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Abstract

Background

It is often thought that random measurement error has a minor effect upon the results of an
epidemiological survey. Theoretically, errors of measurement should always increase the
spread of a distribution. Defining an iliness by having a measurement outside an established
healthy range will lead to an inflated prevalence of that condition if there are measurement
errors.

Methods and results

A Monte Carlo simulation was conducted of anthropometric assessment of children with
malnutrition. Random errors of increasing magnitude were imposed upon the populations
and showed that there was an increase in the standard deviation with each of the errors that
became exponentially greater with the magnitude of the error. The potential magnitude of
the resulting error of reported prevalence of malnutrition were compared with published
international data and found to be of sufficient magnitude to make a number of surveys and
the numerous reports and analyses that used these data unreliable.

Conclusions

The effect of random error in public health surveys and the data upon which diagnostic cut-
off points are derived to define “health” has been underestimated. Even quite modest ran-
dom errors can more than double the reported prevalence of conditions such as malnutri-
tion. Increasing sample size does not address this problem, and may even result in less
accurate estimates. More attention needs to be paid to the selection, calibration and mainte-
nance of instruments, measurer selection, training & supervision, routine estimation of the
likely magnitude of errors using standardization tests, use of statistical likelihood of error to
exclude data from analysis and full reporting of these procedures in order to judge the reli-
ability of survey reports.
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Introduction

For many illnesses biochemical, anthropometric or other measurements are made and com-
pared with the distribution of the parameter derived from a normal healthy population. In
order to assess the prevalence of the illness in the population an epidemiological survey is con-
ducted and the proportion of the survey population that falls outside the “healthy” range is
defined as having the condition. Measurements are taken from sufficient subjects to assess the
confidence intervals of the prevalence using standard epidemiological statistical techniques.

It is usually assumed that increasing the number of subjects in the survey will automatically
improve the precision of the assessment, and standard formulae are applied to determine the
optimum number of measurements, the sample size, that need to be made to achieve the
desired precision. It is often assumed that the effect of random errors in the measurements will
be neutral because those erroneous measurements which overestimate will be matched by
those that underestimate the parameter measured and thus effectively cancel each other out.
For this reason most survey guidelines relegate the possible effects of random error to having a
minor effect at best and the emphasis is placed on the sampling frame and increasing the sam-
ple size to improve the precision, and thus the assumed accuracy, of the estimated parameter.
However, increasing the sample size may also lead to deterioration in the care that is taken
with each measurement, particularly if this involves increasing the number of observers, less
practice, poorer supervision or training and using multiple centres.

The prevalence of “cases” depends upon the number of measurements falling outside the
normal range and thus into the tails of the distribution; that is below or above a cut-off point.
We have therefore examined the effect of random errors of measurement on the numbers of
cases falling outside the normal range that defines the illness; for this we have used the example
of the anthropometric assessment of malnutrition in children.

Theoretical considerations

Consider Fig 1, which shows a normal (Gaussian) distribution with vertical gridlines at one
standard deviation intervals. If there is a random (non-systematic) error in a measurement
then the recorded value will either move to the right or left of the true value with respect to the
other values in the distribution, and this movement of data points will be entirely at random.

Consider the points recorded in area C. With random error some of them will move into
area D and some into area B. Similarly, some of the points in D will move into C and others
into E, etc. With a Gaussian distribution, the number of points entering C from D should be
balanced by the points moving from D to C so that the mean value will not change with ran-
dom error. This is the assumption that is tacitly made and the reason why random error is fre-
quently not considered to be an important source of error. It is also the reason why many
epidemiologists consider that the precision of an estimate is always improved by simply
increasing the sample size, even if this involves using less experienced staff with consequent
deterioration in quality control.

In contrast, the number of points moving from C to B is a function of the area of C and the
number of points moving from B back to C a function of the area of B. These areas are not the
same. Thus, with a random error in measurement there will be more points moving from C to
B than from B to C. Similarly there will be more points moving from B to A than from A to B.
The same effect will be seen at the upper end of the distribution so that more points will move
from D to E than from E to D and more from E to F than from F to E so that symmetry is
maintained and random error should not generate moments of skewness or kurtosis. The
resulting effect of a random error will simply be to broaden the distribution. If the distribution
is Gaussian then the results of random error will be neutral in terms of the mean and the
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Fig 1. Effect of random error on a Gaussian distribution. Gaussian distribution curve illustrating how a
random error in measurement will result in different proportions of data-points moving from one segment to
another to increase the value of the standard deviation. The red line has a Standard deviation of 1.0. The
dotted blue line has a standard deviation of 1.2. The grey areas show how the area in the centre of the curve
has moved towards the tails thus increasing the areas below -2.0Z and above 2.0Z. Both distributions are
Gaussian without generating moments of kurtosis or skewness. For explanation of the letters see the text.

doi:10.1371/journal.pone.0168585.9001

distribution will remain Gaussian, but there will be an increase in the variance and thus the
standard deviation (SD) of the distribution. The magnitude of the effect will depend upon the
mean magnitude of the errors of measurement. If the errors themselves are random and are
plotted they are also expected to form a distribution with a mean of zero and a standard devia-
tion related to the absolute size of the errors; if this were not the case then the errors would
have a systematic bias component and not be entirely random. Theoretically random errors
always increase the SD, never diminish the SD. These errors will presumably be related to the
technical error of the measurement (TEM) which should be determined before, during and
after a series of measurements in a survey [1,2]. The observed variance (SD?) will then be
related to the true variance of the variable being measured plus the variance of the errors
(TEM?) of the measurers, and a better estimate of the true prevalence could be statistically
computed by subtraction of the variance of the TEM from the observed variance of the
measurements.

The effect that this has on the proportion of a distribution falling outside the cut-off point
being used to define abnormality, in relation to the true proportion outside this cut-off point is
then a function of the relative areas of the segments above and below the cut-off point chosen.
Because the ratio of adjacent segments increases the further they deviate from the mean value
the effect will be increasingly pronounced as the tails of the distribution are approached and
the further the cut-off point is from the mean the greater the effect of a random error on the
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observed prevalence. Table 1 gives the relative areas of the segments shown in Fig 1. Thus, 2.5
more measurements will move from the 0/1 SD segment (C, D) than will move from the 1/2
segment (B, E) back to the 0/1 segment. At the tails of the distribution, for every one measure-
ment that moves from the 3/4 SD segment to the 2/3 SD segment, 16.2 points will move from
the 2/3 SD segment to the 3/4 SD segment. The effect will affect both the upper and lower tails
of the distribution.

It is usually the case that an illness is diagnosed when an individual falls beyond the distri-
bution seen in 95% of a “healthy” population (i.e. +2 SD with 2.5% of “unhealthy” below, and
2.5% above the cut-off) 5% will be classified as “unhealthy”. But with such conditions as acute
malnutrition, obesity, anaemia, hypertension, diabetes, etc. random measurement error has
the potential of inflating the numbers diagnosed as unhealthy far beyond this 5%. Where a
more extreme cut off point is used such as +3 SD only 0.135% of truly “healthy” subjects will
fall below/above this cut-off. The effect of measurement error can then start to dominate esti-
mates, so that the majority of values recorded outside this range are more likely to be errone-
ous values than true “cases”. The ratio of true to false values below the cut-off point will then
be a function of the population mean, the cut-off point and the magnitude of the random
error (the overall TEM of the measurers). The reported prevalence will not only depend upon
the degree to which the mean and distribution of the observed population deviates from the
mean and distribution of the healthy population, but also on the precision with which the mea-
surements have been made. Importantly, this effect is completely independent of the sample
size; it depends only on the precision with which the measurements are taken.

