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Abstract

Zebrafish have become an important alternative model for characterizing chemical bioactiv-

ity, partly due to the efficiency at which systematic, high-dimensional data can be generated.

However, these new data present analytical challenges associated with scale and diversity.

We developed a novel, robust statistical approach to characterize chemical-elicited effects

in behavioral data from high-throughput screening (HTS) of all 1,060 Toxicity Forecaster

(ToxCast™) chemicals across 5 concentrations at 120 hours post-fertilization (hpf). Taking

advantage of the immense scale of data for a global view, we show that this new approach

reduces bias introduced by extreme values yet allows for diverse response patterns that con-

found the application of traditional statistics. We have also shown that, as a summary measure

of response for local tests of chemical-associated behavioral effects, it achieves a significant

reduction in coefficient of variation compared to many traditional statistical modeling methods.

This effective increase in signal-to-noise ratio augments statistical power and is observed

across experimental periods (light/dark conditions) that display varied distributional response

patterns. Finally, we integrated results with data from concomitant developmental endpoint

measurements to show that appropriate statistical handling of HTS behavioral data can add

important biological context that informs mechanistic hypotheses.

Introduction

A major focus of toxicological research is to develop high-throughput screening (HTS) assays to

keep pace with the ever-increasing number of chemicals in commerce while retaining toxicity

information, reducing the cost, and the use of animals [1]. HTS in vitro assays, such as Toxicity

Forecaster (ToxCast) and Toxicology Testing in the 21st Century (Tox21), were implemented to

speed up the pace of chemical testing [2,3]. However, these target-specific technologies do not

assay the systems-level bioactivity of chemicals. Thus, new strategies are needed to characterize

the hazardous profiles of chemicals and provide complementary, systematic data in order to

build computational models to advance toxicological research.
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Zebrafish (Danio rerio) have become an important model organism for drug discovery and

toxicological research, including developmental toxicity and neurotoxicity, due to many great

benefits, such as genetic homology to humans, small size, and cost-effectiveness [4–6]. Behav-

ioral profiling in zebrafish has elucidated diverse mechanisms of action [7,8]. There are various

behavioral tests that can be performed on developing zebrafish, however, these complex phe-

notypes introduce many analytical challenges [9,10]. Recent reviews have evaluated currently

available statistical methods, including traditional methods such as Student’s T test and analy-

sis of variance (ANOVA), as well as more advanced methods such as behavioral barcoding,

multivariate analysis of variance (MANOVA), and pattern matching methods, in addressing

different behavioral tests of developing zebrafish [7,8,10,11]. Statistical modeling procedures

then aggregate the movement index by a measure of centrality (most often the mean) and con-

nects them across experimental time periods. Modeling the mean movement fails to account

for the variability observed across samples that can arise from population genetic diversity, mea-

surement error, or other environmental factors. Moreover, typical behavioral studies are con-

ducted to address a targeted hypothesis, where the scale of resulting data may not be sufficient

to robustly characterize outliers. This is especially true when identifying outliers in the negative

direction that tend to be closer to the center of mass of right-skewed behavior and thus more

difficult to separate, which potentially introduces statistical bias by reducing mean movement.

In this study, we present HTS behavior data from 120hpf zebrafish statically exposed to

1,060 unique ToxCast Phase-I and Phase-II chemicals. We developed a new statistical pipeline

to characterize zebrafish behavioral profiles. Our approach is nonparametric, automatically

removes outliers at both directions, accounts for inter-individual variability, and significantly

reduces the coefficient of variation. Taking advantage of this big data set, we were able to pro-

vide diverse diagnostic and verification techniques to prove the concept that our statistical

pipeline is robust to the unusual response distributions common in behavioral data and bene-

ficial over existing methods. More importantly, this computational framework can be imple-

mented to any scale of behavioral study in general. Finally, the zebrafish behavioral profiles

were compared against concomitantly measured endpoints and mapped against external ani-

mal toxicity data to inform diverse mode of action hypotheses.

Materials and Methods

Chemicals

The chemical library contains 1,078 (1,060 unique) EPA ToxCast Phase-I and Phase-II chemi-

cals and were provided by the US Environmental Protection Agency. To assess reproducibility,

there were 9 chemicals each run in triplicate (as blinded, independent samples). All chemicals

were provided in 96 well plates at 20 mM in 100% dimethyl sulfoxide (DMSO). Chemical prepa-

rations were conducted according to Truong et al. [12]. Briefly, 8 chemicals were diluted on two

plates with the first dilution plate made at 10 mM in 100% DMSO, and underwent 5, 10-fold

serial dilution. A 1:15 dilution of plate 1 made up of plate 2, which consisted of 6.4% DMSO.

The dilution plates were stored at -20C until time for exposure.

