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Abstract

Cell-free DNA (cfDNA) is short, extracellular, fragmented double-stranded DNA found in

plasma. Plasma of patients with solid tumor has been found to show significantly increased

quantities of cfDNA. Although currently poorly understood, the mechanism of cfDNA genera-

tion is speculated to be a product of genomic DNA fragmentation during cellular apoptosis

and necrosis. Sequencing of cfDNA with tumor origin has identified tumor biomarkers, eluci-

dating molecular pathology and assisting in accurate diagnosis. In this study, we performed

whole-genome sequencing ofcfDNA samples with matching tumor and whole blood samples

from five patients diagnosed with stage IV gastric or lung cancer. We analyzed the coverage

spectrum of the human genome in our cfDNA samples. cfDNA exhibited no large regions

with significant under-coverage, although we observed unbalanced coverage depth in cfDNA

at transcription start sites and exon boundaries as a consequence of biased fragmentation

due to ordered nucleosome positioning. We also analyzed the copy number variant status

based on the whole-genome sequencing results and found high similarity between copy

number profile constructed from tumor samples and cfDNA samples. Overall, we conclude

that cfDNA comprises a good representation of the tumor genome in late stage gastric and

lung cancer.

Introduction

The presence of double-stranded cell-free DNA (cfDNA) in healthy human plasma has been

noted since 1948[1]. Under conditions such as pregnancy, autoimmune disorders, myocardial

infarction, and cancer, the concentration of cfDNA in plasma is significantly increased[2–5].

Although highly variable between patients and cancer types, the plasma concentration of

cfDNA has also been found to strongly correlates with the stage of cancer[5,6]. The exact
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mechanism by which cfDNA is released into circulation is still unclear; however, many have

speculated that it is generated by apoptotic or necrotic cells[7,8]. Supporting this hypothesis,

the size distribution of cfDNA peaks at ~170 bp, which is reminiscent of single-nucleosomal

DNA fragments generated during apoptosis[9–11].Recently, Snyder and colleagues identified

bias in cfDNA fragmentation pattern using whole-genome sequencing (WGS)[12]. This bias is

a result of nucleosome positioning and transcription factor binding which protect DNA from

nuclease digestion during apoptosis, leaving footprints in cfDNA that inform its tissue-of-ori-

gin[12].

Analysis of molecular biomarkers obtained through tissue biopsy or surgical resection can

elucidate the molecular pathogenesis of cancer, providing foundation for accurate clinical

diagnosis. Sometimes, a patient’s physical condition does not permit the collection of a tumor

sample through invasive methods; in contrast, collection of cfDNA involves minimal invasive-

ness. In addition, a single biopsy is generally insufficient to represent the spatial and temporal

heterogeneity displayed within most tumors[13]. On the contrary, cfDNA has been reported

to show fast clearance from circulation and carries markers of its source tissue[12,14,15].

Thus, due to the clinical advantages, cfDNA has attracted much attention for the purpose of

monitoring disease progression and treatment efficacy in the past decade. Recent advancement

in DNA detection technology has expanded analysis of cfDNA from basic properties, such as

concentration and fragment size, to complex features such as nucleotide sequences in various

cancer types[14,16–22]. Compared to the polymerase chain reaction (PCR)-based detection

method, which examines defined mutations at a specific genomic locus, next-generation

sequencing (NGS)-based techniques permit profiling of cfDNA at a broader range[23–26].

WGS has been deployed at low coverage depth (0.1X-10X) to successfully identify copy num-

ber variation (CNV) and structural variation (SV) in cfDNA[27–29].Single nucleotide varia-

tions (SNV) and small insertion/deletion (indel) mutations can be further identified by

targeted sequencing or whole-exome sequencing at relatively higher coverage depth[26,28,30].

Beyond the footprints left behind by transcription factors binding and nucleosome posi-

tioning[12], we wondered whether cfDNA displays further bias in coverage of genomic

regions. To investigate whether cfDNA fully represents the whole human genome, we per-

formed WGS on the cfDNA samples with matching tumor DNA samples and whole blood

DNA samples collected from five cancer patients. We examined the uniformity of cfDNA cov-

erage over the whole genome and the whole exome in a detailed manner. We validated that

WGS of cfDNA with low average coverage depth (~10X) is sufficient to detect CNVs identified

in matching tumor samples. Moreover, we identified specific characteristics in cfDNA frag-

mentation pattern near genomic features such as transcription start sites (TSS) and exonic

boundaries, where nucleosome positioning is highly phased. In conclusion, our results demon-

strate that cfDNA is a good representation of the whole genome and a comparable resource to

primary tumor DNA for clinical applications.