Effect of measurement error on anthropometric variables used to assess
malnutrition in children

Anthropometric surveys of children are conducted to assess the nutritional status of a popula-
tion [3]. Weight, height, and mid-upper arm circumference (MUAC) are the primary mea-
surements taken; these are standardised for age & sex, combined and compared with
international standards, in this case the WHO, ¢ standards [4] to determine the individual’s
weight-for-height Z-score (WHZ), height-for-age Z-score (HAZ), weight-for-age Z-score
(WAZ) and MUAC-for-age (MUACage) or absolute MUAC. Each measurement is always
subject to measurement error [5-7] and compounded when entered into the equations using
more than a single measurement. The precision of the instruments used and the published
standards’ intervals often requires height to be rounded to the nearest 1.0 or 0.5 cm, weight to
the nearest 100g, age to the nearest month and MUAC to the nearest 1mm; these approxima-
tions are not thought to have more than a trivial effect on the results [8].

There is a difference of height of about 0.7cm between measuring a child recumbent and
standing [9]. There is also a mean diurnal variation in height of about 0.7cm in children less
than 5 years of age [10]; this depends upon the length of time that the child has been standing,

Table 1. The relative movement of points with distance from the mean.

SD segment marked Area relative to the area above
Oto1 C&D 0.341 1.0
1t02 B&E 0.136 x2.5
2to3 A&F 0.021 x6.4
3to4 tail 0.001 X 16.2
4to5 tail 375 x42.0
<5 tail 3N-7 x 109.5

doi:10.1371/journal.pone.0168585.1001

PLOS ONE | DOI:10.1371/journal.pone.0168585 December 28, 2016 4/27



@° PLOS | ONE

Effect of Random Error on Diagnostic Accuracy

running, playing and otherwise active. This variation is thought to be due to compression of
the inter-vertebral discs [11]. Children measured early in the morning are likely to be different
from those measured late in the day; malnourished children are likely to be less active than
well-nourished children. Measurements made in paediatric practice in the USA showed a
mean difference of 1.2cm + 1.6cm (SD) between the practitioners and experienced nurses spe-
cifically trained in anthropometry; only 30% of the measurements were within 0.5cm [12].

Although, the scales used in surveys have divisions of 100g the children frequently move
whilst being weighed so that the needle may deviate by several divisions. Frequently, nappies,
socks or pants are not removed; the amount of food, stool, urine and the state of hydration of
the child are other sources of variation.

Age is the most problematic of the variables. In most Western cultures it is rounded down
to the nearest completed month, in other cultures age is rounded up to the next highest
month. In most developing countries there is no birth registration and birthdays are not cele-
brated; consequently, as a child ages the actual age becomes increasingly vague in the mem-
ory of the mother. Age is then approximated by using a calendar of local memorable events
and the mother asked to remember to which event the birth most closely approximated.
These calendars are normally quite crude and are not capable of identifying the actual month
of birth. The questioning takes some time and is often administered in a perfunctory way,
particularly if the survey team is tired or asked to complete excessive interviews in a single
day. Even with full birth registration, there are often quite gross errors in reported age in
young children; in a census from Scotland 7.7% of ages were erroneously reported by the
respondent [13]. In Singapore children’s age in census data of respondents giving ages in
English showed that 66% were erroneous [14]. In Ghana age was misstated in 35% of chil-
dren by a year or more [15]; similarly, in Bangladesh, 26% of under 6 year old children had
their ages misstated by a year or more [16], and the error increases with age up to 5 years
[17,18]. Even when there is a birth registration paper, this may be grossly in error. Delayed
registration is the usual cause for error [19]. In Mali children must be registered within 7
days of birth, if this date is missed then the parent has to attend court in a distant administra-
tive centre to obtain a birth paper. This results in children being registered as being born
within 7 days of the date of registration, even if the child was born long before that date [20].
There can also be problems with calendars and customs; for example, the Chinese tradition-
ally record a child as one year at birth and this is incremented by one year as each Chinese
new year passes—traditional Chinese may state that a child is two years of age shortly after
birth if there happens to be a New Year between the birth and the survey [21]. Of more con-
cern is an interaction with nutritional status and misstatement of age, with errors most fre-
quently found in the malnourished [22].

The MUAC tape is a narrow plastic band placed around the upper arm; the reading
obtained depends critically on the tension that the enumerator applies to the tape when the
reading is taken. Experience shows that even with trained experienced observers it is rare to
get a technical error of the measurement of less than 2mm.

To these errors must be added errors due to digit preference, number transposition and
recording & data entry [23,24]. It is common practice for surveys in developing countries for
survey teams to be recruited from the friends and families of those involved in the survey and
they usually have almost no experience; the team members’ eye sight is not usually checked
and glasses are expensive and uncommon in many countries.

In anthropological research and in collection of data to set standards the investigators take
great care to minimise measurement errors [11,25] and estimates of the errors are made and
reported, but this is not usually the case when surveys are carried out for other purposes. Some
errors are systematic and epidemiologists take great care to try to eliminate systematic errors;
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but there are always random errors. Studies only vary in the degree of those errors which are
generally thought to be reduced or eliminated by simply increasing the sample size.

In order to investigate the effect of random errors on the derived prevalence we generated
artificial populations of known distribution and then imposed random errors on the data and
examined the effect on the distribution and the prevalence of malnutrition recorded.

Methods
Monte Carlo simulation of populations containing malnourished children

To examine weight variation, 50 populations, each of 2020 subjects were generated. These
were composed of 10 boys and 10 girls at each 0.5 cm interval in height from 60 to 110 cm
(101 intervals). To examine age related variables (height-for-age and MUAC-for-age) the pop-
ulations generated were of 2160 subjects composed of 20 boys and 20 girls aged at each month
from 6 to 59 months (54 intervals).

In order to generate the simulated populations, for the anthropometric variable under con-
sideration, the LMS (lambda-mu-sigma) parameters were downloaded from WHO’s website
[26] and entered into an Excel spread sheet corresponding to each sex specific height (for
weight analysis) and age (for height and MUAC analysis) of the child in the reference popula-
tion. To generate a population of children with a given distribution for WHZ, each child’s
weight was generated using the following equation:

Weight = Mx ((ZxSxL) + 1)~ (1/L) (1)

Where LMS are the parameters that define the sex and height specific distribution of each indi-

vidual; Z is the normally distributed Z-score that has been randomly assigned to the child with

a defined mean and standard deviation (most of the population’s mean Z-score was either -0.6

Z or -1.0 Z: all simulated populations were generated with a standard deviation of 1.0 Z-score).
For example, the WHZ parameters for a 70.0 cm male are L = -0.3521; M = 8.4227;

S =0.08229. To obtain the weight corresponding to a WHZ of -2.7 Z that could have been

assigned to this individual child the equation is solved as follows:

Wit(Kg) = 8.4227x ((—2.7x0.08229 x — 0.3521) + 1)"~(1/ — 0.3521) = 6.801kg

In this way populations were generated with a uniform distribution of height (60 to 110
cm) or age (6 to 59 months) and an equal number of males and females. The height and age
distributions of the simulated populations were not adjusted to allow for death of children dur-
ing these intervals or for variations in birth rate and growth of the population. No attempt was
made to examine subgroups of children’s height or age to focus on those ages which experience
a higher or lower prevalence of malnutrition; the randomly assigned Z-scores were thus evenly
distributed across the age and height intervals of the simulated populations.