Experimental design

Fig 1 illustrates experimental perturbations (above the timeline), and associated analyses (below

the timeline). Adult Tropical 5D zebrafish were housed at Sinnhuber Aquatic Research Labora-

tory at Oregon State University. All experiments were approved by the Institutional Animal

Care and Use Committee (IACUC) of Oregon State University. Each tank was kept at 28˚C on

a 14h light/ 10h dark photoperiod. Group spawns of adult zebrafish were set up the night prior,

and embryos were collected and staged [13]. Embryo chorions were enzymatically removed
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using pronase (90 μL of 25.3 U/μl; Roche, Indianapolis, In, USA) at 4 hours post fertilization

(hpf) using a custom automated dechorionator and protocol described in Mandrell et al. [14].

Six hpf dechorinated embryos were placed individually into the wells of two 96-well plates per

chemical using the automated embryo placement systems (AEPS) [14]. Chemicals were added

to final well concentrations of 0, 0.0064, 0.064, 0.64, 6.4, and 64uM, with 0.64% DMSO included

as the vehicle. Thus, there are 32 embryos per chemical per concentration. The layout of each

concentration within a plate is shown in Fig 1. At 24hpf, an embryonic photomotor response

(EPR) test was implemented [8]. After EPR, all exposed plates were wrapped with alumnium

foil to prevent photodegradation, kept in a 28˚C incubator, and statically exposed until 120hpf.

At 120hpf, zebrafish larvae movement was recorded in Viewpoint Zebrabox (Viewpoint

Life Sciences, Lyon, France) during a 7-minute period of light followed by an 8-minute period

of dark, then evaluated for 18 distinct morphological endpoints. The 18 morphological end-

points recorded for developmental assessment were Mortality (MORT), Yolk sac edema (YSE),

Body axis (AXIS), Eye defect (EYE), Snout (SNOU), Jaw (JAW), Otic vesicle (OTIC), Pericar-

dial edema (PE), Brain (BRAI), Somite (SOMI), Pectoral fin (PFIN), Caudal fin (CFIN), Pig-

mentation (PIG), Circulation (CIRC), Truncated body (TRUN), Swim bladder (SWIM),

Notochord & Bent tail (NC), and Touch response (TR). Each morphological endpoint was

recorded as a binary presence/absence according to the protocol detailed in [12]. All data were

recorded by the Zebrafish Acquisition and Analysis Program (ZAAP) [12]. The current manu-

script primarily focuses on the 120hpf behavioral assessment (see right-most ‘Light Condition

Exposure’ portion of Fig 1).

Statistical framework

Data processing and all statistical analysis were implemented using custom R software [15]. The

statistical pipeline is summarized in Fig 2. The movement index (total distance moved per unit

time) was plotted for each minute across the experimental time period. Next, the annotated

dead fish were removed prior to statistical modeling and analysis. For some chemicals, all

Fig 1. Experimental Design. Experimental timeline for chemical exposures at concentrations {0uM, 0.0064uM, 0.064uM, 0.64uM, 6.4uM, 64uM} added at

6hpf, with n = 32 embryos per concentration. At 24hpf, a nondestructive assay including two one-second light perturbations at 30s and 40s was performed

(Details about this 24hpf behavioral assessment can be found at Reif et al. 2015). At 120hpf, behavior was measured under environmental conditions of 7

minutes continuous light exposure followed by an 8 minutes of dark. Behavioral and developmental (morphological) assessments were then recorded.

doi:10.1371/journal.pone.0169408.g001
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embryos were dead at higher concentration(s) during exposure. These scenarios were reported

as missing data, and were not processed in the next step. Using the remaining data, we applied

our novel statistical approach.

We treated the movement as multiple uniform distributions across the experimental time

period, where X, C, T, and Con represent individual movement, chemical, time point, and con-

centration respectively. At each time point, instead of using the maximum and minimum

movement as the parameters for uniform distribution, we chose the 95% and 5% quartile

movement, written as Q.95 and Q.05 such that we could reduce the bias caused by potential out-

liers at both directions. Therefore, the probability density function of our defined uniform dis-

tribution can be written as:

f XjC;T;Conð Þ ¼

1

Q:95 � Q:05

for X 2 Q:95;Q:05½ �

0 otherwise

8
<

:

Our statistical modeling method is called differential entropy, which allows us to measure

the average surprisal of continuous probability distributions [16]. The differential entropy h
(X) in nats unit of our defined uniform distribution can be written as:

hðXjC;T;ConÞ ¼ �
Z þ1

� 1

f ðXjC;T;ConÞ � lnðf ðXjC;T;ConÞÞdX ¼ lnðQ:95 � Q:05Þ

Taken together, the distribution of transformed movement is determined by connecting

the differential entropy across time.

