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Abstract

Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes

in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular

mechanotransduction, and metabolic changes are significant because they produce the pre-

cursors to the tissue matrix necessary for cartilage health. However, a comprehensive under-

standing of how energy metabolism changes with loading remains elusive. To improve our

understanding of chondrocyte mechanotransduction, we developed a computational model

to calculate the rate of reactions (i.e. flux) across multiple components of central energy

metabolism based on experimental data. We calculated average reaction flux profiles of cen-

tral metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30

minutes. The profiles were obtained solving a bounded variable linear least squares problem,

representing the stoichiometry of human central energy metabolism. Compression synchro-

nized chondrocyte energy metabolism. These data are consistent with dynamic compression

inducing early time changes in central energy metabolism geared towards more active protein

synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolo-

mic data with a computational model to enable rapid analysis of cellular energy utilization.

Introduction

Osteoarthritis (OA) is the most common joint disorder worldwide and involves the metabolic

dysfunction of chondrocytes found in articular cartilage [1–5]. The National Health and Nutri-

tion Examination Survey I found that 12.1% of the US population aged 25–74 years had OA in

some joint [6]. While joint trauma increases the risk of OA, moderate exercise and associated

mechanical loading are linked to improved joint health [7, 8]. For these reasons, understand-

ing chondrocyte responses to mechanical stimulation can yield insight into the initiation, pro-

gression, and treatment of osteoarthritis.
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Cartilage, a viscoelastic tissue, dissipates energy internally upon cyclical loading. Activities

that deform cartilage, e.g. daily activity [9], have the potential to alter the energy metabolism of

chondrocytes via mechanotransduction. We have previously observed changes in concentra-

tions of central energy metabolites as a result of dynamic compression [10]. Other studies

demonstrate that chondrocytes sense compression and can distinguish between static com-

pression, dynamic compression, and even shear. Long-term chondrocyte mechontransduction

responses (1–24 h) involve the expression of mRNA for extracellular matrix (ECM) and peri-

cellular matrix (PCM) proteins [11, 12].

Cartilage is known to be viscoelastic, indicating that cycles of load (e.g. walking) result in

energy dissipation to the tissue [13]. We hypothesized physiological compression of chondro-

cytes would cause central energy metabolism (Fig 1) to increase production of amino acid pre-

cursors for ECM and PCM proteins as an early-time (<30 min) response. Because early-time

behavior (e.g. metabolic changes) sets the trajectory for longer-term responses (e.g. matrix syn-

thesis), we measured changes in central energy metabolites resulting of dynamic compression

over 0–30 minutes [14].

Here, we apply metabolic flux analysis to quantify fluxes through the individual reactions of

central metabolism. We first construct a stoichiometric matrix that quantitatively accounts for

the catabolism of glucose within glycolysis, the pentose phosphate pathway, and the TCA

cycle. This matrix provides a tool for calculating the individual reaction rates (i.e. fluxes) in

central metabolism based on targeted metabolomic data. This model consists of glycolysis (G),

pyruvate processing into acetyl-CoA (PYP), the tricarboxylic acid cycle (TCA), the pentose

phosphate pathway (PPP), the electron transport chain (ETC), the anaplerotic (AP) reactions,

and lactate (LDH) and (GDH) glutamine dehydrogenases (Fig 1). Stoichiometric modeling

has been used to examine molecular-level phenomena, including cellular phenotypes. Stoi-

chiometric models do not require extensive knowledge of enzyme kinetic parameters, data

that is often very difficult to acquire in vivo. Previous applications of these models examined

physiologies of model systems ranging from viruses, to individual microbial cells, to microbial

communities, to human tissues [15–19].

The model developed in this study allowed us to estimate the allocation of resources such as

glucose and its derivatives. We calculated average flux profiles in response to 0–30 minutes of

physiological loading. Results show a sustained increase in respiration in compressed chon-

drocytes. Upon further compression to 30 minutes, fluxes show increased glycolysis in com-

pressed cells accompanied by depletion of metabolites used in protein synthesis. These data

highlight the importance of energy metabolism in the chondrocyte response to mechanical

loading and suggest protein synthesis as a consequence. To our knowledge, this is the first sys-

tems analysis of chondrocyte energy metabolism in response to compression. By fitting the

stoichiometric model to experimental data [20], we obtain a holistic view of how glucose

metabolism is altered during compression.