To examine the effect of error in the WHZ, HAZ and MUAC/age random errors in the
weight, height, age and MUAC were generated using the Mersenne Twister algorithm [27] in
PopTools [28]. The random errors were then added to the “true” values of the simulated popu-
lations and compared with the distribution of the same population before the random errors
were added. The added random errors all had a Gaussian distribution with a mean of zero.
The standard deviation of the random errors was varied systematically to examine the effect of
the magnitude of the error on the distribution of the anthropometric variable. The number of
children that fall below the cut-off points for global acute malnutrition (GAM = moderate
acute malnutrition + severe acute malnutrition), defined as <-2.0 Z or MUAC of <125 mm
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and the number that fall below the cut-off points for severe acute malnutrition (SAM) defined
as <-3.0 Z or a MUAC of <115 mm were counted. Similar analyses were performed with
height-for-age to determine the effects of errors in height and age in the prevalence of stunting
in height.

For each magnitude of the error, replicated error-populations were generated by adding the
generated random error in weight to the “true” weight of the reference-population. The result-
ing Z-score of the children with the newly generated erroneous weights were then obtained
using the formula:

WHZ = ((Wt/M)~L—1)/(LxS) 2)

Using the example above let us consider that the random error in one trial added to the
weight of the 70 cm male child was +158g. The erroneous weight would then be 6.801 +
0.158kg = 6.959Kg. We solve the equation:

WHZ = ((6.959/8.4227)~ — 0.3521 —1)/(—0.3521x0.08229) = —2.47Z.

Thus, we can conclude that, for this child, an error of plus 158 g has changed the calculated
Z-score from -2.7 Z to -2.4 Z. Similarly if that child had been assigned an error of minus 204g
then his erroneous Z score would have been -3.1 Z and he would have moved from having a
diagnosis of moderate acute malnutrition to one of severe acute malnutrition.

To examine the effects of an error in both height and in weight the same procedure was
used to impose an error in weight, and a similar independent procedure was used to impose
an error in the height of the individual children. As there were no intermediate LMS values
between the 0.5 cm intervals for the heights of the children these were interpolated. The data
from the 2020 children were individually pasted into the data entry spreadsheet of ENA for
SMART software [29] (which has an interpolation algorithm incorporated to obtain values for
children in intermediate heights) and the resultant WFH Z-scores generated.

A modification was used to investigate the effects of an error in age. Because as a child gets
older there is an increasing error in the reported age so that the age-error in a 6 month old
child is likely to be much less than the age-error in a 5 year old child [17,18,30], the normally
distributed random error imposed upon the age was multiplied by the true age divided by 12,
before adding the age-error to the true age, using the formula:

error x child’s age / 12 (3)

All units are in months; “error” is the random error of age. Thus, for example, where the
random number generator assigned an error of 1.20 months, this magnitude of error would
only have been added specifically to a child of exactly 12 months of age. The age-error added
to the true age of a 6 month old child would be 0.60 months, whereas, for a 4 year old child the
added age-error would be 4.80 months (1.2 x 48/12 = 4.8). The height-for-age data sets were
used to determine the effect of an error in age on the derived estimates of stunting prevalence.

The effect of rounding was explored by dividing the weight by 1. . .n rounding the weight to
the nearest 0.1 Kg and then multiplying the weight by 1. . .n to return the weight to its original

« _»

magnitude rounded to “n” to emulate the effects of digit preference on the resulting Z-score.

Examination of the WHO database

To examine the potential effect of measurement errors on published data, the prevalence of
children having a weight-for-height of <-2 Z and <-3 Z were downloaded from the WHO
global data base of malnutrition [31] using the NCHS references and not the new WHO ¢4
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data; nevertheless, these are used to illustrate the potential problems of error on estimates of
country specific malnutrition. With a Gaussian distribution there is a unique mean and SD for
every particular percentage of children <-2 Z and <-3 Z; i.e. there is a known relationship
between the proportion of the population with GAM and SAM. The relationship between the
proportions of children with WHZ and HAZ below -2Z and -3Z were plotted and compared
graphically to the theoretical relationships that would obtain if the SD of the survey had been
0.8,1.0 and 1.2.

Results
Weight-for-height with weight measurement error

To examine the effect of variation in the magnitude of error in weight on weight-for-height
assessment 50 separate populations were generated, each with a mean WHZ if -0.6 Z and a
standard deviation of about 1.0 Z (95%CI, 1.0008, 0.9992). Each survey had 50 replicate ran-
dom errors imposed at each 100g interval (the maximum precision of the scales used in sur-
veys) from 0 to 1000g. Thus, for each error 2500 results were considered (50 replicates of 50
individual surveys).

The results of the errors in weight on the standard deviation, and prevalence of GAM and
SAM of surveys with a mean of -0.6 Z and a standard deviation of 1.0 Z are shown in Table 2
and illustrated in Figs 2 to 4. With each increase in the magnitude of the random error there is
an increase in the width of the standard deviation of the distribution of Z-scores so that more
and more children would be classified as having global acute malnutrition. The level at which
WHO declares a “severe nutritional situation” is a prevalence of 10% GAM; >15% is described
as “critical” demanding immediate intervention [32]. In the present example where the true
GAM was 8% a severe situation would be declared if there had been a random error of between
300 and 400g in weight measurement (Fig 3); if there was also an accompanying error in height
measurement then the random error in weight would have needed to be much smaller to
change the category of this population from “acceptable” to an “severe”.

The effect on severe acute malnutrition is even more pronounced (Fig 4) with an increase
from less than 1% SAM to over 9% with the largest error investigated.

Table 2. Effect ofimposed random error in weight on distribution of weight-for-height.

