.nih.gov/pubmed/19251874
http://dx.doi.org/10.1002/sim.3588
http://www.ncbi.nlm.nih.gov/pubmed/19358234
http://dx.doi.org/10.2307/2533101
http://www.ncbi.nlm.nih.gov/pubmed/9147588
http://dx.doi.org/10.1038/nrg3461
http://www.ncbi.nlm.nih.gov/pubmed/23752797
http://dx.doi.org/10.1080/01621459.1971.10482347
http://dx.doi.org/10.1080/01621459.1971.10482347
http://dx.doi.org/10.1080/01621459.1973.10481362
http://dx.doi.org/10.1080/01621459.1973.10481362
http://dx.doi.org/10.1214/aoms/1177729436
http://dx.doi.org/10.2307/2529826
http://dx.doi.org/10.1080/00949650802412607


16. Pesarin F. Multivariate permutation tests with applications in biostatistics. John Wiley & Sons; 2001.

17. Pesarin F, Salmaso L. Permutation tests for complex data. Chichester: John Wiley & Sons; 2010.

18. Agresti A. Categorical Data Analysis. 2nd ed. Wiley Series in Probability and Statistics. Wiley; 2002.

19. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-

sis corrects for stratification in genome-wide association studies. Nature Genetics. 2006 Aug; 38

(8):904–909. doi: 10.1038/ng1847 PMID: 16862161

20. Schaeffer MS, Levitt EE. Concerning Kendall Tau, a Nonparametric Correlation-coefficient. Psychologi-

cal Bulletin. 1956; 53(4):338–346. doi: 10.1037/h0045013 PMID: 13336201

21. Kendall MG. Rank and Product-moment Correlation. Biometrika. 1949; 36(1–2):177–193. doi: 10.1093/

biomet/36.1-2.177 PMID: 18132091

22. Kendall M, Gibbons JD. Rank Correlation Methods. 5th ed. London: Oxford; 1990.

23. Pearson K. On a new method of determining correlation between a measured character A, and a char-

acter B, of which only the percentage of cases wherein B exceeds (or falls short of) a given intensity is

recorded for each grade of A. Biometrika. 1909 Jul; 7:96–105. doi: 10.2307/2345365

24. Tate RF. The Theory of Correlation Between Two Continuous Variables When One Is Dichotomized.

Biometrika. 1955; 42(1–2):205–216. doi: 10.2307/2333437

25. Brogden HE. A new coefficient; application to biserial correlation and to estimation of selective effi-

ciency. Psychometrika. 1949 Sep; 14(3):169–82. doi: 10.1007/BF02289151 PMID: 24536228

26. Lord FM. Biserial Estimates of Correlation. Psychometrika. 1963; 28(1):81–85. doi: 10.1007/

BF02289550

27. Bedrick EJ. A Comparison of Generalized and Modified Sample Biserial Correlation Estimators. Psy-

chometrika. 1992 Jun; 57(2):183–201. doi: 10.1007/BF02294504

28. Pearson K. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Pan-

mixia. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences. 1896; 187:253–318. doi: 10.1098/rsta.1896.0007

29. Good IJ. Comments, conjectures and conclusions. Journal of Statistical Computation and Simulation.

2006; 76(8):737–740. doi: 10.1080/10629360500108186

30. Cox NJ. On the Estimation of Spatial Auto-correlation in Geomorphology. Earth Surface Processes and

Landforms. 1983; 8(1):89–93. doi: 10.1002/esp.3290080109

31. Olsson U, Drasgow F, Dorans NJ. The Polyserial Correlation-coefficient. Psychometrika. 1982; 47

(3):337–347. doi: 10.1007/BF02294164

32. Pearson K, Pearson ES. On polychoric coefficients of correlation. Biometrika. 1922 Jul; 14:127–156.

doi: 10.1093/biomet/14.1-2.127

33. Olsson U. Maximum Likelihood Estimation of the Polychloric Correlation-coefficient. Psychometrika.

1979; 44(4):443–460. doi: 10.1007/BF02296207

34. Guisan A, Harrell FE. Ordinal response regression models in ecology. Journal of Vegetation Science.

2000 Oct; 11(5):617–626. doi: 10.2307/3236568

35. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Depen-

dence—a Revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction. 1991 Sep;