Materials and Methods

Chondrocyte compression

In vivo chondrocytes reside within a pericellular matrix composed of type VI collagen and per-

lecan [21] that serves as the primary source for delivering deformational stimuli. Loading

chondrocytes in vitro required encapsulating them in a material that successfully emulates

how cartilage transmits loads. A major challenge to ex vivo studies of chondrocyte mechano-

transduction has been replicating the mechanical stiffness of the PCM (between 25–200 kPa

[22, 23]). Accurately modeling deformations is important as they are known to affect chondro-

cyte biology [24]. For example, the PCM can release FGF2, a fibroblast growth factor, to
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initiate diverse signaling in response to external stimuli [25]. This study used previously pub-

lished data involving SW1353 chondrocytes subjected to compression in agarose of physiologi-

cal stiffness [10, 14]. SW1353 cells were selected because they are a commonly used in

chondrocyte and osteoarthritis research [26–28].

Encapsulated chondrocytes were then divided into experimental groups for 0 (control), 15,

and 30 minutes of compression. Chondrocytes of the experimental groups were exposed to

compression simulating the human gait; namely, sinusoidal compression with 1.1 Hz fre-

quency oscillating between 3.1–6.9% strain. The abundance of targeted metabolites in samples

was measured using LC-MS and has been previously published [8]. Here, we updated these

methods by performing the chromatography with a HILIC column that enabled detection of

additional relevant metabolites such as lactate (Fig 2).

Metabolic flux analysis

Abundance measurements can be used to estimate the accumulation rate Δi of a metabolite i

by

Di ¼
a1 � a0

t1 � t0

ð1Þ

where a1,a0 are the average of the abundance samples taken at time t1,t0 respectively. If the

sample size is small the median can be used to curtail the influence of outliers. This was the

case for our study, where the sample size was n = 4 or 5.

Given a vector of accumulation rates for all metabolites in the network (Δ), the average

reaction fluxes (v) from t0 to t1 can be calculated by solving the system

Sv ¼ D ð2Þ

for v, where S is the stoichiometric matrix for chondrocyte central metabolism.

A system with a unique solution will have a stoichiometric matrix of full rank. Most biologi-

cal models are rank-deficient, with an infinite number of solutions if the problem is feasible

[29].

Fig 1. Mammalian central energy metabolism. Glucose metabolism, including the pentose phosphate pathway,

glycolysis, and the TCA cycle, was modeled as a network using a stoichiometric matrix. Each colored square

represents a biochemical reaction, and each line represents a metabolite. Reversible reactions shown in blue, and

irreversible reactions shown in red. Arrows indicate the direction of irreversible reactions. Anaplerotic reactions that

replenish TCA reactants are represented by hashed squares. The curved arrow indicates the direction of normal

flux in the TCA cycle. Selected metabolites (i.e.glucose, lactate, and glutamine) shown explicitly.

doi:10.1371/journal.pone.0168326.g001
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To find a unique solution representing empirically calculated fluxes for a given experiment,

we measure metabolite consumption and accumulation rates during the experiment to

account for some of the unknown fluxes. This can make the system determined and therefore

uniquely solvable. It is typical to assume all internal metabolites have a zero accumulation

inside the cell (Δ = 0) [30].

We opted for Eq 1 as a best estimate because ANOVA, using duration of compression as a

factor f, showed a likely change in concentration (p� 0.15) in 10 of the 45 metabolites mea-

sured [S2]. This may be expected for chondrocytes undergoing a metabolic shift.