SD of error SD-Z GAM SAM
g z % %
0 1.000 8.01 0.87

100 1.008 8.23 0.92
200 1.031 8.81 1.12
300 1.069 9.70 1.49
400 1.119 10.73 2.00
500 1.182 12.06 2.75
600 1.260 13.45 3.63
700 1.338 14.74 4.55
800 1.432 16.17 5.66
900 1.535 17.43 6.78
1000 1.647 18.96 8.05

Fifty replicates of 50 surveys, each with a mean of -0.6 Z and SD of 1.0 Z-score were generated and random
error added to each survey. SDs of over 1.1 are shaded in light pink and those over 1.2 in pink.

doi:10.1371/journal.pone.0168585.t002
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Fig 2. Effect of imposed random error in weight on SD of the distribution of weight-for-height Z
scores. The error bars are 95% confidence intervals. All results use WHO,o6 Standards.

doi:10.1371/journal.pone.0168585.9002

During the imposition of the errors on the distribution, unexpectedly, it was noticed that
there was a change in the mean value of the 50 test population surveys. This is shown in Fig 5.
When the mean Z-score is negative, a further decrease in the mean Z-score of the population
with imposed error will increase the observed or calculated prevalence of SAM and GAM in
addition to the effect of an increase in the standard deviation of populations’ WHZ distribu-
tion. This effect on the mean, is generated from the fact that the WHO,4g6 “Z-scores” are not
actual multiples of the SDs of the population distribution of the 6 reference populations used
by WHO to generate the 2006 standards, rather they are derived from the centiles of the popu-
lation’s distribution and converted to so called “Z-scores” where the centile would fall on a
normal distribution. Thus, the WHO’s “Z-scores” are not what is normally conceived as a Z-
score in the statistical literature because the weight differences between 0 Z and -1 Z, -1 Z and
-2Z,-2Z and -3 Z, etc. are all different. Thus, an imposed error has less effect upon the result-
ing change in WHZ if the error falls on a child near the median than if it falls on a child further
from the median; as the population mean becomes more negative, an imposed positive error
will have less effect on the distribution than an imposed negative error. The effect is relatively
minor compared to the effect of increasing the magnitude of the error itself. However, the
assumption, when using the WHO s standards, that the mean value is not affected by a ran-
dom measurement error is not correct. Thus, measurement error imposed in these circum-
stances has a slightly greater effect upon the calculated prevalence than would be the case with
an increase in the width of the distribution alone.
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Fig 3. Effect of imposed random error in weight on prevalence of global acute malnutrition (weight-
for-height <-2 Z). The error bars are 95% confidence intervals.

doi:10.1371/journal.pone.0168585.9003

Effect of measurement error on the distribution of WHZ with different
population mean WHZ

In view of the change in the mean value with imposed error, weight-for-height surveys were
constructed with means ranging from 0.0 Z to -1.0 Z. The SDs of the distributions are shown
in Fig 6 and the corresponding changes in GAM in Fig 7. There is an increase in the SD with
the imposition of error as before; however, the rate of increase of the SD becomes greater as
the mean of the distribution deviates progressively from 0.0 Z. This would not happen if the
distribution of the WHO standard was truly Gaussian and is a consequence of slight difference
in actual weight changes in the intervals 0.0 to -1.0Z, -1.0Z to -2.0Z etc. of the standards. Thus,
with the WHO 4 standards as a population becomes more malnourished the effect of mea-
surement error is exaggerated. Nevertheless, the changes in SD with changing mean values for
the population WHZ Z-scores is relatively small compared to the change that occurs with
increasing error of the measurement.

Effect of “rounding” and digit preference

In the same 50 simulated surveys, rounding was imposed on the true weight of the children as
described in the methods section. The effects upon the distribution of the weights-for-height
Z-scores are given in Fig 8 and the resultant change in GAM and SAM is shown in Table 3.
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Fig 4. Effect of imposed random error in weight on prevalence of severe acute malnutrition (weight-
for-height <-3 Z). The error bars are 95% confidence intervals.

doi:10.1371/journal.pone.0168585.9004

There was an increase in the SD of the distribution of the Z-scores and the prevalence of GAM
and SAM when the data were rounded to simulate digit preference. This increase in the SD
and malnutrition prevalence was not as great as the increases seen with the imposition of a
random error to the data.

Effect of measurement error in height, age and MUAC on the resulting
distributions and resulting assessment of malnutrition

The effects of random error in the measurement of height, age, weight and height combined
and MUAC are shown in Table 4. Each analysis was from a single representative simulated
survey with a mean Z-score value of -1.0 Z and replicates of the imposed error term.

The effect of an error in height measurement of 1.5cm is approximately the same as the
effect of 350g error in weight. When there are errors in both weight and in height then the
errors are additive and the resultant change in prevalence may be more pronounced. A posi-
tive or negative error in both weight and height will tend to cancel each other out (the child is
both taller and heavier), whereas a negative error in one with a positive error in the other will
magnify the error.

Mother’s recall of age in most communities where surveys for malnutrition are conducted
is probably subject to the greatest error and in nearly all surveys there is age “heaping” in the
dataset to the nearest 6 and more particularly 12 months. The present analysis confirms that
this has the greatest effect upon the calculated results. An error of only 1.5 months, for a 12
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Fig 5. Change in the population mean Z-score from 50 simulated surveys with an initial mean of -0.6 Z,
with imposed measurement errors in weight. Error bars show 95% confidence intervals.

doi:10.1371/journal.pone.0168585.9005

month old child (with proportionate errors in older and younger children), can raise the SD
from 1.0 to above 1.2. The age is normally only assessed to the nearest month so that the esti-
mate of stunting prevalence is particularly liable to overestimation because of errors of the
reported age of the child. Even a random error of 3 months in a 12 month old child can change
the assessment of severe stunting (Height-for-age) from 2.1% of children to 9.4% of children.
This change in the reported prevalence due to random error is much greater than the expected
error which will arise from other problems with the survey such as the sample size and a biased
sampling frame, and is greater than the confidence intervals usually reported for HAZ. To this
random error must be added any systematic error due to cultural practice of systematically
rounding the age up or down, which would have the added effect of moving the mean of the
whole distribution up or down. Where ages are rounded up so that the child will be recorded
as older than the actual age, there will be an increase in the estimated prevalence of stunting
added to the errors due to random error in age estimation. Where ages are rounded down the
effect of random error will be mitigated.

In assessment of malnutrition using MUAC it is recommended practice to use the absolute
MUAC [32] rather than the WHO MUAC-for-age standards. For this reason the percent of
children falling below the internationally agreed cut-off points for the assessment of global and
severe malnutrition with an error in MUAC are given in Table 4. It should be noted in this
analysis that it is assumed that there is no error in age so that the change in prevalence is
entirely due to the change in the accuracy with which the MUAC is measured and thus the
error applies equally to absolute MUAC and MUAC-for-age.

When using absolute MUAGC, there is only a 10mm difference between normality (125mm)
and severe malnutrition (<115mm), and as an acceptable TEM is very difficult to achieve the
effect of measurement error is likely to lead to many children being misclassified.
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Fig 6. Effect of random error in weight, with no error in height, on the Change in SD of the WHZ
distribution from 6 simulated surveys each with different population mean WHZ-Z-scores. The
population mean WHZs were 0,-0.2,-0.4,-0.6,-0.8 and -1.0 Z.

doi:10.1371/journal.pone.0168585.9006

With respect to the precision of the instruments used in anthropometry, errors in weight
(300g to bring SD >1.1 with 100g instrument precision) has a less effect than errors in height
(1.5cm to bring SD>1.1 with diurnal variation of 0.7cm and difficulties in measurements),
MUAC (5mm to bring SD = 1.1, usual TEM of teams of about 4mm) and age (1month to
bring SD>1.1 with maximum precision of 1 month in most surveys) is by far the most prob-
lematic of all the measurements. With the exception of weight, the precision with which the
other parameters can be measured is close to the maximum precision of the instruments used
and errors of these measurements may account for most of the errors in survey data.

