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Abstract

Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human

malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell

carcinoma (OSCC). OSCC is characterized by a high degree of local invasion and a high

rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is

important and imperative. Here, we investigated the therapeutic effect and molecular mech-

anism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro.

Results showed that cantharidin significantly decreased cell viability in human tongue squa-

mous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic stud-

ies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related

signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin

decreased mitochondrial transmembrane potential (MMP) and induced cytochrome c and

apoptosis inducing factor (AIF) release. Cantharidin also increased Bax, Bid, and Bak pro-

tein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase

the endoplasmic reticulum (ER) stress signals, including the expressions of phosphorylated

eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-cas-

pase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin

increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to

OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the

mitochondrial and ER stress-related signaling molecules. Taken together, these findings

suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochon-

dria and ER stress-related signaling pathways.
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Introduction

Oral cancer is one of the ten most common malignant human cancers. Although the etiology

of oral squamous cell carcinoma (OSCC) is not fully understood, the risk factors for carcino-

genesis are known to include tobacco use, alcohol, and betel quid chewing [1–4]. It has been

estimated that every year approximately 263,000 new cases of OSCC occur worldwide and

127,000 people die from oral cancer [1, 5]. Over 90% of oral cancer is diagnosed as squamous

cell carcinoma [3, 6]. Development of OSCC has a high potential for rapid and unlimited

growth into tumor cells, and correlates with lymph node metastasis and poor 5-year survival

rates [1, 7, 8]. It has been reported that the estimated new cases and deaths from lip and oral

cavity cancers occurred in 2012 worldwide are 300,400 and 145,400, respectively; the age-stan-

dardized oral cavity cancer incidence rates per 100,000 in South-Eastern Asia are 4.0 in males

and 2.5 in females [9]. In Taiwan, it has been estimated that the age-standardized incidence

rate of OSCC is 146.2 per 100,000 person-years for areca/betel quid chewers [10]. Radiother-

apy and chemotherapy are the main methods to treat OSCC; however, the prognosis is still

poor [2, 11]. Thus, many studies have explored new therapeutic reagents and possible molecu-

lar mechanisms to potentially improve prognosis and therapy for OSCC patients, increasing

their life quality and survival rate [1, 12–14].

Cantharidin is a pure and active compound isolated from Cantharis vesicatoria (blister bee-

tles). The formulation specification for dried and ground blister beetle patches has been

recorded in German Pharmacopeias. Cantharis is widely used for treatment of skin diseases,

arthritis, rheumatism, and neuralgic pain in both complementary and alternative medicine

[15]. Using gas chromatography and mass spectrometry, a post-mortem study in a fatal case of

cantharides poisoning showed that serum cantharidin levels was about 72.3 ng/mL and the

blister beetle powder contained about 0.87% of cantharidin [16]. In Chinese traditional medi-

cine, doses of Cantharis are carefully managed to a range of 0.015–0.03 g to avoid serious sys-

temic poisonous effects [15]. Cantharidin has been shown to induce apoptosis in many types

of human cancer cell lines, including colon cancer, bladder cancer, pancreatic cancer, multiple

myeloma and lung cancer [17–22]. The mechanisms of anti-apoptotic pathways have been

suggested to contribute to the cancer development and the resistance of anticancer drugs [23].

The previous studies have found that cantharidin can enhance the mitochondria or endoplas-

mic reticulum (ER) stress-related apoptotic signals in lung cancer cells, lymphomas cells, and

bladder cancer cells [19, 22, 24]. Cantharidin has also been shown to induce the inhibitory

effects on murine ascites reticulum cell sarcoma and ascites hepatoma [25]. A clinical trial

reported that cantharidin sodium, a semi-synthetic derivative of cantharidin, and Shenmai

injection combined with chemotherapy in postoperative breast cancer patients significantly

reduced the incidence of side effects (eg. leukopenia and gastrointestinal reactions) [26]. Nor-

cantharidin, a demethylated analogue of cantharidin, has been suggested to induce cell apopto-

sis in human oral cancer cells via a mitochondria-mediated pathway [27]. However, the

researches of cantharidin on OSCC are relatively fewer. The detailed effect and molecular

mechanism of cantharidin on OSCC cell apoptosis still remain to be clarified. Based on find-

ings from these previous studies, we hypothesized the potential for applying cantharidin to

the treatment of OSCC. Cantharidin may induce apoptosis in OSCC cells through the mito-

chondria or ER stress-related signaling pathways. Therefore, in this study, we investigated the

therapeutic effect and molecular mechanism of cantharidin on OSCC in vitro. Our results

demonstrated that cantharidin induced both mitochondria and ER stress-related apoptotic sig-

nals in OSCC cells. Moreover, cantharidin-induced apoptosis was regulated by the mitogen-

activated protein kinases (MAPK)/c-Jun NH2-terminal kinase (JNK) signaling. Cantharidin

may be a useful chemotherapeutic reagent for the treatment of OSCC.
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Materials and Methods

