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Abstract

Streptococcus pyogenes is a very important human pathogen, commonly associated with

skin or throat infections but can also cause life-threatening situations including sepsis, strep-

tococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing

and molecular characterization of S. pyogenes have been published to date; however next-

generation sequencing (NGS) studies provide a comprehensive collection of an organism’s

genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with

pharyngitis and skin infection were sequenced and studied for the presence of virulence

genes, resistance elements, prophages, genomic recombination, and other genomic fea-

tures. Additionally, a comparative phylogenetic analysis of the isolates with global clones

highlighted their possible evolutionary lineage and their site of infection. The genomes were

found to also house a multitude of features including gene regulation systems, virulence fac-

tors and antimicrobial resistance mechanisms.

Introduction

Streptococcus pyogenes, also referred to as Group A Streptococcus (GAS) for harboring Lance-

field group A antigen, is a clinically important human pathogen [1]. Despite its limited preva-

lence in modern times as compared to other pathogens, the myriad of infections it causes are

still commonly lethal [2]. Streptococcal infections range from localized throat infections such

as tonsillitis or pharyngitis, to invasive infections such as sepsis, necrotizing fasciitis and strep-

tococcal toxic shock syndrome (STSS) [1, 2]. Most of the infections are seen in children aged

four to seven years [3], with penicillin still being effectively used for treatment. Drug resistant

clones however, have been increasingly reported globally [4, 5], and were attributed to envi-

ronmental and intracellular resistance mechanisms [6]. Treatment complications usually arise

with the use of other antimicrobial agents when the patient is allergic to penicillin.

A number of genome-encoded virulence factors such as pili, M proteins, leukocidins,

streptolysins, complement inhibiting proteins, immunoglobulin-degrading enzymes, and

PLOS ONE | DOI:10.1371/journal.pone.0168177 December 15, 2016 1 / 23

a11111

OPENACCESS

Citation: Ibrahim J, Eisen JA, Jospin G, Coil DA,

Khazen G, Tokajian S (2016) Genome Analysis of

Streptococcus pyogenes Associated with

Pharyngitis and Skin Infections. PLoS ONE 11(12):

e0168177. doi:10.1371/journal.pone.0168177

Editor: Feng Gao, Tianjin University, CHINA

Received: July 27, 2016

Accepted: November 25, 2016

Published: December 15, 2016

Copyright: © 2016 Ibrahim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168177&domain=pdf
http://creativecommons.org/licenses/by/4.0/


superantigens have been detected in S. pyogenes, [1, 2], in addition to efflux pumps and leuko-

cyte evasion strategies [7]. Interestingly horizontal gene transfer (HGT) and prophage integra-

tion are common amongst S. pyogenes genomes giving them plasticity and genomic variation

[7]. These factors collectively confer additional virulence and resistance capabilities and alter

the regulation of existing genes [8]. The emm gene, encoding the M protein contains con-

served, semi-conserved, and hypervariable regions, and is thus used as an epidemiological

marker for GAS [9]. emm occurrence amongst GAS strains is linked to geographic localization

[10].

Globally, the GAS disease burden is not yet fully quantified, 2005 estimates showed that a

minimum of 18.1 million people were suffering from invasive diseases, with another 111 mil-

lion cases of streptococcal pyoderma and 616 million cases of pharyngitis recorded. 1.78 mil-

lion additional incident cases were estimated to occur each year [11]. In the Middle East and

in Lebanon in particular, studies linked to the emergence and epidemiology of S. pyogenes are

still very limited [11]. Previous studies, focused at establishing emm and pulse field gel electro-

phoresis (PFGE) based typing schemes [12, 13]. emm1, 22, and 28, which were the most com-

mon types, were reported as being susceptible to penicillin and vancomycin but resistant to

erythromycin and clindamycin [12]. Karaky et al. in a more recent study detected 33 emm
types and subtypes with the dominant being emm1, emm22, emm28, emm88 and emm4 and

with 10% of the isolates being resistant to erythromycin and 3% resistant to erythromycin and

clindamycin [13]. In this study we sequenced the genomes of nine S. pyogenes isolates repre-

senting the most commonly recovered emm types to build on the previous findings and to elu-

cidate the molecular epidemiology, genomics, and phylogenomics of this important human

pathogen.

Materials and Methods

Ethical Approval

Ethical approval was not required as clinical isolates were collected and stored as part of rou-

tine clinical care. Clinical isolates and patient records/information were anonymous and de-

identified prior to analysis

Bacterial isolates and genomic DNA extraction

This study was conducted on nine S. pyogenes bacterial isolates previously collected from the

American University of Beirut Medical Center (AUB-MC). The samples were recovered from

throat and pus swabs of patients with streptococcal infections during the period from August

2010 to November 2011, and were chosen to cover the common emm types in the country

(Table 1). The isolates were cultured overnight on Trypticase Soy Agar (TSA) (Bio-Rad, USA)

medium. DNA was extracted using the Nucleospin Tissue kit (Macherey-Nagel, Germany) fol-

lowing the manufacturer’s instructions.

Genome sequencing

DNA extracted from each S. pyogenes isolate (50-ng/sample) was prepared for sequencing with

the use of the Nextera XT DNA Sample Prep Kit (Illumina). Clean up was performed using the

AMPure XP PCR purification beads (Agencourt, Brea, CA, USA). The resulting individual

DNA libraries with fragment sizes ranging from 500–1000 bp were quantified by quantitative

PCR on a CFX96 (Bio-Rad, USA) in triplicate at two concentrations, 1:1000 and 1:2000, using

the Kapa library quantification kit (Kapa Biosystems, Woburn, MA, USA). Based on the indi-

vidual library concentrations, equimolar pools of the indexed libraries were prepared at a
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concentration of at least 1 nM using 10 mM Tris-HCl (pH 8.0) and 0.05% Tween 20. Pooled

paired-end libraries were sequenced to a read length of at least 250 bp.

Genome assembly

De novo assembly of the sequenced genomes was done using A5 assembler (v. 20130627) with

default assembly parameters. This pipeline automates the processes of data cleaning, error cor-

rection, contig assembly, scaffolding, and quality control [16, 17].