Results and Discussion

General features of cfDNA

Patients recruited in this study were diagnosed with either late stage gastric cancer or late stage

lung cancer with various level of metastases (Table 1). From the five plasma samples, an aver-

age ranging from 19.6 ng to 172.8 ng of cfDNA was extracted from 1ml of plasma (S1 Table),

comparable to previously reported value [5]. Of note, two processing methods were used for

tumor sampleT03 (body fluid effusion): namely, conventional genomic DNA extraction from

the cell portion (“T03N”) and cfDNA extraction method from the liquid portion(“T03S”)

(Table 1).A significantly higher amount of cfDNA was extracted from T03S compared to

Bias in Cell-Free DNA Coverage Uniformity

PLOS ONE | DOI:10.1371/journal.pone.0169231 January 3, 2017 2 / 18

are articulated in the “Author Contributions”

section.

Competing Interests: The authors wish it to be

known that our affiliation with Geneseeq

Technology Inc. and Nanjing Shihe Jiyin

Biotechnology Inc. does not alter our adherence to

PLOS ONE policies on sharing data and materials.



plasma samples, yielding 6516.7ng cfDNA per ml of body fluid. Whole-genome sequencing

libraries were constructed following protocols according to sample types (see METHODS).

An average of 405.7 million sequencing reads was obtained per sample, approximately corre-

sponding to 10-fold depth of coverage of the human reference genome(Table 1).

We first examined the size distribution of cfDNA by analyzing insert length from the

sequencing data(Fig 1 and S1 Fig). Consistent with previous findings[12,31], the majority of

cfDNA samples showed a predominant peak at 167bp, with multiple local maxima between

the size of 80bp and 167bp (Fig 1A). We calculated the mean inter-peak distances between the

local maxima to be 10.6bp, which is comparable with previously reported values[12].Blood

samples and most tumor samples showed normal distribution in insert size due to mechanical

shearing of genomic DNA, with peak sizes dependent on sample preparation procedure (S1A

and S1B Fig).

cfDNA extracted from the body fluid of Patient P3 showed a distinct size distribution com-

pared to that isolated from the same patient’s plasma (Fig 1A and S1C Fig), with a noticeable

fraction of inserts at around 330bp, resembling dinucleosomal DNA. Patient P4’s cfDNA sam-

ple exhibited severe fragmentation with dominant peaks at 133bp and 144bp (Fig 1A), while

Table 1. Patient and sample information.

Patient

ID

Gender Cancer Type Stage Metastasis Sample

ID

Sample

Type

Total Reads

(Million)

Alignment

rate

Read

length

Mean

Coverage

depth (X)

P1 Female Gastric Cancer IV - B01 Whole

Blood

398.5 99.63% PE-75‡ 9.40

T01 Fresh

Tissue

Biopsy

313.7 99.79% PE-75‡ 7.62

C01 Plasma 320.7 99.67% PE-75‡ 7.42

P2 Male Lung Adenosquamous

Carcinoma

IV Lymph Node

Metastasis

B02 Whole

Blood

324.2 99.52% PE-75‡ 7.48

T02 FFPE† 486.1 99.59% PE-75‡ 10.92

C02 Plasma 395.7 99.55% PE-75‡ 9.23

P3 Female Gastric Cancer IV - B03 Whole

Blood

465.0 99.66% PE-75‡ 10.86

T03S Body Fluid* 433.6 99.71% PE-75‡ 9.38

T03N Body

Fluid**
444.3 99.67% PE-75‡ 10.40

C03 Plasma 437.3 99.68% PE-75‡ 10.36

P4 Female Lung Adenocarcinoma IV - B04 Whole

Blood

410.9 99.71% PE-75‡ 9.70

T04 Fresh

Tissue

Biopsy

461.1 99.73% PE-75‡ 10.37

C04 Plasma 386.8 99.70% PE-75‡ 8.24

P5 Male Lung Adenocarcinoma IV Liver and Brain

Metastasis

B05 Whole

Blood

502.3 99.60% PE-75‡ 11.71

T05 FFPE† 289.7 97.30% PE-75‡ 6.05

C05 Plasma 421.1 99.61% PE-75‡ 9.65

* DNA was extracted from the clear fluid of the sample after centrifugation following plasma DNA extraction protocol.