Chemicals, reagents and antibodies

Cantharidin (chemically pure compound), 3-(4,5-dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazo-

lium bromide (MTT), and dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich

(St. Louis, MO, USA). The antibodies used in the this study were directed against the follow-

ing: caspase-9, caspase-7, caspase-3, glucose-regulated protein (Grp)78, eIF-2α, phospho-eIF-

2α, cytochrome c, AIF, Bax, Bid, Bak, Bcl-2, JNK, phospho-JNK, p38, phospho-p38, extracellu-

lar signal-regulated kinase (ERK), phospho-ERK (Santa Cruz Biotechnology, USA), caspase-

12 (Becton Dickinson, San Jose, CA, USA), Grp94, and C/EBP homologous protein (CHOP)

(Cell Signaling Technology, USA). The cell culture medium included Dulbecco’s modified

Eagle’s medium with 45% Ham’s F12 medium and 10% fetal calf serum, all purchased from

Gibco/Invitrogen (Carlsbad, CA, USA). The chemiluminescence reagents were purchased

from Amersham Biosciences, Sweden. All other chemical reagents which were no specified in

this study were obtained from Sigma-Aldrich.

Cell culture

Three kinds of human tongue squamous carcinoma derived cells were used, including SAS cell

line (a gift from Ph.D. Tzong-Der Way, China Medical University, Taichung, Taiwan), SCC-4 cell

line (CRL-1624; American Type Culture Collection (ATCC)), and CAL-27 cell line (CRL2095;

ATCC). The SAS cell line has been authenticated by short tandem repeat (STR) DNA typing

(Mission Biotech, Taipei, Taiwan). Cells were cultured in a humidified chamber with a 5% CO2-

95% air mixture at 37˚C. The SAS and SCC-4 cells maintained in 45% Dulbecco’s modified

Eagle’s medium with 45% Ham’s F12 medium and 10% fetal calf serum. The CAL-27 cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal calf serum (Gibco/

Invitrogen, Carlsbad, CA, USA). In some experiments, the oral normal epithelium was obtained

from non-tumor adjacent tissues of three OSCC male patients (41–48 years old) through debride-

ment operation at Changhua Christian Hospital, Changhua, Taiwan. Human tissue sampling was

approved by the Changhua Christian Hospital Institutional Review Board and written informed

consent from the patients. The normal oral epithelial cells were isolated and cultured as described

previously by Patil et al. [28]. The tissues were cut into smaller pieces and incubated with trypsin

(0.025%) for 30 min, at 37˚C. Cells were washed twice with phosphate-buffered saline (PBS) and

centrifuged at 800 rpm for 5 min. Cells were maintained in DMEM containing 10% fetal bovine

serum, which supplemented with epidermal growth factor 5 ng/mL, insulin 5 μg/mL, hydrocorti-

sone 0.4 μg/mL, sodium selenite 5 ng/mL, and transferrin 10 μg/mL.

Cytotoxicity assay

Cells were cultured in 24-well and incubated with various doses of cantharidin. After 24 hours,

culture medium was removed and changed with fresh medium with 30 μL of 2 mg/mL MTT.

After incubation for 4 h, the medium was removed, and 1 mL of DMSO was added to dissolve

the blue formazan crystals. The viable cell number is directly proportional to the production of

formazan. Following mixing, 150 μL was transferred to a 96-well plate. An enzyme-linked

immunosorbent assay reader (Thermo Fisher Scientific, Waltham, MA, USA) was used for

fluorescence detection at a wavelength of 570 nm [29].

Genetic knockdown of JNK

The shRNA-JNK (5’-CAGTAAGGACTTACGTTGAAA-3’) in pLKO vector was purchased

from National RNAi Core Facility Platform, Taipei, Taiwan. Cells were seeded into 6-well (5 x
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105/well) for overnight. The shRNA-control or shRNA-JNK (1 μg) was mixed with 1 mL of

lipofectamine 2000. Cells were transfected with 2 μL of lipofectamine 2000 and shRNA-control

or shRNA-JNK mixture for 24 h. Following transfection, cantharidin was added to fresh cul-

ture medium for further experiments.