Genome annotation and gene detection

The assembled genomes were annotated using the RAST server (http://rast.nmpdr.org) that

uses subsystems technology to assign gene function. RAST was also used for the identification

of protein encoding genes, rRNAs, and tRNAs [18, 19]. The SEED viewer service from RAST

in combination with the web tools provided by the Center for Genomic Epidemiology (CGE)

website (www.genomicepidemiology.org) were used to generate a detailed list of the genetic

elements in question. The ResFinder 2.1 web server was used to identify acquired antimicro-

bial resistance genes present on the bacterial genome [20]. Due to ResFinder’s inability to con-

firm the functional integrity, and levels of gene expression and resistance arising to acquired

mutations in housekeeping genes, a hybrid resistance profile was generated using the ResFin-

der hits in addition to phenotypical data from previously published studies. The VirulenceFin-

der 1.2 service from the same website was used to identify additional virulence-specific genes

[21]. The PathogenFinder 1.1 service from CGE, was used to obtain an overview of the geno-

mic pathogenic gene families [22].

Multi-locus sequence typing (MLST)

MLST typing of the isolates was carried out using CGE’s MLST 1.7 server to detect sequence

polymorphisms within the gki, gtr,muri, muts, recp, xpt, and yqil genes [23].

Table 1. Epidemiological Information on clinical S. pyogenes isolates. The relationship between emm types [14], MLST types, and diseases [15] in

addition to site of isolation. emm pattern A-C is usually linked to upper respiratory tract infections (URT), pattern D is linked to skin infections while pattern E

represents a generalist group.

Sample

Name

Sex Age Origin Specimen Disease ST-

Type

emm typing

in [12]

Virulence Factors in

[13]

emm

Pattern

Tissue preference/

Associated Disease

SP1 F 48 Lebanon Swab,

throat

Pharyngitis ST-36 12 Cys. Prot. B—SpeL A-C Throat/URT

SP2 F 47 Lebanon Swab, pus Dermatitis ST-

304

108 Cys. Prot. B—SpeL D Skin/-

SP3 M 7 Lebanon Swab,

throat

Pharyngitis ST-

101

89 Cys. Prot. B—SpeL E No preference/URT

SP4 M 8 Lebanon Swab,

throat

Pharyngitis ST-52 28 Cys. Prot. B—SpeL—

ssa

E No preference/ Invasive

SP5 M 35 Lebanon Swab, pus Dermatitis ST-28 1 SpeA—Cys. Prot. B—

SpeL

A-C Throat/Invasive

SP6 F 23 Lebanon Swab,

throat

Pharyngitis ST-

101

89 SpeG E No preference/URT

SP7 M 4 Lebanon Swab,

throat

Pharyngitis ST-46 22 SpeA—Cys. Prot. B—

ssa—smeZ

E No preference/Invasive

SP8 F 1 Lebanon Swab,

throat

Pharyngitis ST-

109

85 SpeA—SpeH—ssa D Skin/Skin

SP10 M 7 Lebanon Swab,

throat

Pharyngitis ST-

167

118 Cys. Prot. B—SpeH—

SpeK—smeZ

E No preference/-

doi:10.1371/journal.pone.0168177.t001
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Phage and mobile element detection

Phage detection was done using the publicly available Phage Search Tool (PHAST) (http://

phast.wishartlab.com/index.html) [24]. This tool provides the closest identity match for

detected phages in addition to their site of integration. Putative insertion elements were double

checked using BLASTx with an identity threshold of 80%. Putative phage insertion sequences

were then annotated using RAST in order to determine the genes they encode.

Phylogenetic analysis

To determine the phylogenetic relatedness a concatenated marker gene maximum-likelihood

tree was constructed using a number of S. pyogenes reference genomes chosen based on

BLAST similarity results, clonal complexes and sequence types (MGAS6180 CP000056,

MGAS10394 CP000003, M1476 AP012491, M1GAS SF370 NC002737, NZ131 CP000829, A20

CP003901, 7F7 PRJNA238516, and S. pneumoniae R6 AE007317 as an outlier strain). The

genomes were first processed with PhyloSift [25], the tree was then constructed using FastTree

[26], visualized and edited with Dendroscope [27]. Pairwise alignment and visualization of our

selected genomes with the respective reference strains was achieved through the Mauve aligner

[28] using defaults settings.

Nucleotide Sequence Accession Numbers

The whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank

with accession numbers AYPA00000000 (SP1-LAU), AWOZ00000000 (SP2-LAU),

AWPA00000000 (SP3-LAU), AWPB00000000 (SP4-LAU), AWPC00000000 (SP5-LAU),

AWPD00000000 (SP6-LAU), AWPE00000000 (SP7-LAU), AWPF00000000 (SP8-LAU), and

AWPG00000000 (SP10-LAU) [29].

Results and Discussion

Sequencing resulted in an average of 2,503,465 paired-end reads per isolate, with the average

being 1,976,732 high-quality reads following quality trimming and error correction. The aver-

age sequence coverage of the whole genomes was 293X and the minimum sequence coverage

was 85X for the SP6 isolate. The average N50 for the assemblies was 196,439 bp with the lowest

being 98,990 bp for SP7. The initial assemblies resulted in an average of 77 contigs per isolate

all of which greater or equal to 500 bp in length. During scaffolding, some contigs were merged

based on short overlaps and read-pair information, yielding a reduced final average of 70 con-

tigs per isolate. The complete details and statistics of the sequencing and assembly results for

each isolate are shown in Tables 2 & 3 [29].

The average genome size was 1.83 Mbp and the G+C content ranged between 38.2% and

38.5% (Table 2) with an average of 38% both falling within the general ranges for the species

[7]. An average of 1844 open reading frames (ORFs) was detected in the sequenced genomes,

Table 2. Genome assembly statistics.

SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP10

Genome size (bp) 1,925,871 1,727,943 1,745,842 1,906,369 1,813,544 1,733,546 1,953,601 1,917,411 1,771,196

Number of contigs (> = 500 bp) 155 29 21 28 26 19 158 186 12

Average contig size (bp) 12,425 59,584 83,135 68,085 69,752 91,239 12,365 10,309 147,600

Longest contig size (bp) 343,437 653,370 659,470 249,942 752,626 674,975 207,328 250,346 781,011

GC content (mol %) 38.4 38.4 38.4 38.2 38.4 38.4 38.4 38.5 38.4

N50 (bp) 209,002 280,940 167,926 205,587 308,655 116,374 98,990 104,600 275,797

doi:10.1371/journal.pone.0168177.t002
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1752 of which encoding proteins, 57 tRNAs and 6 rRNAs. The average gene size was 868 bp

with coding sequences covering around 85% of the genomes (Table 3). This was consistent

with the averages obtained within the used reference strains, and in general amongst S. pyo-
genes strains [30]. An average of 315 discrete biological subsystems were identified (Table 3)

the majority of which were related to nutrient metabolism, virulence factor and bacterial cell

wall synthesis subsystems (Fig 1). Only nine amino acid synthesis subsystems were detected,

reflecting the fastidious growth requirements of S. pyogenes [31]. The inherent lack of biosyn-

thetic pathways however, is offset by the relative abundance of membrane transport systems

(37 subsystems)—that scavenge resources from the environment—including around 10 puta-

tive ABC transporters, used specifically for peptide uptake. Virulence factors and defense

mechanisms make up on average 10% of the genome, with an equal percentage allocated to

cell wall and capsule proteins. Considering the small size of the streptococcal genome, viru-

lence related genes take up a significant part, which goes in line with S. pyogenes being a strict

human pathogen [1]. The various sequence types (ST) identified based on MLST database

search were: ST-36, ST-304, ST-101, ST-52, ST-28, ST-46, ST-109, and ST-167. ST were then

correlated to emm types generated in an earlier study [12] as well as to the disease associated

Table 3. Gene prediction and annotation summary of the nine S. pyogenes isolates.

SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP10

# of predicted genes 1991 1694 1725 1905 1832 1698 2041 1971 1740

# of pseudogenes 22 26 27 24 18 30 31 37 34

# of predicted potein-coding genes 1907 1669 1711 1923 1824 1692 1937 1866 1740

# of tRNA genes 56 65 56 54 57 54 56 56 56

# of rRNA genes 7 7 6 6 9 4 5 10 4

# of subsystems 317 313 311 317 319 314 316 322 317

doi:10.1371/journal.pone.0168177.t003

Fig 1. Average subsystem category distribution in the streptococcal genome. The pie chart shows the

subsystem related genes as a percentage of the whole genomic content. Numbers next to the label entries indicate the

number of predicted genes involved in a particular subsystem.

doi:10.1371/journal.pone.0168177.g001
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with these typing patterns (Table 2) and were found to be mostly compatible with the site of

isolation.

Gene Regulation

Sigma factors (σ factors), used for bacterial transcription initiation, can be highly variable.

Bacillus spp. have up to 18 σ factors while Haemophilus influenzae has only three [32]. A total

of three to four factors were detected in the studied isolates conforming to the number of σ fac-

tors found in small bacterial genomes (1–4 σ factors) [33]. σ70 (ropD) factor, the main σ factor

of the species, and ComX were detected in all the isolates in this study. ComX, a homologue of

the σ factor present in S. pneumoniae, transcriptionally regulates competence specific genes

serving in DNA uptake and integration [34], and is encoded by two ORFs [35]. Sequence of an

additional putative σ factor was detected in three of the isolates (SP2, SP3 and SP7), which

could be linked to a minor heat competence transcriptional regulator found in Escherichia
coli, σ24 [36]. The acquisition of σ24 might be an adaptation to help it survive, as S. pyogenes
often encounters high temperatures inside the human host due to inflammatory responses and

immune defenses [31].

Comparable to other microorganism, S. pyogenes responds to environmental changes by

choosing the appropriate transcriptional signals [33] in addition to a variety of stress response

proteins, specifically proteases and highly conserved stress regulation genes [31]. Osmoregula-

tion is maintained by a two-component system comprising aquaporin Z and two osmotically

inducible outer membrane proteins, OmpA and OsmY, the genes of which were detected in all

the isolates. Choline and betaine uptake and biosynthesis genes (opuAA, opuAB, opuAC, proV,

proX and chA) were also identified. These are highly conserved elements encoding proteins

that can act as both osmoprotectants and energy sources [37]. Similar to other lactic acid pro-

ducing streptococcal species, acid stress response in S. pyogenes, is achieved by proton translo-

cation through the F0F1 ATP synthase [38]. Eight genes encoding structural parts of the ATP

synthase as well as cold and heat shock response proteins were identified. CspA (cspA), a cold

shock response protein belonging to the Csp family of proteins, and which allows S. pyogenes
to cope with temperature reductions, was also detected [39]. The heat shock response family of

proteins was detected as part of the dnaK gene cluster that houses a range of protein families

including ribosomal methyltransferases, and chaperones (DnaJ, DnaK). The dnaK gene cluster

is still poorly characterized in streptococci, with the exception of its high conservation among

firmicutes [40]. The main role of dnaK gene cluster is to prevent the aggregation of heat dena-

tured proteins inside the cell following heat shock [41]. Its activation has been reported inside

macrophages, during an infection with Salmonella enterica [41], which consequently could be

related to pathogenesis.

Gene regulation in S. pyogenes is stringently controlled mainly in response to environmen-

tal changes, and often linked to the type of infection superficial versus invasive [42]. To date,

studies have identified around 13 two-component regulatory systems in S. pyogenes, in addi-

tion to more than a hundred putative independent transcriptional regulators [43, 2]. Perhaps

one of the most important regulons detected in all the sequenced genomes is the control of vir-

ulence regulatory system (covRS), otherwise known as the capsule synthesis regulon (csrRS).

CovRS is a two-component system made up of a membrane-bound sensor kinase (CovS), and

a DNA binding response regulator (CovR) [44]. The regulon governs streptococcal virulence

in response to environmental conditions such as pH, temperature, and ion concentrations

[2]. This controls the expression of 10 to 15% of the streptococcal genes either directly or indi-

rectly [45]. CovRS positively regulates the expression of several virulence factors including the

streptococcal cysteine protease SpeB, and the hyaluronic acid capsule synthesis proteins [42].

Genome Analysis of S. pyogenes Strains
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Unidirectional mutations in the covRS regulon have been reported to alter the expression of

virulence factors affecting the progression of streptococcal invasive diseases [46]. The multi-

ple-gene regulator (Mga) controls the expression of many virulence genes, including the M

family of proteins, in response to environmental carbohydrate availability [47]. Mga regulation

represents phase and metabolite-dependent regulation in S. pyogenes, and the regulon is essen-

tial for the organism when shifting from the colonization to deep tissue invasion [48].