** DNA was extracted from the cell pellet of the sample after centrifugation

† FFPE: Formalin-fixed, paraffin-embedded

‡ PE-75: Paired-end, 75 base pairs

doi:10.1371/journal.pone.0169231.t001
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Fig 1. cfDNA fragment size distribution and coverage uniformity. (A) Fragment size distribution of cfDNA extracted from plasma or the

liquid portion of body fluid effusion samples. Vertical dashed lines mark local maxima. (B) Cumulative plot of percentage of nucleotides
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her fresh tumor sample showed a bimodal distribution pattern peaking at around 165bp and

330bp, with additional local maxima less than 330bp (S1B Fig). Interestingly, Patient P4’s

cfDNA size distribution was reminiscent of a recent report claiming that cfDNA fragments of

tumor origin are shorter in length[32]. Closer investigation uncovered contradictory results in

the literature regarding correlation of cfDNA fragment integrity to cancer progression. On

one hand, increased amounts of long cfDNA fragments have been detected in patients with

advanced tumor, while on the other hand fragment integrity was found to be lower in mice

with greater tumor burden in a colorectal cancer mouse xenograft model[33,34].We postulate

that the shorter size and bimodal distribution pattern of Patient P4’s cfDNA is a consequence

of high tumor burden. Additional cases and experiments will be required to fully establish this

hypothesized correlation between shorter cfDNA size, bimodal tumor DNA fragment size dis-

tribution, tumor burden, and degree of necrosis within the tumor.

Coverage of the whole-genome in cfDNA

Next, we plotted the percentage of the genome covered within our sample against raw (Fig 1B)

or normalized (Fig 1C) cumulative depth of coverage. All samples achieved around 90%

genome coverage by at least 1X depth and displayed a sigmoid trend. Blood samples showed a

better performance with slower entry into and steeper slope within the linear range of the

curves. Tumor samples and cfDNA samples showed similar performances. The tumor sample

with the fastest drop in percent genome coverage was T05, which was sequenced at a lower

mean coverage of 6.05X. We then calculated the percentage of nucleotides that failed to be cov-

ered by at least 1X depth within several types of genomic features, including promoter region

(see METHODS for definition), 5’ untranslated region (UTR), exonic region, intronic region,

and 3’ UTR (Fig 1D). One-way ANOVA failed to detect any differences between sample types.

We also examined the size and the position of base pairs displaying no coverage in any of the

five samples (S2 Fig). Although certain genomic positions showed large regions without cover-

age, which appeared as vertical clusters of dots in (S2C Fig), this pattern is not a unique charac-

teristic of cfDNA samples, and is also present in tumor and whole blood.

Hierarchical clustering distinguishes samples by patient

If cfDNA displays biased coverage that is unique to the sample type, analyzing the sequencing

data using hierarchical clustering should cluster all cfDNA samples together. To test this hypothe-

sis, we divided the human reference genome into consecutive, non-overlapping 10k bp windows,

and calculated the percentage of nucleotides covered in each 10k bp window for all samples.

Hierarchical clustering was performed as shown in Fig 2A and 2B. Interestingly, regardless of

sample type and mean depth of coverage, 16 samples formed five major clusters, each represent-

ing an individual patient. The five clusters are separated into two major branches of the dendro-

gram (Fig 2A), which can be readily explained by the gender of the patients. However, even after

removing sex chromosomes, the clustering that separates patients persists. Principle component

analysis (PCA) using the same data confirmed the observation. On a plot of principle component

covered by a specific depth. (C) Cumulative plot of percentage of nucleotides covered by a specific depth after normalization to global mean

depth of coverage of that sample. (D) Percentage of nucleotides showing no coverage genome wide and in promoter regions, 5’ UTR, exons,

introns, and 3’ UTR. Annotation of the hg19 reference genome was obtained from the UCSC table browser. Genomic Trim represented hg19

reference genome after all “N” nucleotides was removed. Each bar represents the mean of 5 biological replicates for blood and tumor samples

and 6 biological replicates for cfDNA samples. Error bars represents standard error. No changes between groups were statistically significant

as tested by one-way ANOVA.

doi:10.1371/journal.pone.0169231.g001
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(PC) 2 versus PC1, data points are clustered together based on patients rather than sample types

or sequencing depth (Fig 2C).

Correct grouping of cfDNA samples to their matching tumor samples was not unexpected,

since CNV influences the percentage of nucleotides with coverage within a 10kbp window,

and CNV was ubiquitously found throughout the genome while being unique in pattern to

each patient. It is surprising however that blood samples, which serve as the germ-line control

for each patient, were not grouped together. Most samples from the same patient are collected

at the same time. However, library preparation of different sample types followed distinct pro-

tocols handled by different operators. Some libraries were even sequenced multiple times and

the results were pooled to reach desired sequencing depth. Batch-to-batch variations should be

minimized during the experimental procedure. We therefore believe correct grouping of

blood samples to their matching cfDNA and tumor samples is a consequence of germ-line

insertion/deletion mutations unique to each patient.