Discussion

Our data show that with random error the distribution of each of the parameters that assess
the prevalence of malnutrition widens and the numbers of children that fall into the tails of the
distribution increases. There is always error of measurement. The observed distribution will
always be wider than the true distribution and the prevalence of a condition depending upon a
cut-off point defined by a “healthy” range will potentially be systematically overestimated, pro-
vided that the “healthy” range has been determined with a less random error than the survey.
This appears to be a general phenomenon and our data confirms the theoretical effect of ran-
dom measurement error and the magnitude of that effect on the quality of the data and conse-
quently the results that will be reported from any survey measuring a continuous variable.
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Fig 7. Effect of random error in weight, with no error in height, on the Change in GAM prevalence from
6 simulated surveys each with different population mean WHZ-Z-scores. The population means were 0
(bottom dashed line),-0.2,-0.4,-0.6,-0.8 and -1.0 Z (top solid line).

doi:10.1371/journal.pone.0168585.9g007

This effect does not appear to be general knowledge among those conducting, analysing or
interpreting such data. For example, one adviser to the humanitarian community, when asked
how a survey could have a low standard deviation for WHZ responded that this could be

due to measurement error [33]; such lack of knowledge is common and leads to data being
accepted that should be used with circumspection or rejected.

Since the 1930’s measurement errors have been recognised as important and attempts to
measure and minimise such errors developed [34-36]. Nevertheless, even though many
anthropometric surveys are of poor quality and have been heavily criticised [37,38], measure-
ment error has rarely been invoked or considered as an important cause of misleading results.
This is despite the previous recognition that random error can have an effect upon reported
prevalence of an anthropometric deficit [39,40], and its incorporation in two recent survey
manuals [40-42]. The imprecision with which the instruments are scaled for anthropometry is
not thought to have a major effect on the results [8]. In none of the surveys analysed in our sur-
vey database [43] have the results of test-retest standardisation to determine the TEM been
reported [2]. This is probably because such errors have commonly been thought to be “neu-
tral” and surveyors have considered that such errors can be overcome by simply increasing the
sample size. The present analysis shows that this is not the case. Measurement error can inflate
the prevalence of a variable to an unacceptable degree and this is not ameliorated by increasing
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Fig 8. Effect of rounding/digit preference on the SD of WHZ distribution from 50 simulated surveys.
The terminal digit of the weights of the children were manipulated using the excel formula: round(weight/n)*n
to 0.1Kg where n varied from 1 to 10. The error bars are the 95% confidence intervals.
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sample size. Consequently the estimates of the burden of diseases and even the definition of
normal ranges of biological variables may be misleading. The errors caused by digit preference
were found to be the basis for the “Pickering-Platt” controversy about the aetiology of hyper-
tension and other measurement as well as sampling errors often lead to critical misinterpreta-
tion of epidemiological data [44].

Table 3. Effect of rounding/digit preference of weight on the prevalence of GAM and SAM from 50 sim-
ulated surveys.

Digit preference GAM% SAM%
1 8.03 0.88
2 8.11 0.90
3 8.19 0.92
4 8.37 0.92
5 8.46 1.00
6 8.67 1.03
7 9.01 1.14
8 8.99 1.23
9 9.21 1.32
10 9.87 1.41

The weights of the children were manipulated using the excel formula: round(weight/n)*n to 0.1Kg.

doi:10.1371/journal.pone.0168585.t003
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Table 4. Effect of random error in measurement of height, age, weight and height together and MUAC on the assessment of malnutrition.

SD of random imposed error replicates SD <-2Z <-3Z
Height Weight Age MUAC
cm g mo mm # % %
Height-for-age
0 - 0 - 50 1.000 15.97 2.13
0.5 - 0 - 50 1.012 16.13 2.25
1.0 - 0 - 50 1.047 16.82 2.61
1.5 - 0 - 50 1.102 18.28 3.30
2.0 - 0 - 50 1.171 19.48 4.28
25 - 0 - 50 1.262 21.21 5.51
Height-for-age®
0 - 0 - 10 1.001 15.83 2.13
0 - 0.5 - 10 1.031 16.30 2.43
0 - 1 - 10 1.122 17.83 3.13
0 - 15 - 10 1.258 19.93 4.08
0 - 2 - 10 1.453 22.25 5.88
0 - 2.5 - 10 1.686 24.37 7.88
0 - 3 - 10 1.974 26.28 9.44
Weight-for-height
0 0 - - 50 1.004 16.14 2.57
0 50 - - 50 1.007 16.23 2.64
0 100 - - 50 1.013 16.30 2.68
0 150 - - 50 1.024 16.51 2.80
0 200 - - 50 1.039 16.99 2.99
0 250 - - 50 1.059 17.42 3.30
0 300 - - 50 1.081 17.94 3.67
0 350 - - 50 1.106 18.53 3.99
0 400 - - 50 1.138 19.05 4.54
0 450 - - 50 1.170 19.51 5.03
0 500 - - 50 1.204 20.33 5.60
Weight-for-height
0 0 - - 20 1.000 16.14 2.38
0.5 100 - - 20 1.018 16.81 2.74
1.0 200 - - 20 1.069 17.80 3.44
1.5 300 - - 20 1.153 19.41 4.70
2.0 400 - - 20 1.258 21.05 6.15
2.5 500 - - 20 1.378 22.83 7.85
MUAC-for-age
- - 0 0 50 1.000 8.38 1.25
- - 0 1 50 1.004 8.36 1.30
- - 0 2 50 1.016 8.58 1.36
- - 0 3 50 1.036 8.89 1.47
- - 0 4 50 1.060 9.24 1.65
- - 0 5 50 1.092 9.92 1.89
- - 0 6 50 1.131 10.53 2.22
- - 0 7 50 1.176 11.36 2.65
- - 0 8 50 1.226 12.05 3.09
- - 0 9 50 1.281 13.11 3.70
(Continued)
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Table 4. (Continued)

SD of random imposed error replicates SD <-2Z <-3Z
Height Weight Age MUAC
cm g mo mm # % %
- - 0 10 50 1.340 14.05 4.23

2 For this analysis of age variation the random SD of the error was multiplied by age/12

doi:10.1371/journal.pone.0168585.t004

Published survey data

The present analysis shows that the effect of measurement error is not trivial, but can change a
reported prevalence substantially; amounts that are far greater than the confidence intervals
reported in many estimates of malnutrition prevalence. When relatively small scale surveys are
conducted by International non-governmental organisations with intensive training and
supervision of the staff and ensuring that the enumerators are not overburdened with excess
home visits each day, the standard deviations of the WHZ are between 0.8 and 1.2 Z with 80%
of them between 0.9 and 1.1 Z [45]. This constancy of the shape of the distribution is main-
tained even when the prevalence of malnutrition within the population increases to emergency
levels. When larger and more complex surveys are considered, for example those included in
the WHO database [31] or the DHS (Demographic and Health Surveys) surveys [46] the stan-
dard deviation is frequently greater than 1.2 leading to a higher reported prevalence of malnu-
trition than would be obtained with a focused survey using experienced staff and appropriate
data cleaning methods. Although these inflated SDs could in some cases be due to subject het-
erogeneity it is unlikely that such heterogeneity affects all the populations analysed by Crowe
et al. [46]; it is more likely that this effect is due to errors of measurement, recording or data
entry.