Chromosomal replication is another important aspect of the microbial cell cycle; it is initi-

ated by the binding of the DnaA protein on specific DnaA boxes located in the replication ori-

gin [oriC] [49]. With the increased availability in complete genome sequences, the proper

identification of replication origins [oriCs] and their characterization has become essential for

the analysis of bacterial whole genomes [50]. For our purpose, we used the web-based Ori-

Finder system as described by Gao & Zhang [50] to identify oriCs and DNA boxes in our

assembled genomes and the results subsequently BLASTed against the DoriC database to

confirm the reliability of the prediction [51]. All of the isolates with the exception of SP7 and

SP8, exhibited a 154 nucleotide oriC sequence similar to that found in the M1GAS SF370

strain. The average oriC AT content was 0.7078 and it housed 3 DnaA boxes; TGTGGAAAA,

TTATCCACA and TTATCCACT. The OriCs of SP2 and SP4 were very similar to that of the

MGAS6180 and A20 strain respectively. The SP8 oriC was found to be highly similar to that of

the NZ131 strain being 232 nucleotides in length and having a 0.6897 AT content. Interest-

ingly, a 173 nucleotide long oriC was identified in SP7 which was 63.01% composed of AT

residues and interspersed by five DnaA boxes; three TTATCCACAs and two TGTGAATAA,

a result that was uncommon amongst S. pyogenes as the species mostly possesses either three

or seven DnaA boxes in the replication origin region an example of the latter being strains

MGAS15252 and MGAS1882 [51]. Originally, DnaA boxes were shown to control microbial

initiation mass [52], whereas more recent studies have outlined the organizational importance

of the oriC region in influencing bacterial proliferation and by that invasion and pathogenesis

[53]. Some researchers believe that this organization is conserved among bacterial species

while others do not agree [54]. Our findings were in agreement with the former claim as the

oriCs we detected in our biotypes were very similar to those found in the reference strains, all

of which generally exhibited species-wide homology.

Virulence Factors

S. pyogenes possesses an arsenal of virulence factors that targets and impairs the immune system

[2]. Many of the genes constituting the streptococcal virulome were identified in the sequenced

genomes (Table 4). Most of the virulence factors detected in this study, were scattered through-

out the genome and were are not strictly part of a pathogenicity island, which was in harmony

with previous findings [31]. For the most part, these elements are conserved amongst strains,

apart from the ones carried by phages and prophages [55]. Genes coding for some exotoxins,

including the streptokinase, hyaluronate lyase, and nicotine adenine dinucleotide glycohydro-

lase (NADGH), were highly conserved amongst the isolates (Table 4); these normally induce

apoptosis in neutrophils and macrophages [2]. Interestingly, the cyclic AMP (cAMP) factor

gene cfa was detected in all the sequenced genomes and reference strains. cfa was originally

thought to be exclusive to Group B Streptococci (GBS) [56], however its presence was con-

firmed in GAS following the original sequencing work of Ferretti et al. [31]. The cAMP factor is

an extracellular protein that causes synergistic lysis of host erythrocytes [57], with its role in

pathogenesis not being fully understood. Numerous related streptococcal species are naturally

competent for transformation via a pathway yet to be described [31], hence the presence of the

cfa gene could be the outcome of mobilization and horizontal gene transfer (HGT).
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Slo and sls, encoding streptolysin S and streptolysin O, were also detected in all of the iso-

lates (Table 4). SLO and SLS are leukocidins that disrupt host cell membranes and induce apo-

ptosis in phagocytes [58]. SLS is virtually secreted by all GAS [59]; it increases streptococcal

resistance to phagocytosis by distorting neutrophil membranes [60], in addition to disrupting

erythrocytes, lymphocytes, and even platelets [61]. Individual S. pyogenes genomes can greatly

differ in their genetic composition, mainly due to the acquisition of exogenous genetic ele-

ments either through HGT, or bacteriophage integration [62]. The sic gene, encoding the

streptococcal inhibitor of complement and uniquely detected in M1 and M57 GAS strains

[63], was detected in SP5 (emm1) (Table 4) and in the M1 GAS reference strain. This conforms

our findings to the work done by Bahnan et al. [12]. Host neutralizing antibodies exert selec-

tive pressure usually leading to high polymorphism in the sic gene even within the same emm
type [64], however this was not observed in our study with both the M1 GAS reference and

SP5 having homologous sic gene sequences.

The endo-beta-N-acetylglucosaminidase of streptococci, EndoS (ndoS), is a secreted immu-

noglobulin degrading enzyme that enhances the organism’s ability to resist opsonophagocytosis,

Table 4. List of genes attributable to virulence traits in the streptococcal genomes.

Virulence Trait SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP10 Gene(s) with potential for conferring virulence

traits

Antiphagocytic M protein + + + + + + + + + emm, ennX, fbp, igaR

Streptokinase + + + + + + + + + ska

CAMP factor + + + + + + + + + cfa

Streptolysin O + + + + + + + + + slo

Streptolysin S + + + + + + + + + sagB, C, D, E, F, H, I, asn-ORF, ABC transporter

Hyaluronate lyase precursor + + + + + + + + + hyl

Hyaluronan synthase + + - + + - - + + hasA

Streptococcal pyrogenic exotoxin A* - - - - + - - - - speA

Cysteine Protease B* + + + + + + + + + speB

Streptococcal pyrogenic exotoxin C* - - - - - - + - - speC

Streptococcal pyrogenic exotoxin G + + + + + + + + + speG

Streptococcal pyrogenic exotoxin H* - - - - - - - - - speH

Streptococcal pyrogenic exotoxin I* + - - - - - - + - speI

Streptococcal pyrogenic exotoxin J - + - - + - - - - speJ

Streptococcal pyrogenic exotoxin K* + - + + - + + - + speK

Streptococcal pyrogenic exotoxin L* - - - + - - - - - speL

Streptococcal pyrogenic exotoxin M* - - - - - - - - - speM

Streptococcal mitogenic exotoxin Z + + + + + + + + + smeZ

Streptococcal superantigen A* + - - - - - + + - ssaA

C5a peptidase + + + + + + + + + scpA

Secreted endo-beta-N-

acetylglucosaminidase

+ + + + + + + + + ndoS

Streptococcal inhibitor of complement - - - - + - - - - sic

Exotoxin nucleases + + + + + + + + + spd1, 2, 3, 4, sda

Immunoglobulin-binding protease + + + + + + + + + ideS

Adhesins and invasins 7 4 6 7 3 6 9 7 6 fba, fibronectin binding proteins, serum opacity

factors

Collagen-like surface proteins + + + + + + + + + sclA, B

. + and–indicate the presence or absence of genes respectively, numbers indicate the number of pertaining genes detected, while * indicates phage-

encoded superantigens.