Patient copy number variation profile

Multiple studies have successfully demonstrated that WGS of plasma cfDNA samples at low

mean depth (0.1X to 10X) is sufficient to detect CNV[27–29]. We tallied the read count mapped

to each consecutive non-overlapping 10k bp window in the reference human genome for each

sample. After normalization to GC content in each window by LOESS (S3 Fig) and to mean

depth of coverage, we were able to generate the CNV profile for each patient by plotting the log2

ratio between cfDNA or tumor data and blood data. The log2 ratios for blood samples were cal-

culated using whole-genome sequencing data of NA18535 (Chinese Han female) from the 1000

Genome Project[35]. Increased and decreased log2 ratio in a CNV profile represents copy num-

ber gain and loss of a chromosomal region, respectively. Neglecting the sex chromosomes and

regions near centromeres, blood sample CNV profiles demonstrated small variance from the

baseline centered at 0, which corresponds to 2 copies (Fig 3A). In contrast, CNV profiles of

cfDNA and tumor displayed parts of or whole chromosomal regions that deviated from the

baseline, excepted for cfDNA of patient P2. The concentration of cfDNA extracted from Patient

P2 was 19.6 ng/ml plasma, a concentration much lower than that of the other cfDNA samples

we extracted (S1 Table), and barely higher than reported value from healthy individuals[11]. It

is plausible that cfDNA of tumor origin constitutes only a limited percentage of Patient P2’s

total cfDNA, resulting in its baseline-like CNV profile.

We also calculated pair-wise Spearman’s correlation coefficient between samples using

their GC-content-normalized read counts in consecutive non-overlapping 10kb windows. The

calculated correlation coefficients were plotted in a heat map shown in S4 Fig. The correlation

coefficients suggest overall similarity between the genomic regions that display amplification

or deletion, with 1 and 0 corresponding to exact correlation and complete irrelevance, respec-

tively. Most cfDNA samples displayed greater than 0.8 Spearman’s correlation coefficient to

their respective tumor sample, while generally exhibited less than 0.6 Spearman’s correlation

Fig 2. Hierarchical clustering and PCA of the fraction of nucleotides covered in each 10kbp window.

(A) Unsupervised hierarchical clustering using the fraction of nucleotides covered in each consecutive, non-

overlapping 10kbp window. Coloration of each leaf was based on sample types: red for blood, blue for tumor,

orange for plasma cfDNA, and black for body fluid effusion cfDNA samples. Number in brackets in each leaf

indicated sample mean coverage depth. (B) Unsupervised hierarchical clustering using the fraction of

nucleotides covered in each consecutive, non-overlapping 10kbp window, with data from chromosome X and

Y removed. Coloration of each leaf is based on sample types: red for blood, blue for tumor, orange for plasma

cfDNA, and black for body fluid effusion cfDNA samples. Numbers in brackets in each leaf indicate sample

mean coverage depth. (C) PCA on the fraction of nucleotides covered in each consecutive, non-overlapping

10kbp window with chromosome X and Y data removed. Features were not scaled to equal variance.

doi:10.1371/journal.pone.0169231.g002
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coefficient to their respective blood sample or samples from other patients. Patient P2 was an

exception, largely due to the fact that his cfDNA CNV profile showed little abnormality com-

pared to blood.

Segmentation of the CNV profile allowed detection of gene-level amplifications such as

c-MET amplification (chromosome 7q31.2) in patient P1 and MYCN amplification (chromo-

some 2p24.3) in patient P4 (Fig 3B). Interestingly, we noticed a roughly 20X amplification of

FGFR2 gene (chromosome 10q26.13) in patient P1’s cfDNA sample but not in her fresh tumor

biopsy sample. A deeper investigation into patient P1’s treatment history showed that the

cfDNA sample was collected roughly 5 months after her tumor sample (S1 Table). Between the

time points when her tumor and cfDNA samples were taken, the patient undertook Crizotinib

treatment, a small-molecule inhibitor for ALK and MET[36], to target her c-MET amplifica-

tion. The patient displayed temporary shrinkage in tumor size and relief of symptoms, but the

tumor quickly developed resistance and progressed before the cfDNA sample was taken.