Western blot analysis

Cells were treated with cantharidin with or without shRNA transfection for various time

periods. After, cells were lysed in RIPA-lysis buffer (Thermo Fisher Scientific) and cell

lysates were collected. Fifty μg of protein from each cell lysate was subjected to electropho-

resis on 10% (w/v) SDS-polyacrylamide gels and transferred to polyvinylidene difluoride

membranes. The membranes were then blocked in PBST (PBS and 0.05% Tween 20)

containing 5% nonfat dry milk for 1 h. For phosphorylated proteins, the membrane was

blocked with 5% w/v BSA in TBST for 1 h. After blocking, the membrane was incubated

with primary antibodies (1:1000), including procaspase-9, procaspase-7, procaspase-3, pro-

caspase-12, cleaved caspase-3, cytochrome c, AIF, Bax, Bid, Bak, Bcl-2, phospho-eIF-2α,

eIF-2α CHOP, Grp78, Grp94, phospho-JNK, JNK, phospho-ERK, ERK, phospho-p38, p38,

α-tubulin. Membranes were then washed with 0.1% PBST and incubated with secondary

antibodies conjugated to horseradish peroxidase for 45 min. The antibody-reactive bands

were revealed using enhanced chemiluminescence reagents and exposed to radiographic

film (Kodak, Rochester, NY, USA) [30, 31]. The protein expressions were quantified by den-

sitometry and analyzed by ImageQant TL 7.0 software. (GE healthcare; Buckinghamshire,

UK). The calculated protein expression data were a proportion of protein expression inten-

sity to its internal control signal intensity. After, the protein fold of change could be com-

pared in each experimental group.

Mitochondrial transmembrane potential (MMP) assay

Cells were treated with or without cantharidin in the presence or absence of transfection of

shRNA-control or shRNA-JNK. Cells were harvested and treated with DiOC6 (40 nM) for 30

min. The MMP was analyzed by using a FACScan flow cytometer (Becton Dickinson) to detect

the DiOC6 fluorescence staining (Molecular Probes) [32].

We also used a cationic dye, tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Cayman),

to detect MMP. Cells were cultured in 96-well (1 x 105/well) and transfected with shRNA-con-

trol or shRNA-JNK for 48 h, and combined with or without cantharidin for 24 hours. Cells

were washed twice and added 10 μL of JC-1 staining solution for 30 min, at 37˚C. After plate

was centrifuged for 400 x g, 5 min, the supernatant was aspirated and added 100 μL of assay

buffer to each well. The ratio of fluorescence signals of healthy cells (excitation 535 nm/ emis-

sion 595 nm) to fluorescence signals of apoptotic cells (excitation 485 nm/emission 535 nm)

was an indicator of apoptotic MMP depolarization. The fluorescence signal was detected by a

fluorescence plate reader, SpectraMax1 (Molecular devices, CA, USA).

Annexin-V-FITC assay

The cell apoptosis was determined by an annexin-V-FITC apoptosis detection kit (BioVision).

Cells were cultured in 24-well plates (1 x 105 cells/well) and treated with the indicated drugs

for 24 h. The cells were washed twice with PBS and stained with annexin-V-FITC and propi-

dium iodide (PI) for 20 min at room temperature. The fluorescence was detected by flow

cytometry (FACScalibur, Becton Dickinson).
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Quantitative real-time polymerase chain reaction (qPCR) analysis

The qPCR experiments were performed as previously described [33]. For the detection of

JNK-1 mRNA, qPCR was performed using real-time Sybr Green PCR reagent (Applied Biosys-

tems, Foster City, CA, USA). Total cDNA (2 μL) was extracted from each sample and added to

25 μL reaction mixture containing sequence-specific primers and real-time Sybr Green PCR

reagent. The human primers of JNK-1 are as follows, forward: (5’-3’): CTTGGCATGGGCTA

CAAGGA, and reverse: (5’-3’): TGGTGGAGCTTCTGCTTCAG (NCBI: NM_139049.2). The

β-actin was used as a housekeeping gene for the internal control. The cycling conditions were

as follows: 10 min of polymerase activation at 95˚C, followed by 40 cycles of 15 s at 95˚C and

