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Abstract

As threats to species continue to increase, precise and unbiased measures of the impact

these pressures are having on global biodiversity are urgently needed. Some existing indi-

cators of the status and trends of biodiversity largely rely on publicly available data from the

scientific and grey literature, and are therefore prone to biases introduced through over-

representation of well-studied groups and regions in monitoring schemes. This can give mis-

leading estimates of biodiversity trends. Here, we report on an approach to tackle taxonomic

and geographic bias in one such indicator (Living Planet Index) by accounting for the esti-

mated number of species within biogeographical realms, and the relative diversity of species

within them. Based on a proportionally weighted index, we estimate a global population

decline in vertebrate species between 1970 and 2012 of 58% rather than 20% from an index

with no proportional weighting. From this data set, comprising 14,152 populations of 3,706

species from 3,095 data sources, we also find that freshwater populations have declined by

81%, marine populations by 36%, and terrestrial populations by 38% when using propor-

tional weighting (compared to trends of -46%, +12% and +15% respectively). These results

not only show starker declines than previously estimated, but suggests that those species

for which there is poorer data coverage may be declining more rapidly.

Introduction

Accurately quantifying trends in global biodiversity is crucial in order to understand the

impacts of threats on the species and ecosystems on which humans rely [1]. The need for such

metrics is pressing as threats and pressures upon the natural world continue largely unabated

[2,3] and recent estimates of species extinction rates suggest they are significantly higher than

background rates, having risen dramatically over the last 200 years [4,5]. Strategic Goal C of

the Aichi Biodiversity Targets [6] aims ‘to improve the status of biodiversity by safeguarding

ecosystems, species and genetic diversity’. In particular, Aichi Target 12 focusses on preventing

the extinction of threatened species and improving and sustaining their conservation status.

The mechanism required to assess progress towards this target relies on the development of
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robust and quantitative measures of the status of and trends in biodiversity and in this case, a

focus on species [3].

The Living Planet Index (LPI) [7–9], one in the suite of global species indicators used to

track progress towards Aichi Target 12, focusses on monitoring the population trends of verte-

brate species. The LPI includes available published data, primarily in the scientific and grey lit-

erature (e.g. government/NGO reports) taken from the Living Planet Database (LPD) and

records trends in 14,152 populations of 3,706 species. However, its reliance on available data

means there is bias in the LPD resulting from the taxonomic and geographical distribution of

the data used [8]. These types of bias are a common feature of other global biodiversity data-

bases [10,11], usually with a noticeable gap in data from tropical regions [12]. The disparity in

spatial coverage particularly reiterates that, in a time of persistent biodiversity decline, there

are many gaps in our knowledge of the exact patterns and extent of this global problem [13].

Furthermore, the performance of biodiversity indicators such as the LPI can be compromised

by the presence of bias in the data and limited in effectiveness as tools in measuring progress

towards specific policy targets [1,14].

Other indicators based on species abundance (e.g. [15,16]) are developed for a selected

group of species using a systematic monitoring protocol to collect the data used, so the indica-

tor is spatially and taxonomically representative of the region and taxa in question. However,

no indicator of this kind yet exists which has a global extent and covers taxonomic groups

beyond birds and butterflies [15,16]. There is a tradeoff to be made between the time and

resources required to develop a representative global monitoring scheme and the need to mea-

sure and report on biodiversity change [1]. In light of this, it can be prudent and cost-effective

in the near term to build on existing indicators provided there is an understanding of any

effects from the bias that they contain [17].

The database behind the Living Planet Index has been continually augmented since its

inception in 1998 [18] and data are still being added (S1 Fig). In light of the applicability of

the Living Planet Index as a global biodiversity indicator [3] and given the ongoing need for

reporting tools for current and new targets for biodiversity, such as the Aichi Targets [6] and

Sustainable Development Goals [19], we aim to continue the development of the LPI by both

filling data gaps and by addressing the existing bias in the indicator. Here, we describe an

approach which tackles the latter. We collated estimates of the known number of species across

biogeographical realms and assessed the representativeness of the Living Planet Index database

for species groups within these. We then developed the diversity weighted Living Planet Index

which attempts to make the estimated index more representative of vertebrate biodiversity by

accounting for the estimated diversity of species.

Materials and Methods

Data collection for the LPI

All data used in constructing the LPI are time series of either population size, density, abun-

dance or a proxy of abundance. The species population data used to calculate the index are

gathered from a variety of sources. Time series information for vertebrate species is collated

from published scientific literature, online databases and grey literature (government/NGO

reports), totaling 3,095 individual data sources. Data are only included if a measure of popula-

tion size is available for at least two years, and information available on how the data were col-

lected, what the units of measurement were, and the geographic location of the population.