The absence of FGFR2 amplification in patient P1’s tumor sample can be explained in two

ways. First, it is possible that cancer cells harboring theFGFR2 amplification represent only a

sub-population of the whole tumor. This sub-population could either be of low abundance, and

therefore below the detection limit, or technically easy to miss with the fine needle biopsy. Sec-

ond, it is possible that FGFR2 amplification is a de novo mutation developed after Crizotinib

treatment. FGFR2 amplification is frequently found in gastric cancer patients, but is often mutu-

ally exclusive to c-MET amplification [37,38]. Both genes belong to the receptor tyrosine kinase

family and participate in similar signaling pathways[38]. Supporting this hypothesis, increased

FGFR2 expression has been reported after cell lines harboring c-MET amplification gained resis-

tance to small chemical inhibitors[39,40]. In both possible scenarios, cfDNA has the potential to

perform better than tumor biopsy at representing the tumor spatial and temporal heterogeneity.

Analysis of cfDNA fragment boundary captured nucleosome footprints

It has been hypothesized that cfDNA is generated during the process of apoptosis or necrosis,

when genomic DNA is digested by a nuclease. Nucleosome-bound genomic DNA is protected

from nuclease digestion and thus producing DNA fragments of mono-nucleosomal length.

Previous study on nucleosomal positioning in the human genome showed phased placement

near TSS[41]. In order to determine whether nucleosome positioning does indeed lead to

biased fragmentation patterns in cfDNA samples, we counted the number of reads originating

from and terminating at each 5bp window within the upstream and downstream 1000bp

region of each TSS(corresponding to the 5’ and 3’ boundary of each DNA fragment, respec-

tively).Frequency of fragmentation was then calculated by dividing the counts by total number

of regions examined (Fig 4). In general, the fragment break points showed no observable cor-

relation with respect to the positioning of nucleosomes, although blood samples displayed a

reduction in 5’ and 3’ boundaries at the TSS and tumor samples displayed a slight gain in 5’

boundaries at the TSS (Fig 4A and 4D). In contrast, the distribution of break points near the

TSS in cfDNA samples showed strong phases (Fig 4G).Regions showing high or low frequency

of fragmentation correspond to the nucleotides between or occupied by nucleosomes, respec-

tively. The distance between the 5’ break point and its immediate downstream 3’ break point is

Fig 3. Construction of the CNV profile of each patient. (A) Circos plots showing the CNV profile of each patient. The outermost ring plots the ideogram of

autosome 1–22 and chromosome X and Y of the hg19 reference genome. Blue segments on the ideograms correspond to unmappable regions of hg19. Each

ring plots the log2 ratio in the consecutive, non-overlapping 10kbp window of a sample. Log2 ratios for blood samples were calculated against publicly available

NA18535 WGS results. Log2 ratios for cfDNA, tumor, and body fluid samples were calculated against their respective blood sample. (B) Segmented CNV

profiles of selected chromosomes. The x-axis represented the 10kbp window index. The y-axis represented log2 ratio. The grey horizontal line marks the

theoretical 2 copy state. The red line represented the calculated copy number status of that segment.

doi:10.1371/journal.pone.0169231.g003
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Fig 4. Fragment boundaries inherit nucleosome footprints. (A-C) Plot of 5’ and 3’ fragment boundary frequencies in consecutive non-overlapping 5bp

windows within ±1000bp of the TSS (A) and ±500bp of the ESS (B) and the EES (C) in blood samples. (D-F) Plot of 5’ and 3’ fragment boundary frequencies

in consecutive non-overlapping 5bp windows within ±1000bp of the TSS (D) and ±500bp of the ESS (E) and the EES (F) in tumor samples.(G-I) Plot of 5’ and

3’ fragment boundary frequencies in consecutive non-overlapping 5bp windows within ±1000bp of the TSS (G) and ±500bp of the ESS (H) and the EES (I) in

cfDNA samples.

doi:10.1371/journal.pone.0169231.g004
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roughly 180bp, which is longer than the mode of cfDNA fragment size (167 bp) and coincides

with the length of mono-nucleosomal DNA. We are able to identify up to 4 and 5 nucleosomes

upstream and downstream of the TSS, respectively, as well as a region devoid of nucleosome

binding immediately upstream of the TSS.

Positioning of nucleosomes at exon/intron boundaries is also highly phased[42]. We per-

formed similar analysis for the upstream and downstream 500bp of exon start sites (ESSs) and

exon end sites (EESs). Blood and tumor samples displayed increased 5’ and 3’ fragmentation

immediately before and reduced 3’ fragmentation immediately after the ESS (Fig 4B and 4E).