The implications of these findings are quite profound. Fig 9 shows the data from the archi-
val WHO Global Database on Child Growth and Malnutrition using NCHS standards for
WHZ (wasting) and Fig 10 shows the same results for HAZ (stunting). Each point represents
one survey. The points would all fall on the solid line if the SD of the data was 1.0Z and outside
the dashed lines if the SD of the data was >1.2 Z or <0.8. It is clear that for most of the surveys
in the database the SD lies above the 1.2Z range and it is likely that in these surveys the preva-
lence of malnutrition is exaggerated. These data are used to calculate world-wide malnutrition
rates and to inform policy and programs at national and international level. However,
although publications based upon these data may have exaggerated the prevalence of malnutri-
tion, it should be emphasised that estimates based on prevalence data are also likely to grossly
underestimate the true seriousness of malnutrition globally and the numbers of children
affected each year. This is because the incidence of malnutrition far exceeds its prevalence. The
two effects may thus counterbalance each other, however the extent to which this is the case is
unknown. The prevalence data has been used because there are no reliable incidence data.

Table 5 shows the SDs of the anthropometric parameters of individual national surveys car-
ried out in 15 West African countries using the guidelines for DHS and MICS (Multi-Indicator
Cluster Survey) survey protocols compared to National Nutrition Surveys (NNS) conducted
by national governments using SMART methodology [41, 42]. The DHS and MICS surveys
collect an enormous amount of data on many aspects of health, whereas the NNS surveys are
focused on anthropometry with rigorous training, supervision, standardisation of each enu-
merator and plausibility testing of the overall data and of each team; very few additional vari-
ables are collected during a SMART survey in order to simplify training, maintain focus and
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Fig 9. The relationship between GAM and SAM in 9,399 surveys reported in the archival WHO global
database on child growth and malnutrition (NCHS standards). If the SD is 1.0 Z then all the surveys’
GAM/SAM ratios should lie upon the solid line, if the SD of the survey is between 0.8 Z and 1.2 Z then the data
points should lie between the two dashed lines. Those surveys with points above the upper dashed line have
an SD of greater than 1.2Z.

doi:10.1371/journal.pone.0168585.g009

avoid tiring the enumerator, child and family. Although the populations surveyed were the
same, the SDs are significantly higher in each of the countries for the DHS & MICS style sur-
veys compared to the National nutrition surveys. This is consistent from country to country
and for each indicator. It should be emphasised that the NNS surveys, each with an acceptable
SD for WHZ, are also national surveys and therefore are likely to include a heterogeneous mix
of subjects. It is not a valid criticism to ascribe the acceptable SD of the NGO’s small scale sur-
veys to lack of subject heterogeneity.

Table 6 shows the data from 100 DHS, MICS and NNS surveys. These data include surveys
from additional countries and years from those shown in Table 5. The prevalence of GAM and
SAM derived from the mean of the observed SDs and also the prevalence that would have been
reported had the SD been 1.0Z or 1.1Z are shown. For WHZ deficits the DHS and MICS sur-
veys give about twice the prevalence than would have been reported if the surveys’ SDs were
within the expected “good” range; for severe malnutrition the DHS and MICS surveys are
close to ten times the expected values. With the NNS surveys the prevalences are within the
acceptable range for WHZ. Weight-for-age and height-for-age values are higher which are
probably due to difficulties in age determination; the discrepancy is much greater with the
DHS and MICS surveys than the NNS surveys.

The effect of a change in the SD from 0.8 to 1.6 upon the prevalence of Global malnutrition
(wasting, stunting, MUAC-for-age) defined as a z-score of <-2.0Z, with population means
from -0.25Z to -1.0Z, is shown in Fig 11. Even within the “acceptable” range of survey results,
0.8 to 1.2, and a “good” range of 0.9 to 1.1, there are potential major changes in the prevalence
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Fig 10. The relationship between Global Stunting (<-2Z HAZ) and Severe Stunting (<-3HAZ) in 10,789
surveys reported in the archival WHO global database (NCHS standards). If the SD is 1.0 Z then all the
surveys’ global stunting/Severe stunting ratios should lie upon the solid line, if the SD of the survey is between
0.8 Z and 1.2 Z then the data points should lie between the two dashed lines. Those surveys with points above
the upper dashed line have an SD of greater than 1.2Z.

doi:10.1371/journal.pone.0168585.g010

computed from the raw survey data. Thus, with a mean Z-score of -0.75 Z an SD of 0.9 corre-
sponds to a prevalence of 8.2% and an SD of 1.1 to a prevalence of 12.8%. Even within the
“acceptable” range, the prevalence changes from 5.9% to 14.9%, a difference that moves the
population from almost normal to a severe emergency situation. The corresponding change in
severe malnutrition (<-3.0Z) is shown in Fig 12. With a population mean Z-score of -1.0Z, an
SD 0f 0.9 corresponds to a SAM rate of 1.3% whereas an SD of 1.1 gives a SAM rate of 3.5%—
when the distribution is even more spread the prevalence rises alarmingly—at an SD of 1.6 the
severe malnutrition rate exceeds 10%. This demonstrates the dramatic effect that measurement
error can exert on reported results. Even within the acceptable range of survey data the SAM
prevalence can vary by up to five fold. In our opinion reports from surveys with an SD of more
than 1.2 are unreliable. The problems arise particularly with the estimate of SAM prevalence.
These data are used to estimate the numbers of malnourished children that need to be treated
and therefore the scale of the intervention that needs to be planned in terms of obtaining
funds, procurement of supplies and deployment of trained staff.

An analysis of DHS and MICS shows elevated SD values with all of the mean SDs outside
the acceptable range; none of mean SDs for any of the surveys was less than 1.0Z. In agreement
with the data from West Africa, the 5th and 95th centiles of the SDs of 51 recent DHS surveys
were HAZ 1.35-1.95; WAZ 1.17-1.46, and WHZ 1.08-1.50 [47]. Mei & Grummer-Strawn
conclude that they “concur with the WHO assertion that SD is in a relatively small range”.

Figs 11 and 12 demonstrate that such “small” differences are not of little consequence but
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Table 5. Comparison of standard deviations from individual National surveys using different survey protocols from West African Countries.