Solutions to Eq 2 may include negative fluxes for reactions thermodynamically feasible only

in the forward direction. A bounded variable least squares problem (BVLS) approximates v

while respecting thermodynamic constraints. The problem objective is minimizing the resid-

ual magnitude over v

minvkSv � Dk2 ð3Þ

with constraints on v to enforce a positive flux for irreversible reactions. This is expressed as

linear inequalities vi� 0 where vi is the flux of an irreversible reaction i.
To account for measurement uncertainty, we weight each element of the residual according

to the variance of the corresponding metabolite accumulation. The variance of the accumulation

Fig 2. Median metabolite LC-MS intensities over time and experimental group. Colors indicate sample time, from left to

right in the group 0,15, and 30 minutes. Superscript numbers indicate the probability of no difference between population

means is less than or equal to p = 0.15, as calculated by ANOVA. P-values for all metabolites are found in the supplementary

material (S2). All intensities scaled by 0.001 for ease of display.

doi:10.1371/journal.pone.0168326.g002
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of a single metabolite i (σi
2) is computed from the variances of the two samples used to calculate

it (Eq 1). We estimate the variance of the difference in means between two samples with unequal

variances with an established method [31]

s2

i ¼
s2

1

n1

þ
s2

2

n2

ð4Þ

where sk, nk are the standard deviation and size of sample k. The weight of metabolite i (wi) is the

reciprocal of the variance

wi ¼ s� 2

i ð5Þ

To apply weight wi, row Si and Δi are both multiplied by wi. The resulting vector and matrix

are both used to formulate the BVLS. We opted to solve the BVLS with an interior point

method since this converges within polynomial time.

Stoichiometric matrix construction

The reactions of central metabolism were encoded in a stoichiometric matrix [S1 Table] that

was then adapted to the targeted metabolite data. The stoichiometric matrix is defined from

established biochemistry in mammalian cells based on the input of a single molecule of glucose

[32]. Calculating the accumulation of some metabolites was technically infeasible, either because

the analytes were not detectable using positive-mode LC-MS (e.g. cytochrome, H+), or because

the concentration in the media was so high the random difference between samples would likely

be much larger than any change in cell activity would induce (e.g. glucose).

To find the exact solutions, we modified the full network to preserve pathways while using

only measurable metabolites. Unmeasurable internal metabolite fluxes were constrained to

be zero to preserve pathways while allowing reactions that involve measurable metabolites to

balance the observed changes in abundance. Unmeasurable external metabolites were not

included as they cannot reasonably be constrained to a value [S3 Table]. Of these, we make an

exception for the unmeasurable ETC metabolites. Reduced and oxidized forms of ubiquinone,

as well as the protons involved in the proton gradient across the mitochondrial inner mem-

brane were the only unmeasurable metabolites included. These metabolites are all contained

within the mitochondrial membrane and associated proteins, and the cell will tolerate very lit-

tle change in their relative concentrations between reduced and oxidized forms [32]. The pro-

tons are not bound to the membrane or associated enzymes. In a close to neutral environment

such as these in vitro data, most of this proton gradient contributes to a potential difference (as

opposed to a pH gradient) Because the cell tolerates very little change in this reductive poten-

tial, the accumulation of these metabolites was assumed to be 0. The residuals for these metab-

olites were, however, given the lowest weight. The resulting matrix [S3 Table] had dimensions

48 by 39 (rank 39).

Finally, we use a synthesis reaction to account for central energy metabolites consumed as

substrates in the production of PCM proteins. The proteins investigated were type II collagen,

type VI collagen, and aggrecan; albumin and lipid were used as negative controls, since neither

was expected to be produced by chondrocytes in substantial quantities. We focused on 3-phos-

phoglycerate, pyruvate, α-ketoglutarate, and oxaloacetate as designated precursors for pro-

teins, and acetyl-CoA for lipids. Synthesis reactions are represented by a column with negative

coefficients for the rows of precursor metabolites and zeros in all other rows [S1 Code]. The

coefficients represent the ratiometric amount of each precursor consumed by the reaction to

synthesize a single unit of its product. They were calculated from the amino acid sequence for
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each protein. We solved for fluxes with each of the six different synthesis reactions to find

which synthesis reaction fit the data best.