On the other hand, cfDNA samples displayed a phased fragmentation pattern at the ESS, with

4 sharp peaks within the +/- 200bp from the ESS, and 2 minor peaks further upstream and

downstream (Fig 4H). Interestingly, the inter-peak distance within +/- 200bp around the ESS

is smaller than the length of single-nucleosomal DNA, suggesting additional factors affect the

cfDNA fragmentation pattern around the ESS. Additionally, up to 4 nucleosome binding sites

can be identified from the phased fragmentation pattern near the EES in cfDNA but not in

blood and tumor samples (Fig 4C, 4F and 4I).The nucleosome binding sites uncovered from

this analysis of break point peaks also matches reported nucleosome positioning at these geno-

mic features[41–43]. This observation provided further evidence that apoptosis and necrosis

constitutes the mechanism of cfDNA generation.

Biased fragmentation interfered with coverage uniformity

Since biased fragmentation patterns could affect the uniformity of genome coverage in cfDNA

samples, we examined the depth of coverage near the TSS, ESS, and EES. Fig 5 plotted the cov-

erage depth at each nucleotide near the TSS, ESS, and EES normalized to the mean depth of

the region. Coverage depth displayed slightly lower than mean at TSS while gradually increas-

ing as the nucleotide is further away in blood and tumor samples (Fig 5A and 5D). This pattern

highly resembles what was observed in WGS data of randomly selected samples from the 1000

Genome Project[35] (S5 Fig). cfDNA samples also displayed lower than mean coverage depth

at the TSS, as well as consistent under coverage at a short region upstream, corresponding to

the region devoid of histone binding (Fig 5G). The position of the first three nucleosomes

downstream of the TSS and one upstream of the TSS are also in phase with local increases in

coverage depth in cfDNA samples. Near the ESS and EES, blood and tumor samples displayed

uniform coverage, except for the gain and loss of depth immediately upstream and down-

stream of the ESS, respectively (Fig 5B, 5C, 5E and 5F). cfDNA samples showed increased

depth downstream of the ESS and upstream of the EES, in phase with the fragmentation pat-

tern (Fig 5H and 5I). These positions of gained coverage depth are in line with reported nucle-

osome occupancy after the ESS and before the EES[42,43], but the span of each peak within

the region of depth gain was only half of mononucleosomal DNA length, a possible conse-

quence of differentially phased nucleosomes.

Analysis of the GC content near these genomic features revealed that the imbalanced cover-

age in blood and tumor samples was in negative correlation with GC content (Fig 5J, 5K and

5L), consistent with reported trend [44].However, the coverage depth bias in cfDNA samples

was insufficiently explained by GC content alone. Although the bias in fragmentation and cov-

erage depth was consistently observed in cfDNA samples, we found no evidence suggesting

that the biased fragmentation impaired mutation detection at specific genomic loci or in spe-

cific genes. As demonstrated in S2 Fig, we didn’t identify any large genomic regions lacking

coverage unique to cfDNA. Additionally, the bias in fragmentation only contributes to an

approximately 20% decrease in sequencing depth at the nucleosome depleted region immedi-

ately upstream of TSS, where the strongest bias was observed.

Bias in Cell-Free DNA Coverage Uniformity
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Conclusions

In summary, we compared sequencing uniformity in WGS data of matched cfDNA, tumor,

and blood sample from five late stage cancer patients. We provided experimental evidence of

biased fragmentation at genomic regions near TSS, ESS, and EES. In cfDNA samples, nucleo-

tides displaying frequent fragmentations exhibited decreased coverage depth, to roughly 80%

of the regional mean depth. Despite that, biased fragmentation did not contribute to similari-

ties among cfDNA samples identifiable by hierarchical clustering or PCA. At the gene level,

biased fragmentation and coverage depth did not impair the detection of CNV mutations in

large genomic regions in cfDNA samples. We would like to call researcher’s attention to the

biased coverage when utilizing cfDNA to analyze genomic regions that harbor highly phased

nucleosomes. However, cfDNA is still a powerful tool when surveying biomarkers in patients

with malignancy, and serves as a good surrogate to FFPE sample or fresh tissue biopsy.

Material and Methods

Patient enrollment and sample collection

This study was approved by the ethics board of the First Affiliated Hospital of Soochow Uni-

versity and Jiangsu Cancer Hospital of China. Written consent was also obtained from each

patient to allow the use of their samples for scientific research. The five patients enrolled in

this study came from the Chinese Han ethnic group and were recruited from different hospi-

tals across China during December 2014 and August 2015 (see S1 Table for detailed dates).