Next, we used unexposed controls to check for global artifacts detectable as plate effects.

There are 3 aspects to this step: 1) Check for bad plates by extracting the area under the curve

(AUC) ratio of two plates within a chemical, written as AUC1/AUC2 as shown in Fig 2. We

calculate AUC as the following: let T = {t1,. . .,t15} represent time with unit m, and H = {h1,. . .,

h15} represent the set of differential entropy at each time point with unit nats, thus the AUC is
h1þ2�ðh2þ���þh14Þþh15

2
with unit nats�m. The ratios are expected to be close to 1, which indicates a

fair experimental design. Suspicious large or small ratios were inspected individually before a

decision was made to remove bad plates. 2) In our plate design, controls were placed in two

different columns of each plate (one inner plus one outer). So we separated the controls of

each chemical by position and followed the same procedures of checking for aberrant plates.

3) Since our plate number was assigned artificially during the experiment, we carried out a

permutation test to randomly shuffle the plates of each chemical and looked for global plate

and position effects. In each permutation, for each chemical, we generated a random number

between 0 and 1. If the number was greater than 0.5, we accepted the ratio as AUC1/AUC2,

otherwise the ratio was defined as AUC2/AUC1. We did this for both plate and position, and

calculated Students’ t-test statistics using the null hypothesis that the ratio = 1 and Cohen’s D

value as effect size of each permutation (1,000 rounds).

Next, we plotted the differential entropies of each chemical across time and concentrations to

visualize the chemical-associated behavioral pattern. And the whole experimental period was sep-

arated into two intervals for statistical analysis: Light (minutes 3–9) and Dark (minutes 10–17).

Our statistical analysis framework for determining significant chemical-associated behav-

ioral changes is modified from Reif et al. [8]. We found that the mean relative AUC ratio and

actual AUC ratio of each interval follow a perfect linear relationship using our modeling

method, thus in this study, we implemented the actual AUC ratio as a co-measurement to

reflect the observed variability of the 120hpf behavioral data. Our statistical significance

thresholds are presented in Fig 2.

Analysis of High-Throughput Behavioral Data from Zebrafish
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Finally, we assessed the reproducibility of our statistical modeling and analysis framework

using the independent replicates of 9 chemicals, a simulation study, and external data validation

using the background (pre-stimulation) phase of the 24hpf behavioral assay described in [8].

Data integration

Integrated analysis across morphological endpoints and meta-analysis looking at in vivo mam-

malian data was used to validate results and explore mechanistic hypotheses related to chemi-

cal bioactivity. For 120hpf morphological endpoints, the comprehensive developmental

Aggregate Entropy (AggE) score for each chemical was used, as described in Zhang et al. [17].

For meta-analysis, the Toxicity Reference Database (ToxRefDB), which contains up-to-date in

vivo animal toxicity studies of over 800 chemicals, was downloaded from US EPA [18]. Tox-

RefDB contains a lot of missing data, thus our decision of making a significant call is con-

trolled by: 1) the lower bound of the 95% confidence interval of relative risk is greater than 1;

2) the p value of Fisher’s Enrichment Test is less than 0.05.

Results

Overview of all controls

Each morphological endpoint across all 1,060 control groups is shown in Fig 3A. For mortality,

the observed frequency is

P
Incidences

32
; for any other endpoint, the frequency was calculated by

Fig 2. Statistical Workflow. Step 1: Visualize movement index; Step 2: Remove annotated dead fish for every concentration of a chemical; Step 3: Propose

a statistical modeling method; Step 4: Check for artifacts, such as technical issues, global plate and position effect, and remove any bad plates; P1: Plate 1;

P2: Plate 2; C1: Column 1; C12: Column 12; Step 5: Apply statistical modeling method to provide dose-response patterns for analysis; Step 6: Statistical

analysis pipeline; Step 7: Assess reproducibility of our computational framework.

doi:10.1371/journal.pone.0169408.g002
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Fig 3. Overview of Controls. A: Morphological overview of controls. Incidence rate assessment (Y axis) for all chemicals by endpoint (X

axis). For mortality, rate was calculated with a sample size of 32. For other endpoints, rate was calculated conditionally on alive zebrafish larvae.

The red line was drawn at 10% for visualization. B: Movement index overview: Plot of healthy (i.e. no annotated morphological endpoints)

Analysis of High-Throughput Behavioral Data from Zebrafish
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P
Incidences

32� Mortality . As in Fig 3A, mortality is the only endpoint observed at an appreciable frequency

among controls. Therefore, after removing annotated dead fish, the behavioral assessment of

the controls should provide a robust baseline comparison. Because of the nature of this behav-

ioral test, we should expect basal movement during the light phase and an excitement during

the dark phase. To visualize this nature, we aggregated all healthy controls (i.e. those lacking

any annotated morphological endpoint), and found that there was a high level of variation

among the behavioral profiles (Fig 3B). Additionally, the difference between light and dark

phases is likely underestimated prior to application of our new approach because of a large

number of nonresponding individuals.