Exemplary flux vectors

Flux vectors that maximize flux through the synthesis reaction were calculated. These exem-

plary profiles represent metabolism that is mathematically optimized toward synthesis of a

particular product and served as a point of reference for the experimental flux vectors. They

are encoded as the solution to a linear program

minvcTv ð6Þ

s:t: SIv ¼ 0 ð7Þ

Av � 0 ð8Þ

v � 1 ð9Þ

where c is a vector of all zeroes except for a coefficient of -1 at the synthesis reaction index. The

first constraint was added to ensure the solution consists of feasible pathways. SI is the subma-

trix of S that consists of rows corresponding to internal metabolites. Internal metabolites serve

as pathway intermediates from input to output metabolites, and, as such, their net accumula-

tion is zero when the network is at steady state. The accumulations for external metabolites (e.

g. glucose) are unconstrained as they are substrates or products of the network as a whole and

are therefore not balanced internally [S6 Table]. Irreversibility constraints are encoded in the

matrix A, where aij = 1 only if i = j and vi is irreversible; all other elements are 0. Since the pro-

gram is otherwise unbounded the final constraint limits the maximum flux of any reaction in v
to 1.

Analysis of these exemplary profiles showed protein synthesis profiles were all similar. All

proteins, including the generic negative control protein albumin, require the same precursors

from central metabolism. However, the differing proportions were not different enough based

on variations in the amino acid sequence to allow conclusive protein identification using

exclusively central metabolism data [S1 Code, S6 Table]. Our hypothesis therefore only pre-

dicts compressed chondrocytes showing features common among profiles for protein synthe-

sis, as the model is useful in identifying these in contrast to synthesis of other biological

products, such as lipids (Fig 3).

Metabolic features of protein synthesis include high activity for glycolysis and the pentose

phosphate pathways, and an uneven distribution of flux in the TCA cycle and glycolysis. The

unevenness is caused by the loss of some intermediates as protein substrates. In glycolysis,

3-phosphoglycerate and pyruvate serve as precursors, while in the TCA cycle the precursors

are oxaloacetate and and α-ketoglutarate. Both glycolysis and the TCA cycle show higher activ-

ity in the reactions before the precursors compared to the reactions after them. In contrast,

lipid synthesis optimizes production of acetyl-CoA by maximizing flux through pyruvate pro-

cessing; flux through glycolysis is also maximized to provide enough pyruvate for conversion.

This is complemented by flux through the TCA cycle to generate the HSCoA consumed in ace-

tyl-CoA synthesis. Since all metabolites used in these pathways are balanced except for acetyl-

CoA, glycolysis and TCA flux distributions are more even.

Combining Metabolomic Data with a Stoichiometric Model of Energy Metabolism
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Results

Chondrocytes under compression seem to have distinct behavior in the first and second peri-

ods. After 30 minutes of compression, chondrocyte metabolomics profiles are also more simi-

lar to each other than to the other samples from another time, in contrast to the 15 and 0

minute samples. (Fig 4) This partially confirms our early-time hypothesis to the extent that

compression has a measurable effect on chondrocytes in the short term. This was confirmed

by the calculated flux vectors, which show a shift in metabolism occurs. Varying product syn-

thesis reactions did not change the observed trends, even when using the lipid synthesis reac-

tion [S5 Table]. This is especially true for the fluxes of the second 15 minute period, where the

maximum distance between two vectors computed with differing synthesis reactions was less

than 1% of the norm of the smaller vector. This may be due to a number of factors, such as the

precursor metabolites receiving lower weight (except for 3PG, which tended to weight in the

top half), or it may be indicative that no single profile dominated metabolism. For conciseness

we show the visualization of fluxes calculated using the synthesis reaction for collagen type II

(Fig 3) with the understanding that the figures for other synthesis reactions are similar.