86(9):1119–1127. doi: 10.1111/j.1360-0443.1991.tb01879.x PMID: 1932883

36. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in

genome-wide association studies. Bioinformatics. 2010 Nov; 26(22):2867–2873. doi: 10.1093/

bioinformatics/btq559 PMID: 20926424

37. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in

genetic case-control association studies. Nature Protocols. 2010 Sep; 5(9):1564–1573. doi: 10.1038/

nprot.2010.116 PMID: 21085122

38. Casella G, Berger RL. Statistical Inference. Duxbury advanced series. Brooks/Cole Publishing Com-

pany; 1990.

39. Buu A, Johnson NJ, Li R, Tan X. New variable selection methods for zero-inflated count data with appli-

cations to the substance abuse field. Statistics in Medicine. 2011 Aug; 30(18):2326–2340. doi: 10.1002/

sim.4268 PMID: 21563207

40. Buu A, Li RZ, Tan XM, Zucker RA. Statistical models for longitudinal zero-inflated count data with appli-

cations to the substance abuse field. Statistics in Medicine. 2012 Dec; 31(29):4074–4086. doi: 10.1002/

sim.5510 PMID: 22826194

41. Zucker RA. Pathways to alcohol problems and alcoholism: A developmental account of the evidence for

multiple alcoholisms and for contextual contributions to risk. In: Zucker RA, Boyd G, Howard J, editors.

Research monograph-26, The development of alcohol problems: exploring the biopsychosocial matrix

Identifying Pleiotropic Genes in GWAS for Multivariate Phenotypes with Mixed Measurement Scales

PLOS ONE | DOI:10.1371/journal.pone.0169893 January 12, 2017 19 / 20

http://dx.doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://dx.doi.org/10.1037/h0045013
http://www.ncbi.nlm.nih.gov/pubmed/13336201
http://dx.doi.org/10.1093/biomet/36.1-2.177
http://dx.doi.org/10.1093/biomet/36.1-2.177
http://www.ncbi.nlm.nih.gov/pubmed/18132091
http://dx.doi.org/10.2307/2345365
http://dx.doi.org/10.2307/2333437
http://dx.doi.org/10.1007/BF02289151
http://www.ncbi.nlm.nih.gov/pubmed/24536228
http://dx.doi.org/10.1007/BF02289550
http://dx.doi.org/10.1007/BF02289550
http://dx.doi.org/10.1007/BF02294504
http://dx.doi.org/10.1098/rsta.1896.0007
http://dx.doi.org/10.1080/10629360500108186
http://dx.doi.org/10.1002/esp.3290080109
http://dx.doi.org/10.1007/BF02294164
http://dx.doi.org/10.1093/biomet/14.1-2.127
http://dx.doi.org/10.1007/BF02296207
http://dx.doi.org/10.2307/3236568
http://dx.doi.org/10.1111/j.1360-0443.1991.tb01879.x
http://www.ncbi.nlm.nih.gov/pubmed/1932883
http://dx.doi.org/10.1093/bioinformatics/btq559
http://dx.doi.org/10.1093/bioinformatics/btq559
http://www.ncbi.nlm.nih.gov/pubmed/20926424
http://dx.doi.org/10.1038/nprot.2010.116
http://dx.doi.org/10.1038/nprot.2010.116
http://www.ncbi.nlm.nih.gov/pubmed/21085122
http://dx.doi.org/10.1002/sim.4268
http://dx.doi.org/10.1002/sim.4268
http://www.ncbi.nlm.nih.gov/pubmed/21563207
http://dx.doi.org/10.1002/sim.5510
http://dx.doi.org/10.1002/sim.5510
http://www.ncbi.nlm.nih.gov/pubmed/22826194


of risk. vol. 26. Rockville, MD (6000 Executive Boulevard, Rockville 20892): National Institute on Alco-

hol Abuse and Alcoholism; 1994. p. 255–289.

42. Falconer DS. Inheritance of Liability to Certain Diseases Estimated from Incidence among Relatives.

Annals of Human Genetics. 1965; 29:51–76. doi: 10.1111/j.1469-1809.1965.tb00500.x
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