Handling observed variation

We applied the novel statistical approach outlined in Methods to appropriately handle the vari-

ation in the behavioral data, and avoid bias caused by the skewed distribution of the actual

movement at each time point. We illustrated this point in Fig 4, where movement traces of

vehicle controls from two example chemicals (nominally called control 1 and 2), and provided

the transition from traditional modeling (mean movement) to our statistical modeling method

(Fig 4A, top). These two groups behaved similarly in the light phase; however, we observed an

apparently stark difference during the dark phase. After checking individual movement at

each time point, we found that these two groups shared a similar movement range. By imple-

menting our statistical modeling method, these two control groups became consistent (Fig 4A,

bottom). We plotted all 1,060 control groups and found that our statistical modeling method

significantly improved the consistency among the controls (Fig 4B).

Our method provided a consistent evaluation over the controls and significantly reduced

the coefficient of variation compared to various traditional modeling methods, including

mean movement, simple logarithm transformed mean movement, the third quartile move-

ment, median movement, and the square root of mean movement (Fig 4B and 4C). To further

validate the consistency of our method, we provided a histogram with empirical density of the

AUC ratios using the methods described above (S1 Fig). Each ratio was determined by choos-

ing two control groups and calculated their AUC as AUC1 and AUC2. The ratio is AUC1/

AUC2. We have a total of 561,270, which is 1060

2

� �
, ratios for each method.

Check for artifacts

We first used the pre-labeled plate number to construct the behavioral AUC ratio, AUC1/

AUC2 as described in the Methods section, to detect for unusual plates using the control

group. Our results showed 14 suspicious ratios, which are either infinity or zero. We selected

these chemicals and inspected them individually to detect the issue. We found that in these 14

chemicals, one plate shows many identical movements across time not only for the controls

but any other concentration. Checking against ZAAP records and annotation, we determined

these to be experimental artifacts and removed these 14 plates prior to the next step, meaning

that each of these 14 chemicals had half of the typical sample size for every concentration for

the final analysis. We next investigated whether there was a similar issue for the remaining

locations and found that, after removal of the offending plates, there were no extremely large

or small ratios observed. Furthermore, our permutation study results (Fig 5) indicated that

these 14 plates happened at random, and there were neither global plate nor positional effects.

zebrafish larvae in control wells for all plates. Red line was drawn by connecting the mean of each experimental time point. Y axis: Movement

Index; X axis: Time (minutes).

doi:10.1371/journal.pone.0169408.g003
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Fig 4. Performance of Our Novel Statistical Modeling Method. A: Example controls (having similar survival rates) illustrate the

transformation. These two separate controls were plotted by different colors. Blue: TX000769 (Propoxycarbazone-sodium); Black:

TX000900 (Methamidophos). Top: Movement index of each time point, and the line was drawn by connecting the mean movement

indexes. Y axis: Movement index; X axis: Time. Bottom: Lines were drawn using our method, which connects the differential entropy of

each time point. Y axis: Differential entropy (Nats); X axis: Time. B: All 1,060 control groups were plotted. Top: Each line represents a

chemical. Line was drawn by connecting mean movement indexes. Y axis: Movement index; X axis: Time. Bottom: Each line represents

a chemical. Line was drawn by connecting differential entropy across time. Y axis: Differential entropy (Nats); X axis: Time. C:

Analysis of High-Throughput Behavioral Data from Zebrafish
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Reproducibility of our statistical pipeline

Evaluation of the reproducibility of our statistical pipeline includes three aspects: three inde-

pendent replicates of each of the 9 chemicals, simulation study, and external data validation.

For each chemical-concentration-interval, if the activity calls are the same among all three rep-

licates, then the reliability is recorded as 1, otherwise it is 0. We achieved an overall 83% reli-

ability, indicating good consistency of our method. Next, we did a simulation study for all

chemicals and compared the significant activity call using the original data. We performed 500

simulations per chemical-concentration-interval for all 1,060 chemicals, and calculated the

concordance between simulated activity calls to those generated by the original data. We

found that the lowest mean concordance is over 97%, a strong indicator of the robustness of

our pipeline. Finally, we used the previous published data from the photomotor response assay

(PMR) to validate our method. Only the background phase, prior to light perturbations, was

used for further evaluation since the environmental nature is similar to the light phase of our

Coefficient variation of each time point using all control groups and various statistical modeling methods. Y axis: Coefficient of Variation;