doi:10.1371/journal.pone.0168177.t004
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and is encoded by the 3 Kbp ndoS gene [2]. ndoS was detected in all biotypes (Table 4) with its

size ranging from 2943 bp to 3015bp, these size differences can be attributed to possible inser-

tions or deletions. Individual BLASTing of the sequences, revealed even distribution between

the two protein isoforms EndoS and EndoS F2, which are similar enzymes but with different

oligosaccharide specificity [65]. Both however, are distinct from the EndoS2 that was previ-

ously only detected in M49 GAS strains [66], another fact in agreement with the findings of

Bahnan et al. [12]. The heterologous expression of the EndoS in GAS strains other than the

M1 serotype however, should not be easily dismissed as it has been shown to enhance viru-

lence in murine models of invasive streptococcal infections [67]. Genes encoding the strepto-

dornase B (spd1), an exotoxin nuclease, were detected in all of the isolates as well as in the

chosen reference strains (Table 4); conserved in size and in genomic location. The gene was

part of an extended SpeB-SpeF regulon and is flanked by a transcriptional regulator and a low

temperature response protein. These gene sequences shared homology with their counter-

parts on bacteriophages, specifically the S. pyogenes phages 315.3, 315.6, and phage 9. Despite

being traditionally phage encoded [68], the uniformity of the location of these sequences in

the genomes indicates that they could be fixed remnants of phage integration events over

time. Streptodornase D, also encoded on phages 315.3 and 315.6, was detected in six of the

studied isolates (Table 4), while absent in the chosen reference strains. However, SEED simi-

larity matches linked it to MGAS5005 and MGAS9429 strains, further elucidating the possi-

bility of HGT. The immunoglobulin-binding protease, IdeS (ideS), was detected in all the

biotypes (Table 4). BLAST revealed the protein products to be of the Mac-1 isoform with

none being related to Mac-2 [69]. Despite impairing neutrophil mediated phagocytosis [70],

IdeS is not essential for phagocyte resistance [71], which could explain the lack of an evolu-

tionary pressure to drive diversity among the products of this gene.

Three to nine fibronectin binding (FBP) and collagen-like surface protein genes were addi-

tionally detected in the tested isolates (Table 4), these were present in three major genomic

locations one gene was found downstream of the C5a peptidase gene, another set (two to three

genes) was found downstream of the streptopain/streptopain inhibitor gene set, and the

remaining genes were located in FCT region. These genes have different characteristics

depending on emm type [72]. The FCT region, considered “a hot intergenomic recombinator-

ial site”, is a�11 to 16 Kbp chromosomal region flanked by highly conserved genes, a chap-

eron and a hypothetical protein, between which a unique combination of conserved and semi-

conserved loci was present [73, 74]. The organization of this region was determined manually

by examining the gene loci in the isolates and comparing it with similar loci on known refer-

ences. To date, nine distinct FCT variants have been reported [74]. All the biotypes had the

FCT-3 arrangement with the exception of SP8, which belonged to the FCT-1 (Fig 2). FCT-1 is

usually rare amongst GAS isolates and can be can be detected in M1 and M6 strains such as

the SF370 and MGAS10394. After further sequence annotation the SP8 FCT-1 configuration

was determined to be similar to that present in the M6 serotype containing the distinctive T-

antigen backbone protein and the ancillary protein FctX. The FCT-3 configuration was com-

parable to that present in M3 and M49 serotypes with the putative chaperon protein SipA [74].

Additional putative genes were detected as part of the locus, these were mainly encoding sor-

tases and signal peptidases. Clinically, FBP contributes to the adhesion of S. pyogenes cells to

host cells, and enhances resistance to phagocytosis by averting the C3 convertase from deposit-

ing on the bacterial cell [75]. These proteins are vital to the pathogenesis of S. pyogenes; muta-

tions were associated with a decrease in the epithelial cell adhesion efficiency by up to 10% in

murine models [76, 77]. Even in GAS strains where high-affinity plasminogen binding pro-

teins are not expressed, but FBP is present instead, plasminogen-mediated virulence can still

be activated through a stable cell-associated enzymatic activity that lyses fibrin clots [78]. PrtF1
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was identified in all the genomes, while cpa in six of them; both gene products could prime

skin and throat infections [74] as is the case with our isolates.

The bacterial C5a peptidase (scpA), was detected in all isolates with an approximate size of

3550 bp (Table 4), it was identified strictly as part of the Mga regulon [79]. The locus extending

from the smeZ gene through themf1 gene to the Mga regulon, is one of the best studied loci in

the streptococcal genome for its virulence factors and inherent regulatory components [31].

This regulon is an independent, ubiquitous, multiple-gene regulator that controls the expres-

sion of numerous virulence genes namely those encoding the M family of proteins (emm, mrp,

arp, and enn) that contribute to adhesion, invasion, and host immune evasion [47, 80]. It also

governs the transcription of other non-M protein genes (sic, scpA, sclA) [81]. Mga regulates

the expression of about 10% of the streptococcal genome [80] (Hondorp and McIver, 2007). In

this work, regions associated with the Mga regulon showed high variability in genetic content;

these included multiple M protein genes in addition to the C5a peptidase. BLAST results of the

individual gene sequences showed the presence of the emm gene in all biotypes complemented

by a gene encoding a FBP in six of the isolates (SP2, SP3, SP6, SP7, SP8 and SP10) as well as in

the MGAS6180 reference strain. An immunoglobulin A receptor (igaR) was also detected in

six of the isolates (SP2, SP3, SP4, SP7, SP8 and SP10). SP6 additionally carried the ennX gene

in the operon, which was homologous to the one present in the reference strain NZ131

(Table 4). The genetic diversity of the Mga regulon detected here is in accordance with previ-

ous findings [31, 72, 80]. This diversity correlates with both tissue tropism and disease mani-

festation [72, 80]; usually, strains presenting one M family protein are limited to throat

infections, and those exhibiting three or more proteins are implicated in more invasive infec-

tions [82]. Six of our isolates (SP2, SP3, SP4, SP6, SP7 and SP10) had M family protein genes,

demonstrating their potential in causing invasive infections.