The data must be collected using the same method on the same population throughout the

time series and the data source referenced and traceable (see [8] for further details).

The Diversity Weighted Living Planet Index
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The period covered by the index is from 1970 to 2012. The year 2012 is chosen as the cut-

off point for the index because at present there are insufficient data to calculate a robust index

after this point due to publication time-lag. Data sets are continually being added to the data-

base. In addition to the population data, each time series is assigned to a system–terrestrial,

freshwater and marine–based on both the location of the monitored population and the habi-

tat the species mostly relies on. The geographic coordinates of the location are used to assign

each population time series to a land-based or marine biogeographic realm (S2 Fig).

We examined the pattern of geographic bias in a data set which relies on using published

data, in two ways. The first was to create a display of the broad spatial pattern of the LPD by

mapping the location of each population time series onto a map depicting global vertebrate

species richness (reproduced from [20]). Secondly, we followed the approach taken by Martin,

et al [21] to analyse the geographic bias among terrestrial ecological study sites. Using the

unique locations in the terrestrial component of the LPD we calculated the proportion of sites

that are protected, the proportion in different woodland biomes and the proportion that occur

in wealthy countries (S1 Appendix). We then compared this to the findings from Martin et al.

Assessing species representation

Numbers of species in the LPI database were compared with estimates of the number of

known species in each of the following subcategories: system (terrestrial, freshwater, marine);

taxonomic group (birds, mammals, reptiles, amphibians, fishes); land-based biogeographic

realm for terrestrial and freshwater species (Afrotropical, Australasia, Indo-Malaya, Nearctic,

Neotropical, Oceania, Palearctic); marine realm for marine species (Arctic, Atlantic north tem-

perate, Atlantic tropical and subtropical, Pacific north temperate, Tropical and subtropical

Indo-Pacific, Southern temperate and Antarctic).

Terrestrial and freshwater bird, mammal, reptile and amphibian species numbers were

obtained from the WWF Wildfinder database [22]. This database lists extant species within

each ecoregion. From this database, we extracted species lists and totals for the terrestrial and

freshwater biogeographic realms. Freshwater fish species numbers were extracted from the

Freshwater Ecoregions of the World data set [23] which also had ecoregion level species lists

which we amalgamated into biogeographic realm lists.

Bird, mammal, reptiles and amphibian species numbers were further split into terrestrial

and freshwater groups according to the habitat information on their species account on the

IUCN Red List 2016.2 [24]. Species which were categorized as exclusively terrestrial or fresh-

water were placed in the relevant list. Species which were listed as both terrestrial and freshwa-

ter were placed in both, so these system lists are not mutually exclusive which mirrors the LPI

database where species can be assigned to both terrestrial and freshwater systems.

In some cases, taxonomic discrepancies meant that it was not clear whether a species should

be categorized as freshwater or terrestrial. To minimize this, we conducted synonym searches

in the Red List taxonomic fields to increase matches and identify unique orders, families or

genera that should be classified as exclusively terrestrial or freshwater. Any remaining species

that were not matched were kept in both terrestrial and freshwater lists. For reptile species not

assessed by the IUCN Red List, we based the decision on the system assigned to other species

of the same genera or family level. Alternatively we searched for habitat preferences for the

species on the Reptile Database [25].

Marine fish, bird and reptile species totals were obtained by searching for ‘Pisces’, ‘Aves’, and

‘Reptilia’ respectively within a polygon drawn for each marine realm from the Ocean Biogeo-

graphic Information System [26]. Species totals for marine mammals were obtained through

advanced searches on the IUCN Red List to identify total numbers of marine mammals

The Diversity Weighted Living Planet Index
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occurring in each FAO marine area [24]. The FAO marine areas were then assigned to the

appropriate marine realm in order to estimate total species number for each realm.

For each realm, we then compared the estimated proportion of species from each taxo-

nomic group within each realm with the proportions of species found in the LPI for that

realm. We did this for terrestrial, freshwater and marine species separately. Binomial tests

were used to assess significant over or under-representation. We assessed the impact of remov-

ing low representation (less than 1%) on the resulting indices. We also investigated whether

the proportion of species in the LPI database assessed as threatened on the IUCN Red List [24]

differed significantly from the actual proportions of threatened species within five of the

extinction risk categories (Least Concern, Near Threatened, Vulnerable, Endangered, Criti-

cally Endangered) and for each taxonomic group on the IUCN Red List. We did not compare

proportions in the Data Deficient, Extinct or Extinct in the Wild categories as we would not

anticipate having population trends data for such species in the LPD. For reptiles and fishes

which have not been comprehensively assessed, we used estimates of proportion threatened

from those species that have been assessed. As an extension of this analysis, we replicated the

comparison removing any threatened species that had not been assessed under Criterion A,

which is based on a reduction in population size. Species assessed under other criteria might

not necessarily show population declines, so this approach aims to test for a bias towards

threatened species that do have declining populations.