X axis: Time.

doi:10.1371/journal.pone.0169408.g004

Fig 5. Statistics for checking artifacts. P value and Cohen’s d from each permutation was plotted (Black represents plate; Blue represents position). Y axis:

Student’s t test p value; X axis: Cohen’s d. Horizontal red line was drawn at a significance level of 0.05. Vertical red line was drawn at 0.2 to represent the

general rule of thumb of effect size.

doi:10.1371/journal.pone.0169408.g005
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experiment. If a chemical was active using our method in at least one concentration, it was

recorded as 1, otherwise 0. The same activity call was made from the Reif et al. [8] behavioral

profiles. The concordance between these two pipelines is 95%. The main reason for the dis-

agreement is that instead of using the mean AUC, our new method implemented the exact

AUC to reflect the actual behavioral changes. Unlike the 120hpf behavioral data, the PMR

assessed movement by each second, thus, the movements between two consecutive seconds

can be very different.

Summary of statistical analysis results

There are 356 chemicals that showed significant hypoactivity or hyperactivity in at least one

interval. Of these significant chemicals, 193 chemicals were only found significant in the light

interval, 83 chemicals were only significant in the dark interval, and 80 chemicals were signifi-

cant in both intervals. All behavioral profiles of these 1,060 chemicals can be found in the S1

File. Exploring patterns of chemical-elicited hypoactivity and hyperactivity across intervals

may suggest different key biological events or pathway perturbations, so we summarized those

356 significant behavioral profiles through various behavioral effect patterns of each concen-

tration (Table 1). The example of each behavioral pattern is shown in Fig 6A–6F. The global

differential entropies of the control groups are 4.10 for the light phase and 4.82 for the dark

phase. The 95% confidence intervals are (3.38, 4.81) and (4.29, 5.35) for light and dark respec-

tively. An example of nonsignificant behavioral pattern is shown in Fig 6A. In general, we

observed that of these chemicals that were significant in both intervals, hypoactivity (Light)-

hypoactivity (Dark) (Fig 6B) is the most common pattern, and the number of chemicals goes

up as the concentration increases. The same trend was observed in the inactive (Light)-

hypoactivity (Dark) (Fig 6C) behavioral pattern. About 40 chemicals were found at hyperactiv-

ity (Light)-inactive (Dark) (Fig 6D) pattern, and 20 chemicals at hypoactivity (Light)-inactive

(Dark) (Fig 6E) in every concentration. Behavioral effect patterns, such as hyperactivity

(Light)-hypoactivity (Dark) (Fig 6F), hyperactivity (Light)-hyperactivity (Dark) (Fig 6G), and

inactive (Light)-hyperactivity (Dark) (Fig 6H), are very rare. No chemicals were observed at

hypoactivity (Light)-hyperactivity (Dark).

Table 1. Summary of statistically significant behavioral profiles.

Behavioral Effect Pattern 0.0064uM 0.064uM 0.64uM 6.4uM 64uM

Light (Hypoactivity) 1 1 2 12 55

Dark (Hypoactivity)

Light (Hypoactivity) 0 0 0 0 0

Dark (Hyperactivity)

Light (Hyperactivity) 0 1 1 3 4

Dark (Hypoactivity)

Light (Hyperactivity) 0 0 0 0 2

Dark (Hyperactivity)

Light (Hypoactivity) 14 18 22 18 26

Dark (Inactive)

Light (Inactive) 4 4 11 23 62

Dark (Hypoactivity)

Light (Hyperactivity) 30 37 47 39 36

Dark (Inactive)

Light (Inactive) 5 8 4 11 10

Dark (Hyperactivity)

doi:10.1371/journal.pone.0169408.t001
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Fig 6. Behavioral response patterns. Differential entropy of each concentration was plotted across experimental time. Color key is shown in Fig 1. Y axis:

Differential entropy (Nats); X axis: Time (m). Red segments represent light condition from 3m to 9m. A: Inactive: TX000888 (Terbacil) was inactive at all

concentrations. B: Hypoactivity (L) and Hypoactivity (D): TX001406 (Cyclanilide) shows significant hypoactivities at 64uM for both light and dark intervals. C:

Inactive (L) and Hypoactivity (D): TX001412 (Fipronil) is inactive at light interval and shows significant hypoactivity at dark interval at 0.064uM, 0.64uM, 6.4uM,

and 64uM. D: Hyperactivity (L) and Inactive (D): TX007214 (Dieldrin) shows significant hyperactivity at light interval but it is inactive at dark at 64uM. E:

Hypoactivity (L) and Inactive (D): TX003357 (44’-Oxydianiline) shows significant hypoactivity at light interval and inactive pattern at dark interval at 0.064uM,