Clinically, many consider superantigens to be more significant than emm types in disease

manifestation [83]. These pyrogenic exotoxins are perhaps the most important of all the strep-

tococcal antigens [84] due to their ability to over stimulate the human immune system and

contribute to tissue inflammation [85]. Excluding SpeG, SpeJ, and SmeZ, all superantigens are

Fig 2. Fibronectin-Collagen-T-antigen (FCT) region organization of FCT types 1 and 3. FCT-1 (SP8) was identified in only one of the

isolates whereas FCT-3 was seen in all of the rest. The region is flanked by a chaperon (hsp33) and a hypothetical protein (hyp). In between are

mostly cell wall-anchored proteins namely fibronectin binding proteins (fpb namely prtF1/2) and collagen binding proteins (cfa). Sortases (sort)

that modify surface proteins are also found in addition to signal peptidases (sip). A combination of unique, highly diverse, and highly conserved

loci determines the FCT type.

doi:10.1371/journal.pone.0168177.g002
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phage encoded [86]. Particular serotypes, such as M types 1, 3, 5, 6, 14, 18, 19, and 24 are nor-

mally associated with throat infections and rheumatic fever, while other such as M types 2, 49,

57, 59, 60, and 61 are linked to pyoderma and which are associated with pyoderma and acute

glomerulonephritis [87, 88]. In this study, seven distinct Sag profiles were identified, with

SpeGKZ being the most prevalent (three out of nine) (Table 4). The conserved gene product

SpeB, along with SpeG and SmeZ were detected in all the isolates as well as the used reference

strains. SpeH on the other hand, has been reported to have low prevalence [89, 90] and was

not detected in any of the isolates or reference strains. This superantigen, detected in M12

MGAS9429 and M1 GAS160490 strains for example, is considered a variable characteristic in

different strains and is not attributed to distinct emm types [91]. Our findings were consistent

with the worldwide dissemination of the species [90], and with previous findings [9]. The

superantigen profile of SP1 which (SpeGIKZ) matched that of the M5 Manfredo strain that is

associated with rheumatic fever [92]. The SP2 profile (SpeGJZ) can be associated to skin infec-

tions as it housed the same superantigens as the M59 MGAS15252 strain, a serotype isolated

from pyodermal infections [93]. SP3, SP6, and SP10 (SpeGKZ) were similar in superantigens

to the puerperal sepsis strain M28 MGAS6180 only lacking SpeJ [94]. SP4 was the only isolate

to house SpeL (Table 4), this antigen was first detected in M3 serotype isolates causing toxic

shock-like syndrome (TSLS) cases, and it transfer to the S. pyogenes species was attributed to

phage HGT [95]. The SAg profiles of SP1, SP3, and SP6 also matched emm types 12 and 89

isolates, which are linked to puerperal sepsis and cellulitis [9]. Interestingly, SP5 of emm
type 1 was the only isolate having SpeA, which also present in the M1 MGAS5005 and M1

GAS160490 reference strains. SpeA is a characteristic unique to emm1 types and associated

with severe infections such as kidney failure [96, 97]. SP7’s profile matched that of M3

MGAS315, indicating the implication of these two strain’s in throat infections. SpeI, which

has a very low prevalence [9], was found to be present in SP8 in addition to SpeG, Z and

SSA. This contrasted previous findings that revealed the co-occurrence of SpeI and SpeH,

on the same bacteriophage (φ370.2) [31], our findings were more harmonious with those of

Commons et al. [86] who reported that SpeI may have been lost during integration in the

streptococcal genome, or that it was encoded by a gene carried on an entirely different phage,

both of which can explain the low prevalence of this SAg [90, 9]. SP8 was similar to the M4

MGAS10750 strain associated with pharyngitis and scarlet fever [98], with the addition of

SpeI. SmeZ normally exhibits a mosaic structure and a wide allelic variation amongst S. pyo-
genes strains in an attempt to escape antibody neutralisation [89]. Three variant types were

detected in our isolates, SP1 and SP8 were of the smez-3 type, SP3, 4, 6 and 7 were of the smez-

8 type, while SP2, 5 and 10 were smez-12. These alleles can be correlated (but not limited) to

single emm types, including emm 12, emm 59 and emm 89 respectively [89]. M59 MGAS15252

and M12 MGAS2096 strains were also found to have the corresponding SmeZ types 3 and 8

respectively. None of the variants were found to have the nonfunctional single base deletion,

leaving SMEZ to propagate GAS pathogenesis.

Antimicrobial Resistance

Penicillin is still the standard drug for the management of streptococcal infections due to the

organisms’ lack of natural resistance against it, with macrolides being alternatively used in

patients with penicillin hypersensitivity [99, 2]. This led to the development of resistant strains

either through efflux pumps (mefA) or through the ribosomal methylases (erm) [100]. All of

the isolates undertaken exhibited an ABC transporter membrane-spanning permease linked to

macrolide resistance (Table 5). These results matched with the ones previously reported by

Karaky et al. [13], and supported the increase in macrolide resistance among S. pyogenes
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strains [12,13]. In the Middle East, macrolide resistance is at 10%-23%, which is significantly

higher than in developed countries such as Germany (2.6%), Belgium (3.3%), and Spain

(7.6%), where a restrictive use of macrolides was instituted [101, 102, 103].

Fluoroquinolone resistance is another feature of GAS that has been reported by several

studies [104, 105, 106], it occurs at two levels: a low-level resistance due to mutations in the

quinolone-resistance-determining region (QRDR) in the topoisomerase IV (parC and parE)

[102], and a less-frequently prevalent high level [107] caused by additional mutations in gyrA
and gyrB genes of DNA gyrase [106]. In this study both levels of fluoroquinolone resistance

were detected (Table 5). Our findings are concordant with the global increase in fluoroquino-

lone resistance, with resistance rates over a two-year span in Belgium and Spain, rising from

4.3% and 1.9% to 21.6% and 30.8% respectively [106, 104]. In contrast, resistance in the studied

isolates to fluoroquinolones was not limited to a set of emm types.

Tetracycline resistance in S. pyogenes is usually conferred through ribosomal protection

genes namely tetM and tetO [108], and the elongation factors EF-G and EF-T [109]. SP7 and

SP8 carried tetracycline resistance factors, specifically tetM and EF-G (Table 5), suggesting a

multi-drug resistant European clone lineage [110]. The same isolates also exhibited a Multi

antimicrobial extrusion protein (Na(+)/drug antiporter) efflux pump conferring tetracycline

resistance. Although not very common amongst streptococci [111], this pump is possibly anal-

ogous to the one detected in S. aureus [112]. It is noteworthy in this respect that tetracycline

resistance conferring genes are often associated with macrolide resistance genes on the same

mobile element, hence the unregulated use of tetracycline and macrolides may reciprocally

augment resistance to both agents [113, 114].