Calculating the LPI

To facilitate easy replication of the results presented here, an r package, rlpi, for calculating the

Living Planet Index using either approach outlined below is provided with tutorial documen-

tation, example data sets and the publically available records from the Living Planet Database

[27] at https://github.com/Zoological-Society-of-London/rlpi. The Living Planet Database

contains a number of abundance records that have been provided in confidence. These are

used to calculate the presented trends and statistics, but cannot be made publically available.

We calculated the geometric mean of trends for each species within a Generalised Additive

Modelling (GAM) framework, following [8], whereby each population time series with six or

more data points was modelled using a GAM. Population time series with fewer than six data

points or that resulted in poor GAM fit were modelled using the chain method [9]. Where we

had more than one population time series for a species, the modelled annual trends dt for each

population were averaged to provide a single set of annual trends for each species:

�dt ¼
1

nt

Pnt
i¼1

dit ð1Þ

where nt is the number of populations, dt is the annual rate of change for a population in a

given year, given by

dt ¼ log
10
ð

Nt

Nt� 1

Þ ð2Þ

where N is the population measure and t is the year.

Having constructed species, group, regional or global trends, these can be converted back

to index values by:

It ¼ It� 1 � 10
�d t ; I0 ¼ 1 ð3Þ
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Throughout the following processes, we refer to ‘averaging’ trends–in all cases, we refer to

averaging lambda values, prior to converting them to index values–generating the geometric

mean abundance. This final step only occurs after all other steps have taken place.

We used two approaches for calculating a global scale index. The first, unweighted method

(LPI-U), follows the process outlined in [8] whereby the data are divided into six subsets based

on region (tropical or temperate) and the three systems (terrestrial, freshwater & marine)

within each region. Indices for each system (tropical terrestrial, temperate freshwater, etc.) are

calculated by averaging species trends within them. Separate tropical and temperate indices

are then calculated by averaging the trends for each system. The tropical and temperate indices

are finally averaged to produce a global scale LPI. This process of hierarchical averaging

addresses some of the geographical disparity in the data set by equally weighting tropical and

temperate regions but does not address taxonomic disparity or apply any proportional

weighting.

The second approach, the diversity weighted LPI (LPI-D), incorporates a proportionally

weighted system based on the species richness estimates described above (building upon sug-

gestions in [8,9]). Because the reptile and amphibian data sets are small, these were combined

into one herpetological group (‘herps’), leaving four species groups (’Birds’, ’Mammals’, ’Fish’

and ’Herps’). For the same reason, we joined the biogeographic realms Australasia, Oceania

and Indo-Malaya into one combined realm (‘Indo-Pacific’). The final data set comprised 57

subsets which incorporated each system, realm and taxonomic group combination (Fig 1).

Within each system and realm combination, the average species trend for each taxonomic

group was then given a proportional weight according to estimated species richness (S10

Table, S11 Table). For example, birds represent 43.3% of terrestrial vertebrate species in the

Palearctic so this value is used in the weighted average to construct the Palearctic realm trend

for terrestrial species. This method of a weighted average was used to produce 16 trends for

each system/realm combination. Summary pseudocode for this process is presented in Box 1.

For example, in calculating the trends for freshwater Afro-tropical species, we weight taxo-

nomic groups using their calculated proportions:

�d t; FW AT ¼
1

NT

PNT
j¼1

�djt:wj ð4Þ

where NT is the number of taxonomic groups within the realm in question, Wj is the estimated

proportion of species that that group represents (S10 Table, S11 Table), and djt is the calculated

average trend in abundance for that taxonomic group at time t.

The next stage was to produce three system-level trends (terrestrial, freshwater and marine).

Each realm trend for that system was given a weighted value according to the proportion of

species that the realm represents derived from the estimated number of known species. For

example Palearctic species account for 10.6% of known terrestrial vertebrate species, so this

value is used to weight the terrestrial Palearctic trend within the terrestrial index. This method

of weighting was used to produce three indices for terrestrial, freshwater and marine which are

then averaged to produce a single global trend as in [8]. This trend is indexed with the baseline

of 1970 set to a value of 1.