6.4uM, and 64uM. F: Hyperactivity (L) and Hypoactivity (D): TX006644 (Haloperidol) shows significant hyperactivity at light interval and significant hypoactivity

at dark interval at both 6.4uM and 64uM. In addition, at 0.64uM, it shows significant hyperactivity at light interval. G: Hyperactivity (L) and Hyperactivity (D):

TX005098 (4-Pentylaniline) shows significant hyperactivity at 64uM for both light and dark conditions. H: Inactive (L) and Hyperactivity (D): TX005080 (44’4”-

Ethane-111-triyltriphenol) is inactive at light and shows significant hyperactivity at dark at 6.4uM and 64uM.

doi:10.1371/journal.pone.0169408.g006
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Data integration

We next investigated whether there was a connection between chemical-associated activity call

and developmental malformations. Of those chemicals that were significant in our 120hpf behav-

ioral assay, for every significant concentration, we found the corresponding AggE from Zhang

et al. [17]. For non-significant chemicals, we provided the highest AggE from Zhang et al. We per-

formed a two sample Student’s t-test and concluded that chemicals that were significantly affect-

ing behavior tended to have higher AggE. An example of this connection can be found in Fig 7.

Taking advantage of this complex and systematic behavioral assessment in zebrafish, we

integrated this assay with ToxRefDB toxicity endpoints. We defined our significance vector as

follows: if a chemical is significant in at least one interval, it is recorded as 1, otherwise 0. Our

statistics were calculated based on a binary table between our assay and the significance matrix

of ToxRefDB. Those ToxRefDB endpoints that meet the criteria are shown in S1 Table. We

found that all significantly enriched ToxRefDB endpoints are systemic carcinogens related

endpoints except for a few in developmental reproductive studies.

Discussion

In the present study, we provided a large-scale systematic behavioral assessment using zebrafish

to characterize bioactivity of a diverse ToxCast Phase-I and Phase-II libraries. This multiple

Fig 7. Relationship between morphological profiles and behavioral profiles. Disulfiram significantly affected 13 endpoints starting at 0.64 uM. Disulfiram

also caused significant hypoactivity in both intervals with a lowest effect level of 0.64 uM. For morphological profiles, the panels represent (from top left)

Aggregate Entropy, mortality, summation of any endpoint, then each of the specific endpoints (see ‘Methods‘). The X axes show concentration (0uM,

0.0064uM, 0.064uM, 0.64uM, 6.4uM, 64uM from left to right). The Y axes show Aggregate Entropy for the first panel, then incidence counts for all other

panels. Red indicates statistical significance for each measure (p < 0.05).

doi:10.1371/journal.pone.0169408.g007
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concentration-response design allowed us to fully capture the behavioral changes and provided

increased power for detecting significant chemical-elicited activities. Behavioral assessments are

complex phenotypes that are difficult to measure and characterize even without chemical per-

turbants. Therefore, traditional statistical methods may not be appropriate due to limiting

assumptions and poor performance in the face of high variability.

Faced with these challenges, we developed a novel computational framework and evaluated

its performance on a variety of fronts. Even in healthy controls, behavioral endpoints may

show dramatic variation, which makes appropriate handling of that variation all the more

important for analysis of chemical treated embryos. We applied permutation approaches to

the quality control step and checked for technique artifacts and removed bad plates. After our

statistical treatment, the average coefficient of variation of the controls across time was signifi-

cantly reduced compared to many other modeling techniques. Our method also performed

well on data having lower sample size (demonstrated by its consistent performance on the

chemicals for which a problematic experimental plate was deleted). Across chemicals com-

pared using controls, our modeling method showed great consistency over traditional mean

movement modeling (S1 Fig). To this end, we encourage the application of our method to

other types of behavioral data, and small-scale studies to further validate its performance.

Data integration provided insights to the biological relevance of this behavioral assay. There

is a connection between altered behavioral phenotypes and developmental malformations.

Integrating these two measurements could increase the reliability of hazardous assessments of

Fig 8. Summary of results by the whole experimental system. This Venn diagram provides the summary of the total number of significant chemicals

detected by each assay. It also provides statistics regarding the benefits of including all assays. Missing rate: the number of chemicals that would have been

missed using a subset of these assays.

doi:10.1371/journal.pone.0169408.g008
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these chemicals. Moreover, by mapping zebrafish behavioral profiles to ToxRefDB, we were

able to identity many significant systematic carcinogenicity endpoints, suggesting zebrafish

are a good alternative model for toxicological research. We also found that many chemical

analogs shared similar bioactivity, suggesting that these behavioral data could be used to build

quantitative structure-activity relationship (QSAR) models that predict responses to as-yet

untested compounds. For example, the well-known endocrine disruptors kepone and the thy-

roid hormone 3,5,3’-Triiodothyronine shared similar profiles following application of our

analysis framework. These two chemicals were both found active in US EPA Endocrine Dis-

ruptor Screening Program for the 21st Century (EDSP21) (http://actor.epa.gov/edsp21/).