Bacteriophages, mobile elements and genomic recombination

In Gram-positive organisms, HGT transduction via bacteriophages often causes the most

important genomic alterations and confers pathogenic traits [115]. The streptococcal genome

in particular is highly dynamic owning to the numerous phage integration sites and transpos-

able elements that can make up to 7–14% of the total genome [31, 116]. Phage-encoded genes

are largely responsible for the pathogenesis and invasiveness of S. pyogenes [2]. Moreover,

phages widely contribute to the diversity of S. pyogenes strains; approximately 90% of the strep-

tococcal genomic content is shared even among different serotypes with the exclusion of unique

prophage-bound sequences [117]. Numerous confirmed and putative prophages and prophage-

like elements were detected (Table 6). The ф315.x family of S. pyogenes specific phages was the

most prevalent type followed by the P9 bacteriophage. These phage loci were found encoding

Table 5. List of gene products identified in the isolates conferring resistance to respective antimicrobial agents.

Gene Product Features SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP10 Antimicrobial Resistance

DNA gyrase subunit A + + + + + + + + + Fluoroquinolones

DNA gyrase subunit B + + + + + + + + +

Topoisomerase IV subunit B + + + + + + + + +

Topoisomerase IV subunit C + + + + + + + + +

ABC transporter membrane-spanning permease + + + + + + + + + Macrolides

Translation elongation factor G - - - - - - + + - Tetracyclines

Tetracycline resistance protein TetM - - - - - - + + -

Multidrug resistance efflux pump PmrA + + + + + + + + + MDR

Multi antimicrobial extrusion protein (Na(+)/drug antiporter) - - - - - - + + -

+ and–indicate the presence or absence of genes respectively.

doi:10.1371/journal.pone.0168177.t005
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streptodornases A and B and a hyaluronidase, which are major virulence factors. It is notewor-

thy that the same set of prophages were integrated at different positions within the tested iso-

lates, indicating genomic rearrangements [72]. The ф315.x phages encoded phage holin genes,

these are associated with hot phage recombinatorial regions further adding to the variety intro-

duced by phage integration events [72]. Interestingly, the same phage sequences (ф 315.2) were

detected three times in the SP1 genome (Table 6). This is attributed to the fact that phage inte-

gration is an ongoing process, with some of phage sequences being probably remnants of old

integration events [94], and/or the outcome of new acquisitions. Additionally, similar phages

can code for different gene sets and thus still contribute to streptococcal genomic diversity even

with multiple infections of the same phage. Non species-specific phages were also identified in

our isolates, namely Bacillus spp. and Enterococcus spp. phages, these stress again at phage DNA

uptake being an important route through which S. pyogenes acquires genetic determinants to

Table 6. Identity of putative phages and phage elements detected on the S. pyogenes genomes.

Sample Name Phage Name Position No. of CDS Size (Kbp) GC %

SP1 P9 Phage* 543481–587686 58 44.2 39.5%

ф315.2*Δ 1235237–1280343 59 45.1 38.6%

ф315.2* 1753586–1838804 104 85.2 37.8%

ф315.2*Δ 1836641–1850391 22 13.7 39.2%

Temperate phage фNIH1.1*Δ 1856910–1921492 85 64.5 39.0%

SP2 ф315.2*Δ 36431–86156 70 49.7 36.9%

SP3 Enterococcus phage EFC-1 826891–851153 24 24.2 38.9%

Bacillus phage Grass 1229568–1251639 22 22 39.7%

ф315.4* 1702210–1746332 58 44.1 39.4%

SP4 Enterococcus phage EFC-1 1051712–1083210 27 31.4 36.8%

ф315.6*Δ 1157140–1191141 45 34 39.2%

ф315.2* 1678710–1710884 35 32.1 35.7%

ф315.4*Δ 1815357–1861474 56 46.1 39.3%

Temperate phage фNIH1.1*Δ 1865571–1906405 36 40.8 39.7%

SP5 ф315.3* 814075–836688 32 22.6 37.6%

ф315.3* 940132–963402 31 23.2 38.5%

P9 Phage*Δ 1206221–1259975 65 53.7 39.6%

ф315.2* 1658995–1687543 24 28.5 36.3%

SP6 Temperate phage фNIH1.1* 485708–527064 52 41.3 39.0%

Bacillus phage G 1041449–1074731 19 33.2 39.5%

Shigella phage SfIV 1723507–1733053 11 9.5 42.1%

SP7 ф315.6*Δ 1113085–1154775 56 41.6 38.5%

ф315.3* 1539782–1557690 27 17.9 36.4%

ф315.4*Δ 1596065–1609564 22 13.5 36.7%

Bacillus phage BCJA1c 1773969–1809715 32 35.7 35.8%

ф315.4* 1804621–1885835 105 81.2 38.7%

Bacillus phage G 1894717–1910959 25 16.2 42.2%

SP8 Temperate phage фNIH1.1* 580207–619535 53 39.3 38.3%

ф315.2*Δ 1683466–1730855 68 47.3 38.0%

P9 Phage* 1880672–1891879 23 11.2 40.0%

SP10 ф315.3*Δ 1401342–1434194 47 32.8 37.8%

* indicates Streptococcal specific phages
Δ indicates confirmed complete phage sequences.

doi:10.1371/journal.pone.0168177.t006
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propagate and thrive in the host. Given that the species is a strict human pathogen, the actual

mechanisms through which phages were acquired are not well understood. Previous work

attributed this phenomenon to the presence of small signaling molecules in phages, analogous

to those present in mammalian cells. Such molecules act as inducers, activating phage induction

only when the environmental conditions are optimal to accommodate a competent recipient

host organism such as S. pyogenes [118].