Country Weight-for-height® Weight-for-age® Height-for-age'
DHS? Mmics® NNS° DHS? Mics® NNS° DHS? Mmics® NNS°

Benin 1.47 1.09 1.39 1.10 1.87 1.36
Burkina Faso 1.42 1.89 1.07 1.44 1.67 1.06 1.91 1.89 1.21
CAR 1.29 1.14 1.15 1.25 1.24 1.23 1.60 1.56 1.48
Cameroon 1.23 1.49 1.20 1.20 1.42 1.25 1.51 1.77 1.53
Chad 1.48 1.44 1.08 1.44 1.51 1.14 1.79 2.09 1.44
Gambia 1.22 1.08 1.20 1.08 1.55 1.21
Guinea 1.58 1.82 1.07 1.52 1.37 1.19 2.01 2.05 1.35
Liberia 1.34 1.12 1.35 1.16 1.83 1.46
Mali 1.55 1.10 1.55 1.12 2.10 1.42
Mauritania 1.31 1.07 1.32 1.04 1.76 1.25
Niger 2.15 1.29 1.10 1.85 1.33 1.18 2.47 1.62 1.41
Nigeria 1.24 1.31 1.19 1.21 1.41 1.12 1.57 1.88 1.38
Senegal 1.42 1.28 1.03 1.44 1.35 1.08 1.66 1.69 1.30
Sierra Leone 1.53 1.58 1.12 1.50 1.42 1.1 1.97 1.88 1.31
Togo 1.62 1.05 1.03 1.52 1.14 1.02 2.08 1.34 1.19
MEAN 1.49 1.40 1.10 1.44 1.36 1.13 1.87 1.76 1.35
SD 0.24 0.26 0.05 0.17 0.14 0.07 0.26 0.22 0.11

The data are from UNICEF West and Central African Regional Office, Unpublished report, “Report on the Quality of Anthropometric Data on Children’s
Height and Weight in 100 Health and Nutrition Surveys in the West Central Africa Region”. CAR = Central African Republic. The increasing density of pink
coloured shading shows results that are over 1.2, 1.5 and 1.8Z respectively.

@ Demographic and Health Survey

® Multi-Indicator Cluster Survey

¢ National Nutrition Survey

9 WHZ—highly significant ANOVA df 2,37, F = 15.0, p<0.000; there is no difference between DHS and MICS p = 0.39

€ WAZ -highly significant ANOVA df 2,37, F = 21.7, P<0.000; there is no difference between DHS and MICS p = 0.27

fHAZ—highly significant ANOVA df 2,37, F = 25.8, p<0.000; there is no difference between DHS and MICS, p = 0.24

doi:10.1371/journal.pone.0168585.t005

encompass potentially massive errors in the reported prevalence, particularly for severe mal-
nutrition. Analysis of the NHANES data from the USA National surveys, which were enor-
mous surveys of an undoubtedly heterogeneous population shows that despite the ethnic
diversity and geographically large scale of these surveys, the SDs were all close to 1.0 Z. The
DHS surveys are extensively used for research and direct funding decisions. Short et al. [48]
identified 1117 peer reviewed publications based on these data and reported that the number
based on the use of DHS data were highly correlated with trends in funding for health by the
Government of the USA and globally.

It is clear that even small changes in the SD of the distribution can have a profound effect
upon the results obtained. Within the good range of SDs most values are likely to be reasonably
reliable for moderate malnutrition; however, the effects of measurement error cannot be dis-
missed as trivial. These numbers are important. The prevalence of GAM and SAM are used
internationally to declare an emergency and mobilise funds and other resources to provide
humanitarian relief. Severe malnutrition is a much more lethal condition and is relatively
expensive to treat; accurate estimation of the burden is critical to provide the products, staff
and facilities to treat all the children with severe acute malnutrition. Overestimation is wasteful
and diverts scarce resources from where they could more usefully be deployed.
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Table 6. The GAM and SAM from 100 West African Surveys computed with the average observed SDs and prevalence that would obtain if the SD

had been either 1.0Z or 1.1Z.

N Mean Z

Weight-for-height

DHS? 45 -0.35
MICS® 28 -0.26
NNS° 27 -0.54
Weight-for-age

DHS? 45 -1.08
MICS® 28 -1.06
NNS° 27 -1.14
Height-for-age

DHS? 45 -1.40
MICSP 28 -1.46
NNS° 27 -1.35

1.44
1.45
1.11

1.39
1.40
1.13

1.80
1.82
1.36

SD obs SD=1.1 SD=1 SD obs

Moderate (<-2Z)

12.6 6.7 5.0 3.3

11.4 5.6 4.1 29

9.3 9.2 7.2 1.3
Moderate (<-22)

25.3 20.0 17.8 8.3

25.1 19.7 17.4 8.3

22.3 21.7 19.5 5.0
Moderate (<-2Z)

37.0 29.3 27.5 18.7

38.4 31.3 29.6 20.0

31.7 27.7 25.8 11.3

SD=1.1

Severe (<-32)

0.8

0.6

1.3
Severe (<-32Z)

4.0

3.9

4.5
Severe (<-32)

7.3

8.1

6.7

SD=1

0.4
0.3
0.7

2.7
2.6
3.1

5.5
6.2
4.9

Data are taken from: UNICEF West and Central African Regional Office, Unpublished report, “Report on the Quality of Anthropometric Data on Children’s
Height and Weight in 100 Health and Nutrition Surveys in the West Central Africa Region”, 2014. The prevalence of global (<-2Z) and acute (<-3Z) wasting,

underweight and stunting presented are calculated using the normal density function (“normdist”) in excel. Obs = observed mean survey SD.

@ Demographic and Health Survey

® Multi-Indicator cluster Survey

¢ National Nutrition Survey (using SMART methodology)

doi:10.1371/journal.pone.0168585.t006
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1.6

Fig 11. The percent of children with moderate malnutrition (<-2.0 Z) with a change in the SD of a
survey, based upon a Gaussian distribution. The mean Z of the distributions from top to bottom are -1.0 Z,
-0.75Z,-0.5Zand -0.25 Z. The area representing an “acceptable” survey is given in light blue and a “good”
survey in heavier blue.

doi:10.1371/journal.pone.0168585.9011
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Fig 12. The percent of children with severe malnutrition (<-3.0 Z) with a change in the SD of a survey,
based upon a Gaussian distribution. The mean Z of the distributions from top to bottom are -1.0 Z,-0.75 Z,
-0.5Z and -0.25 Z. The area representing an “acceptable” survey is given in light blue and a “good” survey in
heavier blue.

doi:10.1371/journal.pone.0168585.9012

Should we be concerned about measurement error?

The whole of public health depends upon having reliable data. The question then arises as to
whether random error is simply of theoretical interest or is of practical importance, and
whether the differences are trivial or lead to major changes in perception, public health policy,
the distribution of resources and the relative priority given to different countries and emergen-
cies. We are aware of several surveys that clearly were misleading.

o A university in Asia did a large survey using its students in the capital city. They reported a
SAM rate of 6% which was not in agreement with the Government’s survey which gave a
prevalence of 1.3%. The SD of the University’s survey was 2.1 Z. Recalculation of the raw
results using SMART flags and an SD of 1.0 gave a SAM rate of 1% which is within the confi-
dence intervals of the national survey.

In an East African country, two agencies did surveys in the same area from the same popula-
tion at almost the same time. The International Agency reported a GAM rate of 20% (SD not
reported) whereas the non-governmental organisation (NGO) reported 6% (SD 1.13).

A large and complex survey was undertaken in an African country which gave a GAM rate
of 19.8%; the WHZ SD was 1.59Z. As the result was questioned due to few malnourished
children being admitted for treatment an NGO was asked to do a validation survey in the
worst area of the original survey. They found a GAM rate of 4.8% with an SD of 1.03Z.