Each patient’s samples were collected within the same month except for Patient P1, whose

peripheral blood and tumor samples were collected December 2014 while the cfDNA sample

was collected May 2015. 5–10 ml of peripheral blood was collected from each patient and

placed in EDTA-coated tubes (BD Biosciences). Plasma separation was performed within 2

hours of blood collection by centrifuging 5ml whole blood at 1800rcf at 4˚C for 10min. All

fresh samples were shipped to the central testing laboratory (Nanjing Shihe Jiyin Biotechnol-

ogy Inc., Nanjing, China) within 48 hours from sample collection. Formalin fixed paraffin

embedded (FFPE) blocks/sections or fresh tumor tissues/biopsies were obtained from the hos-

pitals, after examination by pathologists for diagnosis and tumor purity.

DNA extraction and quantification

cfDNA was extracted with NucleoSpin Plasma XS kit (Macherey Nagel) using a customized

protocol optimized based on the manufacturer’s instructions. Fresh tissue DNA and whole

blood DNA were extracted using DNeasy Blood & Tissue kit (QIAGEN) following the manu-

facturer’s protocols. FFPE samples were de-paraffinized with xylene and DNA was extracted

using QIAamp DNA FFPE Tissue Kit (QIAGEN) according to the manufacturer’s protocols.

For the body fluid effusion sample, the cell portion was extracted following the protocol for

fresh tumor and the liquid portion was extracted following the protocol for cfDNA extraction.

Purified DNA was qualified by Nanodrop2000 (Thermo Fisher Scientific) and quantified by

Fig 5. Nucleosome footprints interfered with cfDNA WGS sequencing uniformity. (A-C) Coverage depth at each nucleotide normalized

to regional mean depth within ±1000bp of the TSS (A) and ±500bp of the ESS (B) and EES (C) in blood samples. Each grey line represents a

sample. Red line represented the mean value of all samples. (D-F) Coverage depth at each nucleotide normalized to regional mean depth

within ±1000bp of the TSS (D) and ±500bp of the ESS (E) and EES (F) in cfDNA samples. Each grey line represents a plasma cfDNA sample.

Black lines represents the body fluid cfDNA sample. Orange line represents the mean value of all plasma cfDNA samples. Vertical dashed

lines mark local coverage depth maxima. (G-I) Coverage depth at each nucleotide normalized to regional mean depth within ±1000bp of the

TSS (G) and ±500bp of the ESS (H) and EES (I) in tumor samples. Each grey line represents a sample. Blue lines represent the mean value of

all samples. (J-L) Per base GC content within ±1000bp of the TSS (J) and ±500bp of the ESS (K) and the EES (L).

doi:10.1371/journal.pone.0169231.g005
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Qubit 2.0 using the dsDNA HS Assay Kit (Life Technologies) according to the manufacturer’s

recommendations. DNA concentration measurements were tabulated in S1 Table.

Library preparation

Sequencing libraries were prepared with KAPA Hyper Prep kit (KAPA Biosystems) with cus-

tomized protocol optimized based on the manufacturer’s instructions. In brief, 1 μg of geno-

mic DNA sheared into 350 bp fragments using the Covaris M220 instrument (Covaris), or

2ng-100ng of cfDNA, were processed by end-repairing, A-tailing and ligation with indexed

adapters compatible with the Illumina sequencing platform (Illumina), followed by size selec-

tion using AMPure XP beads (Agencourt), PCR amplification with Illumina p5 (5'-AATGAT
ACG GCG ACC ACC GA 3') and p7 (5'-CAAGCA GAA GAC GGC ATA CGA GAT 3') primers,

and purification by AMPure XP beads.

Sequencing

Quantification of libraries was performed by quantitative polymerase chain reaction (qPCR)

using the KAPA Library Quantification kit (KAPA Biosystems). Library fragment size was

determined by the Agilent 2100 Bioanalyzer (Agilent Technologies). All sequencing was per-

formed on the Illumina HiSeq4000 NGS platform (Illumina) using paired-end 75bp sequenc-

ing chemistry.

Sequence data processing

Trimmomatic [45] was used for FASTQ file quality control (QC). Leading/trailing low quality

(quality reading below 15) or N bases were removed. Reads from each sample were mapped to

reference sequence hg19 (Human Genome version 19) using Burrows-Wheeler Aligner (BWA

MEM) [46] with default parameters. Only chromosome 1 to 22, X, Y, and mitochondria were

kept in the reference genome. PCR duplicates were removed using Picard Tools (available at:

http://picard.sourceforge.net) with default parameters.