Methyleugenol shared similar behavioral effects yet was inactive in all of the in vitro assay

tested at EDSP21. Therefore, appropriate behavioral profiling using zebrafish can identify

chemicals with similar biological processes.

An active and important area of toxicological research is to develop risk-based prioritiza-

tion methods for chemicals that need further testing. This zebrafish behavioral assay can be

implemented together with existing hazard data for risk assessment of environmental chemi-

cals. Integrating multiple data streams increases the detection power for hazardous chemicals,

especially for endpoints that are only assayable in organismal systems. As in Fig 1, the whole

experimental system contains three assays: a 24hpf behavioral assay [8], a 120hpf morphologi-

cal assay [12, 17], and a 120 behavioral assay. A summary of the number of significant chemi-

cals detected per assay collection is shown in Fig 8. Across all assays, there were 552 chemicals

eliciting a statistically significant response. It is apparent from Fig 8 that excluding an assay

will result in reduced detection of chemicals with potential hazard across developmental time

points and effect categories. In contrast, integration across the entire experimental system can

provide useful information for risk assessment of environmental chemicals by providing mul-

tiple measurements across a developmental timeline and varying environmental conditions.

In conclusion, HTS behavioral studies using zebrafish provides systematic data that can be

used for integrated analysis. Behavioral phenotypes are complex and may appear noisy when

not appropriately analyzed. Our new statistical modeling method and pipeline help make

more robust decisions regarding chemical-associated behavioral effects by reducing coeffi-

cients of variation, increase consistency among different chemicals, and quantifying reproduc-

ibility. Moreover, appropriate behavioral profiling and data integration adds meaningful

context that can inform mechanistic hypotheses.

Supporting Information

S1 Fig. Comparison of various statistical modeling methods by plotting the density of the

AUC ratios of any pair of control groups. Ratio was censored at 3 to preserve visualization of

the variation. Y axis: Density; X axis: AUC ratio.

(TIF)

S1 File. Behavioral profiles of all chemicals.

(CSV)

S1 Table. Significantly enriched ToxRefDB endpoints.

(PDF)

Acknowledgments

This work was supported by NIEHS grants U01 ES027294, P42 ES005948, P30 ES025128, RC4

ES019764, P30 ES000210, P42 ES016465, 5T32ES007329, and Environmental Protection

Agency (EPA) STAR Grants #835168 and #835796.

Analysis of High-Throughput Behavioral Data from Zebrafish

PLOS ONE | DOI:10.1371/journal.pone.0169408 January 18, 2017 14 / 16

http://actor.epa.gov/edsp21/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169408.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169408.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169408.s003


Author Contributions

Conceptualization: GZ LT RLT DMR.

Data curation: GZ LT.

Formal analysis: GZ DMR.

Funding acquisition: RLT DMR.

Investigation: GZ LT RLT.

Methodology: GZ LT RLT DMR.

Project administration: LT RLT DMR.

Resources: LT RLT.

Software: GZ.

Supervision: DMR.

Validation: GZ DMR.

Visualization: GZ LT RLT DMR.

Writing – original draft: GZ.

Writing – review & editing: GZ LT RLT DMR.

References
1. Basketter D.R., Clewell H., Kimber I., Rossi A., Blaauboer B., Burrier R., et al. 2012. A roadmap for the

development of alternative (non-animal) methods for systemic toxicity testing–t4 report. Altex. 29 (1):

3–91. PMID: 22307314

2. Collins FS, Gray GM, Bucher JR. 2008. Toxicology. Transforming environmental health protection. Sci-

ence, 319(5865):906–907. doi: 10.1126/science.1154619 PMID: 18276874

3. Judson R.S., Houck K.A., Kavlock R.J., Knudsen T.B., Martin M.T., Mortensen H.M., et al. 2010. In vitro

screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ

Health Perspect 118:485–492. doi: 10.1289/ehp.0901392 PMID: 20368123

4. Delvecchio C., Tiefenbach J., Krause H.M. 2011. The zebrafish: a powerful platform for in vivo, HTS

drug discovery. Assay Drug Dev Technol. 9 (4): 354–64. doi: 10.1089/adt.2010.0346 PMID: 21309713

5. Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M. et al. 2013. The zebrafish refer-

ence genome sequence and its relationship to the human genome. Nature 496:498–503 doi: 10.1038/

nature12111 PMID: 23594743

6. Truong, L., Harper, S.L., Tanguay, R.L. 2011 Evaluation of embryotoxicity using the zebrafish model.

in: Jean-Charles Gautier (Eds.), Drug safety evaluation: methods and protocols, methods in molecular

biology. pp. 271–279.