As a smaller scale illustrative example, we calculated an index for the Palearctic realm using

the two approaches described above. For the LPI-U approach, an average was taken of all ter-

restrial and freshwater species trends to produce the realm index. For the LPI-D approach, the

index was calculated using a weighted average based on the combined proportion of terrestrial

and freshwater species estimated for the Palearctic (see S10 Table, Palearctic column).

The Diversity Weighted Living Planet Index
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Fig 1. Schematic of the weighting process. Systems (Terrestrial/Freshwater/Marine) are weighted equally. Within each system, the proportion of species

found across the realms that compose that system (the length of the bars above) is used to proportionally weight each realm’s index. Within each realm, the

diversity of species is used to weight taxonomic indices (the size of the grey-scale sections of the bars above).

doi:10.1371/journal.pone.0169156.g001

Box 1. Pseudocode outlining the algorithm for constructing the
global Living Planet Index.

For each species,estimaterates of change:
For each population,
Estimatepopulationlambdas(ratesof change):
Averagepopulationlambdasfor each speciesto obtainspeciestrend

For each System(terrestrial,freshwater,marine):
For each biogeographicalrealm(Palearctic,Indo-Pacific,etc):
For each taxonomicgroup(birds,mammals,fish,herps):
Averagespeciestrendswithingroup
Averagetaxonomictrends,usingtaxonomicweightings,obtaining

realmtrend
Averagebiogeographicalrealmtrends,usingrealm weightings,

obtainingsystemtrend
Averagesystemtrendsequally.
Convertaveragesystemratesof changeto indexvalues

The Diversity Weighted Living Planet Index
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For each index, we generated 95% confidence intervals using a bootstrap resampling tech-

nique for 10,000 iterations (as [8]). These confidence intervals demonstrate the uncertainty in

the index values inherited from the baseline in 1970 and propagated through the time series.

Results

Geographic representation within the living planet index

Global vertebrate richness overlaid with locations of populations currently recorded within the

Living Planet Index shows biases towards temperate regions, which the Living Planet Index

over-represents, and under-representation of tropical regions (Fig 2). Our comparison to a

study on geographic bias in terrestrial ecological sites revealed that 63% of the terrestrial sites

in the LPD occur in a protected area which is the same proportion as found in Martin et al. (χ2

= 0.004, df = 1, p = 0.95), and more than the expected 13% (χ2 = 883.83, df = 1, p = 0.00). For

all woodland biomes, the LPI differs significantly to Martin et al.’s observed values except for

Tundra (S2 Table). Compared to the expected number of sites across biomes, the LPI over-rep-

resents Tropical deciduous woodland and under-represents Tropical evergreen woodland (S3

Table). For values derived from an equal distribution of sites by global area, all other biomes

except Tundra are over-represented while results are less clear by an assumed equal distribu-

tion among biomes (S3 Table). The pattern of representation in wealthy countries was similar

to Martin et al. but overall results were mixed with over- und under-representation of high

and low income countries compared to the number of sites expected (S4 Table). While com-

prising significantly more terrestrial sites from High income countries and significantly fewer

sites from Upper middle income countries, representation is even when combining categories

into higher (High and Upper middle) and lower (Lower middle and Low) groupings (S5 Table).

Taxonomic representation and bias within the living planet index

Fig 3 shows the geographic and taxonomic representation of species in the LPI. This represen-

tation is varied with 12 subsets representing between 1 and 10% and 7 subsets representing

Fig 2. Global vertebrate richness map overlaid with populations recorded in the Living Planet

Database. Species richness map reproduced from [20]

doi:10.1371/journal.pone.0169156.g002
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over 10% of known species in the terrestrial and freshwater systems (S6A Table). For the

marine system, 6 subsets represent between 1 and 10% and 16 subsets represent 10% or more

of known species (S6B Table). Afrotropical amphibians and reptiles (‘Afrotropical Herps’) rep-

resent less than 1% of known species and South temperate and Antarctic reptiles are currently

not represented at all in the LPI database (0%, of a possible 3 species; not shown in figure). In

the marine system, the highest representation of species is for Pacific north temperate reptiles

(100%, 2 species). The highest terrestrial and freshwater representation is for Nearctic birds

(68%, 492 species out of a possible 725 species) and the lowest is for Afrotropical reptiles and

amphibians (0.7%, 18 species of a possible 2,480 species).