During the first 15 minutes, compressed chondrocytes showed higher glycolysis and pen-

tose phosphate flux than flux through the TCA cycle (Fig 5). During the second period, they

showed an increase in TCA cycle flux, as well as increases in the pentose phosphate and

Fig 3. Hypothesis-based predicted flux profiles, v*. Flux profiles were predicted in silico using optimization to maximize production of (A) type II collagen

and (B) lipid synthesis. Reactions are represented by labeled boxes connected to substrates by incoming dark gray arrows and to products by outgoing dark

gray arrows. Reaction fluxes are represented by arrows colored to match either positive (blue) or negative (yellow) flux. Larger arrows represent larger flux

with linear scaling. Negative flux indicates a reversible reaction running in the direction opposite to its description in the stoichiometric matrix. Electron

transport chain and synthesis reactions not shown for figure simplicity.

doi:10.1371/journal.pone.0168326.g003
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glycolytic flux, though the increase was not uniform throughout the pathways. (Fig 6) There is

a reversal in several glycolytic reactions, along with the pentose phosphate pathway reactions

that interact with them. Glyceraldehyde-3-phosphate (G3P) links the two pathways. This

metabolite increases during the first 15 minutes and subsequently decreases. This link is

important since, as glyceraldehyde-3- phosphate dehydrogenase (GAPDH) can be upregulated

by oxidative stress, which mechanical stimulation induces in chondrocytes, as elaborated in

the Discussion section. This stress, as observed in our own computed fluxes, also affects the

pentose-phosphate pathways. Finally, there is a persistent negative flux in the TCA cycle reac-

tions between oxaloacetate and fumarate, though they follow the trend of increased magnitude

in the second period.

To assess the variability of the fluxes, we conducted a sensitivity analysis. We created

100000 randomized data sets and compared the resulting fluxes to our original fluxes. The ran-

domized sets were created by estimating the standard deviation of each sample for a given

time and metabolite. This was used to compute the 95% confidence interval for the metabolite

intensity. Normally distributed values within this 95% confidence interval were chosen as mea-

surements. The fluxes were then solved as described above. To compare these randomized

fluxes to our originals, we used the correlation as a similarity metric. Briefly, correlation is a

scale-less metric with values from -1 (for opposite vectors) to (1 (equal vectors). A value of 0

can be interpreted as having no correlation. The histogram of correlation values shows that

most of the randomized vectors had a high correlation (> 0.5). (Fig 7).

We also explored the relationship between metabolites and reactions. In this instance, we

calculated the correlation between accumulation and resulting flux. We used the resulting cor-

relation to cluster the reactions into groups that react similarly to changes in metabolite

Fig 4. Metabolism Synchronization. Intensities of metabolites that changed significantly over time as indicated by

ANOVA were used to cluster the samples. The distance between the samples is the correlation of their intensities.

This distance was then used to cluster rows (intensity of a single metabolite over all samples) and columns

(intensity of all metabolites belonging to a single sample). While the 15 and 0 minute samples have similarities, all

but one of the 30 minute samples cluster together, indicating more similarity within 30 minute samples than to any

other group. The intensities have been standarized by column.

doi:10.1371/journal.pone.0168326.g004
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Fig 5. Experimentally-derived flux profiles for compressed chondrocytes display both similarities and differences to hypothetical predictions.

Fluxes calculated for compressed cells for time intervals (A) 0 to 15 min. and (B) 15 to 30 min using the collagen synthesis reaction as described in the text.

Similarities (in comparison to predictions in Fig 3A) include large relative fluxes in G1-3 and TCA1-3. Differences include small negative fluxes as discussed in

the manuscript. Reactions are represented by labeled boxes connected to substrates by incoming dark gray arrows and to products by outgoing dark gray

arrows. Reaction fluxes are represented by arrows colored to match either positive (blue) or negative (yellow) flux. Larger arrows represent larger flux with

linear scaling. Negative flux indicates a reversible reaction running in the direction opposite to the direction specified in the stoichiometric matrix. Electron

transport chain and synthesis reactions not shown for figure simplicity.

doi:10.1371/journal.pone.0168326.g005

Fig 6. Overall flux trends highlight differences between compressed cells for time interval 0 to 30 min. Reactions are represented by labeled boxes

connected to substrates by incoming dark gray arrows and to products by outgoing dark gray arrows. Fluxes are represented by arrows colored to match

either positive (blue) or negative (yellow) flux. Larger arrows represent larger flux with linear scaling. Negative flux indicates a reversible reaction running in the

direction opposite to the direction specified in the stoichiometric matrix. Electron transport chain and synthesis reactions not shown for figure simplicity.