Phylogeny

Coupling WGS with phylogenetic analysis has been shown to yield a high discriminatory

power when dealing with closely related isolates, and has allowed for more robust epidemio-

logical analyses [119, 120]. Here phylogenetic analysis was performed based on 40 gene fami-

lies, revealing three major clusters [25] (Fig 3). As reported by Wu et al., the gene families used

for the analysis are universally present across bacterial taxa, have a low copy number variation

across taxa, and can be used to produce robust phylogenetic trees reflecting as much as possi-

ble the evolution of the species from which the genes have originated [121]. The genomic plas-

ticity of S. pyogenes is manifested in the first phylogenetic branch through the clustering of SP7

Fig 3. Phylogenetic tree of SP isolates and corresponding reference strains. The tree was constructed using 40

conserved coding marker genes of nine isolate and eight reference strain genomes. Three major clusters can be

observed with bootstrap values on the nodes. The S. pneumoniae R6 strain is used as an outgroup for a more robust

visualization.

doi:10.1371/journal.pone.0168177.g003
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with clonally and serotypically different reference strains (Table 1, Figs 3 and 4C). Sequence

data of the MGAS10394 genome has revealed the presence of eight prophage-like elements

[122], a fact in agreement with our findings of six phage-related elements at least on the SP7

genome (Table 6). Additionally, SP7 was one of the few genomes in the studied isolates to have

the SpeA superantigen (Table 4), another characteristic of MGAS10394 [122]. Moreover,

MGAS10394 was originally isolated from the throat of a patient with pharyngitis, and deter-

mined to be macrolide resistant [123], sharing both with SP7 isolate (Table 5).

In the second cluster, SP5 was grouped with the reference strains A20, M1476 and M1GAS

SF370 indicating that these genomes are closely related given the fact that they all belong to the

same clonal complex and emm type (emm1). In this context, it is noteworthy that SP5 was clin-

ically isolated from a skin infection, and that the covRS system and the cysteine protease B

superantigen were detected in its genome (Table 4). These findings are in harmony with the

original study characterizing the A20 strain [124], again asserting a high similarity between the

two genomes. Pairwise alignment of the two genomes also showed a high degree of homology

with large parts of the of the two genome being preserved and homologous (Fig 4A).

In the third cluster, SP2, SP3, SP4, SP6 and SP8 were grouped closely with NZ131 and

MGAS6180 indicating a high similarity and also reflective of the preliminary BLAST results.

Within this branch, three additional subgroups can be distinguished. Being both clonal and of

the same emm type (emm89/ST-101), SP3 and SP6 grouped very closely together and aligned

Fig 4. Genome comparison. Pairwise alignment of genomes from sub branches SP4, SP6, and SP7 with A20 (CP003901),

SP3, and MGAS10394 (CP000003) respectively using the Mauve progressive alignment [25]. The colored blocks indicate

homologous corresponding regions between the genomes that are internally free of rearrangement. Seismic lines inside

blocks indicate the degree of similarity between alignments, while the red blocks indicate non-aligned sequences.

doi:10.1371/journal.pone.0168177.g004
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with high sequence similarity (Figs 3 and 4B). Looking more closely at their genomes (Tables

4, 5 and 6), a very high similarity between genomic features can be seen, this sheds light on

their close phylogenetic proximity. SP8 clustered with NZ131 whereas SP2 and SP4 grouped

with the MGAS6180 strain with SP4 being much closer to the reference. Both SP4 and

MGAS6180 are of the same emm and sequence types (emm1 and ST-52) (Table 1). Interest-

ingly, MGAS6180 is linked to puerperal sepsis with its virulence and pathogenesis attributed

to of foreign gene uptake [94]. SP1 and SP10 did not group closely with any other isolate or ref-

erence strain (Fig 3), indicating considerable phylogenetic differences from their counterparts.

Despite being associated with pharyngitis and skin infections, the distinct clustering of our iso-

lates with different invasive strains, indicated potential invasiveness.

A recent study by Sanderson-Smith et al. [125], described a novel systematic and functional

classification of S. pyogenes isolates into based on DNA sequencing of the full emm gene, and

typed over 1000 GAS isolates in phylogenetic emm-clusters. Our phylogenetic analysis is in

general agreement with the findings of this novel typing method; SP7 along with reference

strains MGAS10394 and 7F7, clustered together and belonged to the D4 emm-cluster, SP3, 4, 6

grouped with MGAS6180 strain in the E4 emm-cluster, while SP5 clustered with the M1 sero-

type group of references M1GAS SF370, MGA1467, A20, collectively part of the A-C3 emm-

cluster. SP1, phylogenetically clustering distantly from the rest, was also grouped in the A-C4

cluster emm-cluster phylogenetically further away from the previously mentioned clusters

[125]. These findings further confirm that our isolates do not belong to a single phylogenetic

cluster, but on the contrary, capture the range of serotypes that are implicated in throat and

skin infections and that are present in the Lebanese community.

Conclusion

Despite modern advancements in medicine, the disease burden of S. pyogenes remains very

real especially in less developed countries. Its plethora of virulence factors and superantigens

and its resistance to antimicrobial agents can quickly turn superficial infections into life threat-

ening ones. The heterogeneity of stress response elements present on the streptococcal genome

allows the organism to dynamically resist harsh conditions both inside and outside the host.

The additional multiple gene regulation systems and their strict control over virulence factors

in response to environmental conditions outline infections as being a highly transitional event

closely dependent on external host stimuli. The high genomic plasticity characteristic of the

species adds to the complexity of the identification process.

This study generated the draft genomes sequences of nine S. pyogenes clinical isolates and

investigated their genomic content, invasive potential, antibiotic resistance, and examined

their epidemiological origin through comparative phylogenetic methods. Regulation, signal-

ing, and stress response elements were successfully identified in all of the isolates. Their overall

virulence related elements being directly associated with throat and skin infections, without

excluding their potential invasiveness. The hypervariable FCT region was found to be of Type-

3 in all of the isolates excluding SP8, which exhibited an FCT-1 organization. The isolates

showed large variation in the M protein family as well as in the FCT regulon. Seven distinct

superantigen profiles were detected, showing common virulence traits between our isolates

and those associated with pharyngitis and skin infections. Additionally, macrolide, fluoroquin-

olone, and rare resistance to tetracyclines were documented. Bacteriophages were detected in

all of the isolates conferring superantigens as well as genes generally associated with invasive

streptococcal diseases and resistance, a fact further confirmed by the phylogenetic study that

linked our isolates to worldwide invasive-type clones. The phylogenetic study, in addition to

the virulence profiles, showed a clear association between genome, site of isolation, and disease
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type. Moreover, we concluded that these strains did not form a single phylogenetic cluster, but

instead captured the genomic diversity found in the reference strains.

In all, the detailed genome analysis will undoubtedly provide new insights on S. pyogenes.
The expected merits of this study are not merely theoretical, as GAS remains an important

cause of diseases in Lebanon and in the world, studying its functional genomics could help in

better understanding the molecular mechanisms and epidemiology of its pathogenesis. Our

findings add value to epidemiological studies of S. pyogenes, and provide the first such study

for Lebanese isolates.
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