When compared to the expected diversity of species across realms, the significant results

for birds and mammals show over-representation within terrestrial and freshwater realms

with the exception of Afrotropical birds which are under-represented (Binomial test of propor-

tions, see S7 Table). The taxonomic groups that are significantly under-represented in each

terrestrial and freshwater realm are amphibians and reptiles, as well as fishes, the exception

being Nearctic species which are all over-represented. For marine realms, the significant

results for birds, mammals and reptiles show they are over-represented in all realms with the

exception of South temperate and Antarctic reptiles where there is no representation of the

three species (S8 Table). Fishes are a significantly under-represented group in the tropical and

south temperate marine realms but are significantly over-represented in the Pacific north

temperate.

Impact of diversity weighting at the level of a realm: the palearctic

Using the unweighted method (LPI-U) the index for the Palearctic realm shows an overall sig-

nificant increase of 38.4% (95% CI: 12.7–66.2) over the period 1970–2012 (Fig 4). Using the

diversity weighted method (LPI-D), the index for the Palearctic realm shows an overall signifi-

cant decline of 30.3% (95% CI: -1.4 –-50.2). The LPI-D index for the Palearctic realm shows

wider confidence intervals than the LPI-U index as well as a more undulating trend. When an

unweighted average is used to calculate the Palearctic index, the group which contains the

most species in the LPI database carries the most weight (S6A Table). The effect of using pro-

portional weighting means that the influence of the over-represented groups such as birds and

mammals has been reduced by over half and almost a fifth respectively, whereas the influence

of fishes has been increased by over three-fold and amphibians/reptiles by over two-fold. This

is compared to how much weight they would carry using the LPI-U approach where no taxo-

nomic weighting is used.

Applying the LPI-D approach to the global living planet index

The global index produced using the LPI-D approach shows a decline of 58% (95% CI: -48.3

–-66.0) between 1970 and 2012 (Fig 5) which equates to an average annual decline of 2% per

year. This result shows a greater rate of decline than the index calculated using the LPI-U

approach which has an average annual decline of 0.52% per year and an overall decline of

19.7% (95% CI: -6.6 –-30.9), over the 42-year period. The confidence intervals around the

LPI-U index are slightly wider than the LPI-D index illustrating greater uncertainty in the

trend since 1970.

Fig 3. Comparison of number of known species and number of species recorded within the Living Planet Database. Colours represent different

biogeographic realms, shapes indicate species groups and overlaid lines show 1 and 99% representation (dotted) and increments in between (solid). A–

terrestrial and freshwater species and realms; B–marine species and realms

doi:10.1371/journal.pone.0169156.g003
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System trends: terrestrial, freshwater and marine

The results of the LPI-D approach on the three system indices reveal that each show a greater

decline than the LPI-U approach (Fig 6). The terrestrial index shows a 37.9% decline (95% CI:

-20.4 –-51.5) from 1970 to 2012, averaging at a 1.13% decline per year. The marine index

shows a similar decline of 35.6% (95% CI: -19.5 –-48.8) over the same period, with an average

annual decline of 1.04% per year. The freshwater index shows a decline of greater magnitude,

81.5% (95% CI: -68.5 –-89.3) over the 42-year period and an average annual decline of 3.94%

per year. Table 1 compares the weighted and unweighted indices for each system.

The impact of low-representation groups

To gauge the impact of less represented species groups on the indices, we explored the effect of

removing them. If there was little impact, we would expect the average trend for the other

groups that remain in the index to look similar after removal. Fig 7 compares the impact of

Fig 4. Comparison of the unweighted and diversity weighted Living Planet Index for the Palearctic realm. Green shows the unweighted index (LPI-U),

orange shows the diversity weighted index (LPI-D). Solid coloured lines show the average trend and shaded regions show the 95% confidence interval of that

trend.

doi:10.1371/journal.pone.0169156.g004
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removing these groups on global and system level trends using both the weighted and

unweighted method. As no groups within the marine realm have < 1% representation, we

only present the differences in global, freshwater and terrestrial indices. In general, the diver-

sity weighted approach does not have a significant impact on the effect of removing these

groups. In both weighted and unweighted cases for each index, no significant difference is

seen when groups with less than 1% representation are removed. Each index shows a greater

decline when these groups are removed, which is most noticeable in the Terrestrial LPI-D

index but it is not significantly different. The exception is the Freshwater LPI-U index where

there is a very marginal increase in the trend.