doi:10.1371/journal.pone.0168326.g006
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PLOS ONE | DOI:10.1371/journal.pone.0168326 January 5, 2017 9 / 16



accumulations. We also clustered metabolites into groups that had similar effects on reaction

fluxes. Both reactions and metabolites split into two groups. (Fig 8) The first group of reactions

is composed mainly by the central pathways: glycolysis, TCA, and PPP reactions. The second

contains most of the reactions that deal with external (no required to be balanced) metabolites:

ETC, AP, the synthesis reaction, though it includes a few PPP and TCA reactions. This group

correlates positively with a subset of the sugars in PPP. On the other hand, the main pathway

metabolites correlate positively with the other, main pathway group. Interestingly, ATP corre-

lates positively with the main metabolite group and ADP with the fringe group, possibly indi-

cating two main reaction groups: ATP synthesis reactions and a profile, as observed in the data

and described further in the Discussion, associated with reducing damage by ROS.

Discussion

Calculating fluxes from experimental metabolomic data from compressed and uncompressed

chondrocytes allows us to explore the short-term effects of an in vitro model of moderate exer-

cise. We predicted features for flux profiles of chondrocytes undergoing protein synthesis

using linear programming. While compressed chondrocytes showed some of these features,

negative fluxes evinced metabolic shifts not accounted for by our hypotheses. The calculated

fluxes captured behavior not predicted by the hypotheses generated in our linear programs,

but upon further investigation proved these fluxes to be associated with metabolic behavior

Fig 7. The majority of perturbed fluxes correlate with fluxes calculated from experimental data in a

sensitivity analysis. Histogram of correlation values for 10000 randomized data sets compared with the empirical

flux calculated for the unperturbed dataset. Each randomized data set yielded three randomized flux vectors which

were then compared to the corresponding empirical flux vector calculated from the raw data.

doi:10.1371/journal.pone.0168326.g007
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observed in SW1353 chondrosarcoma. This is, to our knowledge, is the first description in

terms of reaction fluxes of chondrocyte response to exercise.

In this section we discuss possible causes for the negative fluxes as well as evidence of pro-

tein synthesis and other metabolic profiles by examining changes in metabolites (Fig 2), with

significance values from two-way ANOVA [S2 Table], and applying known chondrocyte biol-

ogy. During the first 15 minutes, compressed chondrocytes show metabolism geared toward

glycolytic activity. Chondrocytes synthesize ATP primarily via glycolysis, and the high flux

through glycolysis is consistent dovetails with the observed increase in the ratio of ATP to

ADP. Thus, both ΔC0,15 and vC0,15 demonstrate substantial glycolytic ATP production, con-

sistent with prior literature [33, 34]. This interpretation is supported by the experimental

methods which included a tissue culture environment containing 4.5 g/L of glucose and by

prior studies finding that cancer cells exhibit high glycolytic metabolism [35].

Metabolomic data also suggests compression initially induces higher TCA cycle activity as

observed in vC0,15 and to a greater degree in v15,30 First, we observe that NADH, produced

primarily in the TCA cycle, accumulates in ΔC0,15. The increase in the second period is cor-

roborated by the depletion of citrate and cis-aconitate. Though higher intermediate volume is

necessary for higher flux through a pathway, it is likely that these metabolites are not replen-

ished as TCA cycle intermediates, e.g. AKG and OAA, are consumed as precursors to biomole-

cules, as previously discussed. In ΔC15,30 all four of the metabolites we identified as

precursors (AKG,OAA,PYR,3PG) decrease in abundance. Alternatively, they chondrocytes

Fig 8. Pairwise correlation between calculated reaction flux and experimental metabolite accumulation.