7. Kokel D., Bryan J., Laggner C., White R., Cheung C.Y., Mateus R. et al 2010. Rapid behavior-based

identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237 doi: 10.1038/

nchembio.307 PMID: 20081854

8. Reif D.M., Truong L., Mandrell D., Marvel S., Zhang G., Tanguay R.L. 2015. High-throughput Charac-

terization of Chemical-associated Embryonic Behavioral Changes Predicts Teratogenic Outcomes.

Arch Toxicol,

9. Legradi J., El Abdellaoui N., van Pomeren M., and Legler J. (2015). Comparability of behavioral assays

using zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res Int 22 (21), 16277–89. doi: 10.

1007/s11356-014-3805-8 PMID: 25399529

10. Zhang, G., Truong, L., Tanguay, R.L., and Reif, D.M., Integrating Morphological and Behavioral Pheno-

types in Developing Zebrafish, in The Rights and Wrongs of Zebrafish: Principles of Behavioral Pheno-

typing and CNS Disease Modeling. 2015.

Analysis of High-Throughput Behavioral Data from Zebrafish

PLOS ONE | DOI:10.1371/journal.pone.0169408 January 18, 2017 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/22307314
http://dx.doi.org/10.1126/science.1154619
http://www.ncbi.nlm.nih.gov/pubmed/18276874
http://dx.doi.org/10.1289/ehp.0901392
http://www.ncbi.nlm.nih.gov/pubmed/20368123
http://dx.doi.org/10.1089/adt.2010.0346
http://www.ncbi.nlm.nih.gov/pubmed/21309713
http://dx.doi.org/10.1038/nature12111
http://dx.doi.org/10.1038/nature12111
http://www.ncbi.nlm.nih.gov/pubmed/23594743
http://dx.doi.org/10.1038/nchembio.307
http://dx.doi.org/10.1038/nchembio.307
http://www.ncbi.nlm.nih.gov/pubmed/20081854
http://dx.doi.org/10.1007/s11356-014-3805-8
http://dx.doi.org/10.1007/s11356-014-3805-8
http://www.ncbi.nlm.nih.gov/pubmed/25399529


11. Liu Y, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang C-P, et al. (2015) Statistical Analysis of

Zebrafish Locomotor Response. PLoS ONE 10(10): e0139521. doi: 10.1371/journal.pone.0139521

PMID: 26437184

12. Truong L., Reif D.M., St Mary L., Geier M.C., Truong H.D., Tanguay R.L. 2014. Multidimensional In

Vivo Hazard Assessment Using Zebrafish. Toxicological Sciences, 137(1):212–233. doi: 10.1093/

toxsci/kft235 PMID: 24136191

13. Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. 1995. Stages of embryonic devel-

opment of the zebrafish. Dev Dyn 203:253–310 doi: 10.1002/aja.1002030302 PMID: 8589427

14. Mandrell D., Truong L., Jephson C., Sarker M. R., Moore A., Lang C. et al. (2012). Automated zebrafish

chorion removal and single embryo placement: Optimizing throughput of zebrafish developmental toxic-

ity screens. J. Lab. Autom. 17, 66–74. doi: 10.1177/2211068211432197 PMID: 22357610

15. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria. 2016. URL http://www.R-project.org/.

16. Lazo A.V., and Rathie P. 1978. On the Entropy of Continuous Probability Distributions. IEEE Transac-

tions on Information Theory. 24 (1): 120–122.

17. Zhang G., Marvel S., Truong L., Tanguay R.L., Reif D.M. 2016. Aggregate entropy scoring for quantify-

ing activity across endpoints with irregular correlation structure. Reproductive toxicology.

18. USEPA. 2016. Animal toxicity studies: effects and endpoints from invitrodb_v1. Retrieved from http://

www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data. Data released October 2014.

Analysis of High-Throughput Behavioral Data from Zebrafish

PLOS ONE | DOI:10.1371/journal.pone.0169408 January 18, 2017 16 / 16

http://dx.doi.org/10.1371/journal.pone.0139521
http://www.ncbi.nlm.nih.gov/pubmed/26437184
http://dx.doi.org/10.1093/toxsci/kft235
http://dx.doi.org/10.1093/toxsci/kft235
http://www.ncbi.nlm.nih.gov/pubmed/24136191
http://dx.doi.org/10.1002/aja.1002030302
http://www.ncbi.nlm.nih.gov/pubmed/8589427
http://dx.doi.org/10.1177/2211068211432197
http://www.ncbi.nlm.nih.gov/pubmed/22357610
http://www.R-project.org/
http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data