Representation of threatened species

Comparing the proportion of species from each IUCN Red List category in the Living Planet

Database with all assessed species on the IUCN Red List revealed some significant results for

Fig 5. Comparison of the unweighted and diversity-weighted Living Planet Index for the global data set. Green shows the unweighted index (Global

LPI-U), orange shows the diversity weighted index (Global LPI-D). Solid coloured lines show the average trend and shaded regions show the 95% confidence

interval of that trend.

doi:10.1371/journal.pone.0169156.g005

The Diversity Weighted Living Planet Index
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both threatened (CR, EN, VU) and non-threatened (NT/LR, LC) categories (Table 2). We find

that Critically Endangered reptiles are significantly over-represented, along with Least Con-

cern birds and amphibians, and Near Threatened/Lower Risk reptiles and fishes. The signifi-

cantly under-represented groups are Near Threatened/Lower Risk birds, Least Concern

reptiles and fishes, Endangered amphibians and fishes, and Vulnerable birds and amphibians.

None of the categories for mammals showed significant over- or under- representation.

When we subsetted the threatened species to include only those that have been assessed

under Criterion A (a reduction in population size), we found more significance in the results

between the proportions in the LPI and the IUCN Red List (S9 Table). All three threat catego-

ries are significantly over-represented for mammals, reptiles and fishes. Critically endangered

and Endangered birds are significantly over-represented whereas Vulnerable birds are signifi-

cantly under-represented. There were no significant results for amphibians.

Discussion

Trends in abundance of species populations are a crucial indicator of biodiversity [28,29] and

can provide early warnings of declines prior to species qualifying for high levels of extinction

risk [30]. Consequently, this metric has been recommended as an Essential Biodiversity Vari-

able [31], and, its use in geometric mean abundance indicators such as the Living Planet Index

(LPI), is part of the mechanism to monitor biodiversity and assess progress towards the Aichi

Targets.

The Living Planet Database (LPD), which underpins the LPI, relies on the collation of data

from available sources such as government reports, scientific articles and research pro-

grammes which represents a cost effective method to develop a global biodiversity indicator.

However, it necessarily suffers from a variety of publication biases arising for reasons such as

lack of resources or infrastructure for monitoring, logistical difficulties in accessing sites or

Fig 6. Comparison of the unweighted and diversity weighted Living Planet Index for each System (A -Terrestrial, B -Freshwater and C -Marine). In each case,

green shows the unweighted index (LPI-U), orange shows the diversity weighted index (LPI-D). Solid coloured lines show the average trend and shaded

regions show the 95% confidence interval of that trend.

doi:10.1371/journal.pone.0169156.g006

Table 1. Comparing the results of the weighted (LPI-D) and unweighted (LPI-U) indices in 2012. Confidence intervals are calculated from 10,000

bootstraps.

LPI-D index value in 2012 95% Confidence interval LPI-U index value in 2012 95% Confidence interval

Terrestrial 0.621 0.485–0.796 0.848 0.702–1.02

Freshwater 0.185 0.107–0.315 0.544 0.371–0.795

Marine 0.644 0.513–0.805 1.125 0.940–1.336

doi:10.1371/journal.pone.0169156.t001
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barriers to the dissemination of data into the public realm [12]. This is exacerbated by a ten-

dency for monitoring to occur in areas where scientists live and work [21,32]. Across many of

the species groups that are surveyed within the LPD, we see both significant over- and under-

representation in comparison to the estimated number of species (S7 Table, S8 Table, Fig 3).

The data tend to be over-represented for temperate bird and mammal species, and under-rep-

resented for most species groups in tropical realms and for marine fishes. We also find a geo-

graphic bias in the terrestrial data portion of the LPD towards protected areas, tropical

deciduous woodland and some wealthy countries, at the same time as under-representation of

tropical evergreen woodland biomes.

While the geographic and taxonomic bias we demonstrate in the LPI is consistent with

other studies [8,33] and comparable data sets [21], the spatial mismatch between the known

diversity of vertebrate species and the available data (Fig 2) could lead to inaccurate estimates

of status and trends in biodiversity. More specifically, trends that equally weight these species

groups (as in the ‘traditional’ Living Planet Index) will be significantly biased by the dispropor-

tionate representation of these groups, skewing the calculation of trends in global wildlife abun-

dance. Given the need for developed indicators of biodiversity and the overriding challenges of

obtaining globally comprehensive biodiversity data [12], we have outlined an approach to deal

with bias as an interim solution in lieu of attaining more representative monitoring data. This

weighted approach (LPI-D) suggests that, on average, species populations within the Palearctic

may have declined by 30.3% as opposed to increasing in abundance by 38.4% (Fig 4) in the

Fig 7. The impact of removing species groups for which the Living Planet Database has < 1% representation. Green trends show the Living Planet

Index for all groups, orange trends show trends without less represented groups. Upper row shows trends calculated using the weighted (LPI-D) method,

lower rows show the unweighted (LPI-U) method. Solid lines show the average trend, shaded regions show 95% confidence intervals. Stars (*) indicate when

the final 2012 index values are significantly different.

doi:10.1371/journal.pone.0169156.g007
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unweighted index (LPI-U). The difference is also notable at the global level where the LPI-U

suggests a decline of 19.7%, compared to a significantly larger declines of 58% in the LPI-D.