Positive correlation indicates that high flux is paired with high accumulation, and vice versa. Zero correlation

indicates the flux cannot be predicted by the accumulation. Hierarchical clustering based on the Euclidean distance

between fluxes and metabolite accumulation.

doi:10.1371/journal.pone.0168326.g008
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may be engaged in higher respiration. There is some evidence for this occurring during the

first 15 minutes of compression. Namely, a decrease in ADP levels coupled with a slight

increase in NADH, as previously mentioned. Though high flux through the TCA cycle is

unusual in chondrocytes, they are known to supplement ATP production through respiration

under nutrient stress and mechanical loading [36–39]. Our analysis suggests compression may

trigger the TCA cycle in an in vitro environment containing atmospheric oxygen levels, possi-

bly for increased ATP synthesis, or for synthesis of pathway intermediates.

Coupled with an increase in TCA flux, both the pentose phosphate pathway and glycolysis

experience an increase in the magnitude of their fluxes, though some of these fluxes reverse.

As mentioned previously, the reactions that link to glyceraldehyde-3-phosphate (G3P) are the

ones affected. Previous research has established a link between mammalian chondrocytes and

the release of reactive oxygen species (ROS) by mitochondria as caused by mechanical stimula-

tion [20]. A common mechanism is the upregulation of the pentose phosphate pathway to syn-

thesize NADPH; this enables, among other things, the recycling of glutathione. [40] This is

accompanied by a downregulation of GAPDH, or G6 in our model. As the consumption of

G3P via G6 becomes impaired, the reversal of PPP observed is consistent with cancerous pro-

liferation: namely, ribose-5-phosphate used as a precursor to nucleotides [41]

An explanation for negative TCA9-10 flux in vC0,15 and vC15,30 comes from examining

the NAD+ and NADH. The reactants of TCA9-10, respectively l-malate and oxaloacetate, have

high variances (moreover, NADH and NAD+ low variances) and are therefore weighted

lower. Since forward flux through the TCA cycle consumes NAD+ and produces NADH, in
silico reversal of TCA9-10 would balance the NADH and NAD+ at a lower cost in the residual

than reversing other reactions. It should be noted, however, that since the Gibbs free energy is

positive for forward activity of malate dehydrogenase, a reverse flux in vivo is not unrealistic

[32]. In vivo, the ETC oxidizes NADH, producing NAD+, but its flux was low across all calcu-

lated profiles. This is consistent with the higher inhibition of ETC activity observed in cells

with mutant isocitrate dehydrogenase (IDH), a common mutation in chondrosarcoma [42].

This strongly supports the utility of this stoichiometric model the flux balance analysis

approach used in this study

Though pathway fluxes are generally consistent, exceptions show that our methodology

may benefit by expanding our current model of chondrocyte central energy metabolism,

larger sample sizes, and continuing our research on primary chondrocyte data instead of

the SW1353 line currently used. Negative fluxes in TCA2-4 and TCA9-10 may have been

caused by pathways active in chondrosarcoma not included in our chondrocyte model. As

mentioned, the ETC presents low flux. However, NAD+ increases in ΔC0,15. These may

cause negative fluxes in TCA2-4. This is consistent with chondrosarcoma abnormalities,

specifically mutations in either IDH1 (cytosolic) or IDH2 (mitochondrial). IDH catalyzes

the transformation of isocitrate to α-ketoglutarate and is responsive to NADP+ and isoci-

trate concentration [43]. NADP+ increases in abundance during the first fifteen minute

interval. This may trigger IDH in that interval. However, the abundance of α-ketoglutarate

does not increase significantly in the second interval as a result, and actually decreases. the

uncompressed group. Mutant IDH consume α-ketoglutarate to produce (D)-2-hydroxyglu-

tarate, and may be the reason α-ketoglutarate fails to accumulate significantly. SW1353 are

known to have mutant IDH2 [44]. Mutant IDH2 regenerate NADP+ when generating (D)-

2-hydroxyglutarate, however, implying some other process was keeping mitochondrial

NADP+ from accumulating in the second time interval. In light of the peculiarities of

SW1353 metabolism, future studies will utilize primary chondrocytes.