Calculating per-base coverage

The genomic coordinates of 5’ UTR, 3’ UTR, exons, introns, and TSS were obtained from the

UCSC table browser [47]. Promoter region is defined as the upstream and downstream 2000

bp of the TSS. Coverage at each nucleotide was calculated using SAMTools [48] and custom-

ized bioinformatic scripts. Sex chromosomes were excluded in this analysis.

Hierarchical clustering and PCA

The humanhg19 reference genome was separated into consecutive, none-overlapping 10k bp

windows. Percentages of nucleotides with at least 1X coverage depth were calculated for each

window. Distance for hierarchical clustering was calculated using Euclidean method and clus-

tered using Ward.D2 method available in R. PCA was performed without scaling each feature

to equal variance, since percentage of covered nucleotides for a 10k bp window could only take

values between 0 and 1.

CNV calculation

The humanhg19 reference genome was separated into consecutive, none-overlapping 10k bp

windows. The read count mapped to each window were determined by BEDTools [49]. Nor-

malization of read counts by GC-content was performed using LOESS method with R pro-

gramming language as previously described [44,50]. After normalization by GC-content and
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global mean depth of coverage, log2 ratio for each 10k bp window were calculated by dividing

NA18535 WGS sequencing data for blood samples, or by dividing their respective blood sam-

ple for cfDNA and tumor samples. Segmentation of the log2 ratio data was performed using a

circular binary segmentation algorithm.

Mapping fragmentation points near TSS, ESS, and EES

The 5’ and 3’ boundary of each read near TSS, ESS, and EES were determined by customized

bioinformatic scripts similar to published methods[41]. Sex chromosomes were excluded in

this analysis. Briefly, paired reads mapped to the regions 1000bp upstream and downstream of

the TSS or 500 bp of the ESS and EES were extracted. After adjusting for gene strandness, the

number of read pairs originating from and terminating at each consecutive, none-overlapping

5bp window was tallied. Read pair count in each 5bp window was normalized to the total num-

ber of TSS, ESS, or EES analyzed.

Supporting Information

S1 Table. Additional patient and sample information.

(PDF)

S1 Fig. WGS insert size distribution. (A) Fragment size distribution of DNA extracted from

blood samples. (B) Fragment size distribution of DNA extracted from fresh tumor, FFPE, or

the cell portion of body fluid effusion samples. (C) Fragment size distribution of DNA

extracted from plasma or the liquid fraction of body fluid effusion samples. This graph displays

size distribution up to 400 bp. (D) Fragment size distribution of all cfDNA samples pooled

together. Vertical dashed lines mark local maxima.

(PDF)

S2 Fig. Position and size of fragment not covered. Plots showing the size and position of

nucleotide fragments not covered in any of the (A) blood samples, (B) tumor samples, or (C)

cfDNA samples. The x-axis displays genomic position. The y-axis displays the length of the

no-coverage fragments in log10 scale. Vertical gray dashed lines marked the boundary between

chromosomes. Sex chromosomes were excluded from this graph.

(PDF)

S3 Fig. Read count normalization to GC content by locally weighted scatterplot smooth

(LOESS). GC content and read counts in each consecutive non-overlapping 10kbp window of

the human reference genome hg19 were calculated. After removing regions with extreme read

count values (> 99.9% percentile), LOESS was fitted to the scatterplot. Each graph demon-

strates the read count spanning 25% to 70% GC content of a sample before or after the normal-

ization. Red line represents the fitted LOESS model.

(PDF)

S4 Fig. Similarity between the CNV profiles. The human reference genome hg19 was divided

into consecutive non-overlapping 10kbp windows. Sequencing read count mapped to each

window were tallied. After removing sex chromosomes and regions with extreme read count

values (>99.9% percentile) and normalizing read count to GC content, pair-wise calculation

of Spearman correlation coefficient between the CNV profiles was performed. The results

were plotted in this heat map. The same color was used to label all samples collected from the

same patient.

(PDF)
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S5 Fig. Normalized coverage depth near the TSS, ESS, and EES in the 1000 Genome Proj-

ect. Coverage depth at each nucleotide normalized to regional mean depth within ±1000bp of

the TSS and ±500bp of the ESS and EES in randomly selected samples from the 1000 Genome

Project. Each grey line represents a sample. Red lines represent the mean value of all samples.

(PDF)
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