Declines appear to be masked in the LPI-U as a result of a high proportion of well moni-

tored, increasing populations in temperate regions in the data set. Weighting by species diver-

sity in the LPI-D thus distributes the responsibility for the index across regions and taxa

according to species richness. However, tropical regions tend to have higher richness and a

greater proportion of threatened species [34], so this method may introduce another bias by

placing a high proportion of weight on groups that may be less well monitored, under-repre-

sented, or more likely to be categorized as threatened. Comparing the proportion of threatened

Table 2. Comparing the proportion of species within the Living Planet Database (LPI) and the IUCN Red List of Threatened Species (IUCN) for

each Red List category (LC–Least Concern, NT/LR–Near Threatened/Lower Risk, VU—Vulnerable, EN–Endangered, CR–Critically Endangered).

Taxon Category LPI IUCN X2 Representation

Mammalia CR 0.05 0.04 0.26 over

EN 0.12 0.10 1.34 over

VU 0.11 0.11 0.11 under

NT/LR 0.07 0.07 0.19 under

LC 0.64 0.66 0.44 under

Total # sp. 531 4753

Aves CR 0.02 0.02 0.21 over

EN 0.04 0.04 0.17 under

VU 0.05 0.07 10.34** under

NT/LR 0.06 0.09 12.75*** under

LC 0.82 0.76 27.31*** over

Total # sp. 1415 10363

Reptilia CR 0.12 0.05 15.72*** over

EN 0.11 0.09 0.34 over

VU 0.13 0.10 1.87 over

NT/LR 0.13 0.08 4.04* over

LC 0.49 0.68 21.96*** under

Total # sp. 149 4244

Amphibia CR 0.07 0.11 2.79 under

EN 0.06 0.17 15.48*** under

VU 0.04 0.14 12.96*** under

NT/LR 0.08 0.08 0.00 under

LC 0.72 0.50 35.12*** over

Total # sp. 178 4958

Fishes CR 0.03 0.04 0.20 under

EN 0.03 0.05 4.22* under

VU 0.09 0.10 0.96 under

NT/LR 0.07 0.05 5.65* over

LC 0.63 0.75 45.45*** under

Total # sp. 602 12093

Chi-squared values are given for the binomial test of proportions, with significance levels indicated.

*p < 0.05.

��p < 0.01.

���p < 0.001.

presentation indicates whether the given group is ‘over’ or ‘under’ represented. Mammals, birds and amphibians have been comprehensively assessed by

the IUCN.

doi:10.1371/journal.pone.0169156.t002
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species within the LPI database to the IUCN Red List, we find that Critically Endangered rep-

tiles are the only threatened group which is over-represented, while Endangered and Vulnera-

ble amphibians are under-represented (Table 2). Conversely, we see significant results for

nearly all groups when we examine only those threatened species from the analysis that have

been assessed using Criterion A (S9 Table).

The implication of this is complex to interpret. As threatened species assessed under Crite-

rion A are significantly over-represented in all groups except for amphibians, we can infer that

the LPI has a bias towards negative population trends. However the impact may be partially

tempered by the proportional weighting at taxonomic group level. For example, amphibians,

which are not significantly over-represented by threatened species, along with reptiles, are

given the highest weighting among the terrestrial species and the second highest weighting

among freshwater species. Furthermore, species threatened under other criteria may be

experiencing population declines but sufficient data are just not available to contribute to the

Red Listing assessment. What is also important to note is that the majority of fish species (745

out of 1,369 species) have not yet been assessed by the IUCN Red List and a further 40 species

are assessed as Data Deficient so these species were not included in this analysis.