In an East African country a survey was used to estimate that there were about 5,000 severely
malnourished children were present in one large district needing immediate care. Mobile
teams were established to scour the district for malnourished children and give relief. Over a
5 month period only 650 children were discovered with SAM in the whole district.
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None of these cases were reported by the agencies involved. Each was caused by a poorly
conducted, analysed, cleaned and reported anthropometric survey.

Such problems are very rarely reported because of fears that they will affect careers, organi-
sations’ reputations and funding. These surveys also influence National Governments and are
used to demonstrate whether or not a country is meeting, or failing to meet, such milestones
as the Millennium Development Goals (MDGs); this can impact their access to bi-lateral funds
and is politically sensitive. In fact, it is possible that some MDGs could be thought to be met,
with no change in the actual situation on the ground, simply from an improvement in the
quality of surveys and a reduction of random errors of measurement as well as correction of
other survey problems [37]. With a move towards regarding stunting in height (height-for-
age) as a critical parameter of national nutritional health this becomes particularly problematic
as the assessment of age is subject to relatively large errors in countries without accurate birth
registration compared with measurements of weight, height and MUAC. By suppressing the
reports, lessons are not learned so that the mistakes are repeated.

Surveys are expensive and difficult to conduct with sufficient rigor to give reliable results.
Teams are often recruited without any previous experience, are trained for a few days, often
only in the class-room, but do not have to undergo any rigorous field evaluation or standardi-
sation tests; they are often relatives or friends of the staff involved in organising the survey. The
problems of conducting a reliable survey are many. They include problems of assessing popu-
lation size, the topography, inaccessible areas, insecurity and physical threats to the teams, pop-
ulation movement, nomadic populations and sampling in urban areas and slums. If these
difficulties are overcome and funds expended it is inexcusable to produce completely errone-
ous data because having arrived at the correct household the measurements were not taken
with sufficient precision and accuracy to give valid estimates of the parameters of interest.

There are many questions that policy makers require answered in order to organise services
and use resources most efficiently. A survey provides the data to address those questions; it is
the sensory nervous system of the government upon which the motor system depends. Calls to
involve professional experts and having extensive training have largely gone unheeded [49].
We would advocate for Governments and Agencies to have permanent full-time survey teams
employed that would undertake a whole range of different surveys in their populations, each
focused on answering different sets of questions for which the various ministries require data.
All technical staff improve with familiarity and practice, as the improvements of the technical
errors from one survey to the next show [50]. The practice of recruiting large numbers of enu-
merators, most of whom have not been involved frequently in previous surveys, in multiple
teams for several weeks or months at irregular intervals is bound to give erratic results, no mat-
ter how well they are trained over a short period of time. We consider such practice as unac-
ceptable. The DHS’s commissioned evaluation states that “highly significant variation across
interviewers is found in most surveys” [51].

Implications for data cleaning

The question then arises as to how best to clean and analyse raw data from the field that is sub-
ject to random measurement, rounding, recording and data-entry error. The standard way rec-
ommended by WHO is only to exclude data considered to be biologically impossible and
incompatible with life. This creates a very wide gate for all results that could possibly occur bio-
logically to be included, even if they are in error. A few extreme values may be true but others
are most likely to be errors. One major problem with identifying children with extreme values
is the relatively small number of such subjects that are found in a survey with a manageable
sample size. Thus, if we have 900 subjects in a survey and the true prevalence of SAM is 1%,
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then there are in fact only 9 actual children in the survey designated as having SAM. If in tak-
ing the 900 measurements of height or weight, 9 or more children’s data contain errors that
would lead the children to be in the extreme tail of the distribution but not yet biologically
impossible, those 9 children will also be classified as SAM, and effectively double the reported
prevalence. The usual objective of a survey is to determine the prevalence of malnutrition in a
defined population by selecting a representative sample of that population. Rather than include
all biologically plausible values, we would want to exclude from analysis those measurements
that are in error. Realistically this means excluding values that are much more likely to be
errors than true values. This can be done statistically. If the population approximates a normal
distribution then 99.8% of the children that are truly representative of the population should
lie within + 3.1 standard deviations of the mean of the population. In other words if there is a
survey of 1000 children, on average, there will be 1 child with a Z score below and one child
with a Z-score above the range of £ 3.1 SD from the mean of that population whose result is
correct and that child is appropriately classified; the other children outside this range are much
more likely to be errors of measurement, recording or data-entry than true values and should
therefore be excluded from the analysis. More contentiously, even if more than one child’s
measurements are accurate it could be argued that this child is unlikely to be representative of
the population. If, for example, a child from a rich country with a weight for height of +2.17Z is
visiting relatives in an impoverished country with a population mean weight-for-height of -1.0
Z and is by hazard included in the survey, then that child would not be representative of the
population; alternatively, a particular child may have an inborn error of metabolism or a very
rare disease which renders him unrepresentative of the population that is being surveyed.

For these reasons it is strongly recommended that the “flags” used to clean the data should
be set in relationship to the mean of the population under consideration not in relationship to
values that are incompatible with life. When the different types of flags are compared the prev-
alence of malnutrition reported is less when using deviation from the population mean than
using extreme values; the higher the standard deviation of the survey population’s Z score the
larger the discrepancy between the two methods of cleaning the data [46]; this is a consequence
of both the theory and the analysis presented herein.

If a survey is thought to contain many errors of measurement, indicated by an excessive
standard deviation, the present analysis suggests that the survey results should be rejected.
However, this would be excessively wasteful of time and resources and potentially delay urgent
action until reliable data is obtained. In theory, if the distribution is (approximately) Gaussian,
there is a trivial change in the mean value of the data with random measurement, digit prefer-
ence or rounding error. In these circumstances we can calculate the prevalence of GAM and
SAM from the cumulative normal distribution function (probit) [3]; an SD range 0of 0.9 to 1.1
could be presented where the SD is still excessive after excluding flagged data. In this way sur-
veys can be “rescued”. However, inferences should only be drawn with great caution because
the data have been taken without sufficient training or care; a rapid, small-scale “validation”
survey should be conducted and reported along with the “rescued” main survey. We would
suggest that the confidence intervals which are calculated conventionally from the relative pro-
portions above and below the cut-off should always be compared with calculated estimates,
and if possible a correction made for the technical errors of the measurements. Nevertheless,
the report should make it clear that the data need to be interpreted with circumspection.

Reporting

Apart from reporting the results of the survey, all reports should also include the following
information: the results of standardisation tests: the numbers of subjects excluded with the
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various flagging methods; the age and sex distribution of the subjects; the distribution of the
data; and, the mean and SD of the parametric data collected in the survey. The raw uncleaned
data should be made available for external evaluation and for research purposes.

Conclusion

Measurement error is always present and will inflate the number of cases below a cut-off point

in the tail of a distribution. With anthropometry even relatively small errors can increase

the reported prevalence of malnutrition substantially. This has implications for prioritising

resources to areas with the highest prevalence and for how the data is analysed and reported.
Measurement error can also misclassify individual children that are referred for treatment,

but this is likely to lead to more children being included than excluded and therefore does not

represent a threat to individuals screened for treatment programs.
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