While metabolic flux analysis is a powerful tool to incorporate all abundance measurements

simultaneously, the small sample size (n = 5) and computational techniques used for this study
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did not allow a conclusive answer to the question of whether production of specific proteins

(e.g. type II collagen) could be detected following compression. This limitation results from

biochemical fundamentals: single metabolites (e.g. 3-phosphoglycerate) are precursors to mul-

tiple amino acids, rendering non-unique mappings from specific metabolite fluxes to primary

amino acid sequences. The current study allows us to describe metabolic trends; our future

work will include an enlarged model and sample sizes to allow for more specific conclusions.

Furthermore, SW1353 chondrocytes stem from chondrosarcoma tumor tissue. Cancer cells

often have altered metabolism including substantially upregulated glycolysis [35]. Expansion

of these methods to primary cells will provide further insight into chondrocyte glycolysis in

osteoarthritic and normal chondrocytes.

Using metabolic flux analysis we have calculated reaction activities which correspond to

observed disturbances in metabolite abundance. Using a bounded variable least squares prob-

lem allows us to consider all metabolic data simultaneously and objectively, while weighting

data according to its reliability. SW1353 chondroctyes respond to compression by initially

increasing both glycolysis and respiration and then subsequently lowering the flux through

these pathways, consistent with protein synthesis and mechanotransduction. Future work uti-

lizing additional data and an expanded model is planned.

Supporting Information

S1 Table. Stoichiometric matrix of central energy metabolism. The network consists of gly-

colysis, the TCA cyle, pentose phosphate pathway, electron transport chain, anaplerotic reac-

tions, and transformation of pyruvate into acetyl-CoA. This file represents this network as a

matrix with 38 columns representing the reactions and 52 rows representing the individual

metabolites.

(XLSX)

S2 Table. ANOVA examining the effects of compression time on metabolite abundance.

Samples taken at 15 and 30 minutes. The table shows the P-values for the null hypothesis when

analyzed by two-factor ANOVA.

(XLSX)

S3 Table. Stoichiometric matrix after modification to accommodate data. The original stoi-

chiometric matrix in S1 was reduced to include only the reactions that transformed known,

measurable metabolites to other known, measurable metabolites.

(XLSX)

S1 Code. Precursor ratios used in synthesis reactions examining cartilage matrix synthesis.

An explanation of the rationale for choosing precursors for collagen, aggrecan, lipids and albu-

min is given accompanied by the code used to compute the precursors.

(ZIP)

S4 Table. Fluxes calculated from experimental data. Fluxes calculated using each of the bio-

synthesis reactions (e.g. type II collagen). Also included are the fluxes calculated without a bio-

synthesis reaction in the matrix.

(XLSX)

S5 Table. A list of internal and external metabolites. This list details which of the measurable

and constrained metabolites were classified as internal or external to the network, along with a

short rationale for each.

(XLSX)
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S6 Table. Fluxes maximizing synthesis reaction flux. Fluxes calculated by solving a linear

program for maximal for type II, VI collagen, aggrecan, albumin, and lipid biosynthesis using

a stoichiometric matrix as constraints.

(XLSX)

S1 Fig. Fluxes calculated with no biosynthesis reaction. The fluxes were calculated using a

stoichiometric matrix that did not include a biosynthesis reaction. Fluxes calculated for time

intervals (A) 0 to 15 min. and (B) 15 to 30 min. for compressed and uncompressed cells. Also

included are fluxes calculated for (C) compressed cells for time interval 0 to 30 min. Reactions

are represented by labeled boxes connected to substrates by incoming dark gray arrows and to

products by outgoing dark gray arrows. Reaction fluxes are represented by arrows colored to

match either positive (blue) or negative (yellow) flux. Larger arrows represent larger flux with

linear scaling. Negative flux indicates a reversible reaction running in the direction opposite to

the direction specified in the stoichiometric matrix. Electron transport chain and synthesis

reactions not shown for simplicity.

(TIF)

S2 Fig. LC-MS data for chondrocytes in response to 0–30 minutes of compression. Intensity

values from LC-MS analysis of targeted metabolites for central energy metabolism. Note that

these values were thresholded as described in the text prior to flux calculations.

(TIF)
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