Accounting for the diversity of species using the LPI-D method allows the LPI to be calcu-

lated in a more taxonomically representative way. However, it would clearly be more beneficial

to continue to improve species representation within the LPD. The rate with which new data

are incorporated is relatively constant (S1 Fig), as a wealth of data remains available in the liter-

ature. Manual entry of these data is a critical limitation in growing biodiversity databases such

as the LPD, so tools for automating this process would be of value, e.g. working relationships

and support with scientific journals to identify useful research papers and the data they contain

[35]. New technologies such as remote sensing may also provide ways to improve the spatial

coverage of data [36], and incorporating other data types such as occurrence or opportunistic

data (e.g. from citizen science [37]) may help expand taxonomic coverage as abundance data is

rare for non-vertebrates. Encouragingly, improvements will happen as existing biodiversity

databases continue to be augmented and techniques to harness the power of citizen science

projects improve [38]. In addition, initiatives to harmonise and standardise existing biodiversity

databases are underway to enhance the current resource base for monitoring global biodiversity

[39]. The demand for measures to report on biodiversity change however remains a challenge

[40] and one where improving our resource base will not provide answers fast enough.

As well as addressing taxonomic disparity in the data set, the LPI-D approach accounts for

the broad scale geographic bias present in the LPD by placing more weight on the largely tropi-

cal, more species-rich realms. However, issues of coverage still remain at smaller spatial scales

which this approach does not tackle. For example, the data from the Palearctic realm is largely

from Europe and there is much less coverage in Asia (Fig 2). Likewise in the Afrotropics,

eastern and southern Africa are better represented than western and central Africa. For the

marine system, data tend to be clustered near the coasts which is where most known impact

from human activity occurs [41] but also the areas of higher species richness [42]. Understand-

ing whether and how these patterns bias the trends in the LPI will be an important continuation

of this work and one which is hard to untangle given the inferred impact of different types of

bias. For example, the bias towards data from protected areas might suggest the LPI would

show a greater decline if counterfactuals from unprotected sites were equally monitored, on the

assumption that protection has a positive effect on population trends. Improving the coverage of

Data Deficient species, as categorised by the IUCN Red List, might introduce negative trends if

these species are likely to be threatened, as has been predicted for terrestrial mammals [43].

Alternatively, declines may be exacerbated by a prevalence of coastal marine data; areas of high

human impact and where many heavily exploited commercial fish stocks are monitored.
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We note that weighting by species diversity is only one of a number of potential weightings

that could be applied to make the trends more ‘representative’. Other approaches have been

used, for example, to account for the differing proportion of a species’ total population across

different countries [15]. Depending on the question of interest, other methods of weighting

could also be explored such as weighting by genetic diversity, functional diversity, biomes or

other metrics. As well as the use we have outlined for the global scale, the application of

weighting by species diversity could be applied when developing a national biodiversity indica-

tor when species lists are readily available for the country in question. As the Convention on

Biological Diversity requires Parties to report on their biodiversity trends, having a method

that can be adapted at smaller scales is essential.

A limitation of our current approach is that it is reliant on reasonable species lists, which

are known to change over time and may be of lower quality for less studied groups and

regions. Estimates for the number of as yet unidentified birds and mammals are small (e.g.

~10–15 species), but the number of unidentified amphibians, reptiles and fish are much larger

with respective estimates of 57%, 13% and 22% undescribed [44]. These latter groups would

therefore be given even greater weight, suggesting that vertebrate populations may be declin-

ing, on average, even more rapidly that we currently estimate. As estimates of the known num-

ber of species improve, the relative weighting of species groups can be updated to better

estimate overall trends.

Our analysis suggests that prior estimates of the trends in global wildlife populations may

have underestimated their global decline. This appears to be due to those well monitored

groups for which we have disproportionate amounts of data (predominantly in the Nearctic

and Palearctic) declining less than those species in more speciose regions for which we have

proportionally less data. We might expect that as the weighted index places more weight on

less monitored groups in more species-rich regions, we would be exaggerating the declines in

abundance–as we might expect these groups to be declining more. For example we know that

tropical vertebrate populations are in worse decline than those in temperate regions [45] and

that amphibians are threatened with a greater risk of extinction than mammals or birds [46].

However, we note that when we remove those species groups for which we have very little data

(< 1% species), the overall trends decline more (Fig 7), potentially suggesting that overall

declines may be worse than we currently present. We urgently need more data for these groups

to better determine their trends.
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invasion ecology. Trends in Ecology & Evolution 23: 237–244.

33. Proença V, Martin LJ, Pereira HM, Fernandez M, McRae L, et al. Global biodiversity monitoring: From

data sources to Essential Biodiversity Variables. Biological Conservation.

34. Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, et al. (2006) Global distribution and con-

servation of rare and threatened vertebrates. Nature 444: 93–96. doi: 10.1038/nature05237 PMID:

17080090

35. Huang X, Qiao G (2011) Biodiversity databases should gain support from journals. Trends in Ecology &

Evolution 26: 377–378.
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