60 s at 60˚C. All amplification curves was analyzed with a normalized reporter (Rn: the ratio of

the fluorescence emission intensity to the fluorescence signal of the passive reference dye)

threshold of 0.2 to obtain the CT (threshold cycle) values. The reference control genes were

measured in quadruplicate in each PCR run, and their average CT were used for relative quan-

tification (the relative quantification method utilizing the real-time PCR efficiencies). The TF

expression data was normalized by subtracting the mean CT value of the reference gene from

the CT value of the test sample (ΔCT). The fold change was calculated using the formula

2−ΔΔCT, where ΔΔCT represents ΔCT-condition of interest − ΔCT-control. Prior to conducting statisti-

cal analyses, the fold change from the mean of the control group was calculated for each indi-

vidual sample.

Statistical analysis

The data are presented as the mean ± SEM. The statistical significance of the differences was

evaluated by Student’s t-test. When more than one group was compared to one control, the

significance was evaluated by one-way analysis of variance (ANOVA). The Duncan’s post hoc

test was applied to identify group differences. Probability values below 0.05 were considered

significant.

Results

Cantharidin reduces cell viability and promotes apoptotic signals in

OSCC cells

To investigate the cytotoxicity effects of cantharidin on OSCC, cells (SAS, CAL-27, and SCC-

4) were treated with 1 to 30 μM of cantharidin for 24 h and analyzed by MTT assay. The results

showed that cantharidin significantly reduced SAS cell viability with the half maximal inhibi-

tory concentration (IC50) of 10 μM (Fig 1A). The cantharidin could also induce cytotoxicity

in SCC-4 and CAL-27 cells with the IC50 of about 30 μM (Fig 1B and 1C). Moreover, we also

tested the cytotoxic effect of cantharidin on normal oral epithelial cells. As shown in Fig 1D,

there was less cytotoxicity by cantharidin in normal oral epithelial cells than in OSCC cells.

Next, we used the IC50 of cantharidin (10 μM) to detect apoptosis-related signals in SAS cells.

Results showed that the protein expressions of procaspases 9, 7, and 3 were significantly

reduced and the cleaved forms of caspases 9, 7, and 3 were significantly increased after can-

tharidin treatment for 14 to 24 h (Fig 2; P = 0.002 vs cleaved forms of caspases). These results

indicated that cantharidin could activate the apoptotic pathway in OSCC cells.

Cantharidin induces mitochondria- and ER stress-related apoptotic

signals in SAS cells

We next investigated whether cantharidin induced OSCC cell apoptosis through the mito-

chondria-related signaling pathways. As shown in Fig 3A, the MMP of SAS cells was
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significantly depolarized after treatment with 10 and 30 μM of cantharidin for 24 h (P<0.001

vs control). Moreover, both cytosolic cytochrome c and AIF release were also significantly

increased following cantharidin administration (Fig 3B; P<0.001 vs control). The protein

expressions of Bax, Bid, and Bak were significantly increased and the protein expression of

Bcl-2 level was significantly decreased after administration of cantharidin (10 μM) for 1 to 4 h

(Fig 4A and 4B; P = 0.002 vs control for Bax, Bid, and Bak; P = 0.03 vs control for Bcl-2).

The involvement of ER stress-related signals in cantharidin-induced OSCC cell apoptosis

was further investigated. The results showed that cantharidin significantly increased the protein

expressions of phospho-eIF-2α and CHOP and decreased the protein expression of procaspase-

12, but did not alter the protein expressions of Grp78 and Grp94 (Fig 5; P<0.001 vs control for

phospho-eIF-2α; P = 0.002 vs control for CHOP; P = 0.04 vs control for procaspase-12).

These results suggest that cantharidin may induce apoptosis in OSCC cells through the

mitochondria- and ER stress-related signaling pathways.

Fig 1. Effects of cantharidin on cell viability in SAS, CAL-27, and SCC-4 human tongue carcinoma cells and

primary normal oral epithelial cells. Cells were treated with cantharidin (1 to 50 μM) for 24 h. The cell viability was

subsequently analyzed by MTT assay. Data are presented as mean ± SEM of three independent experiments

(n = 6). *P < 0.05 versus control group (Con).

doi:10.1371/journal.pone.0168095.g001
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The involvement of JNK signaling in cantharidin-induced OSCC cell

apoptosis

To investigate the role of MAPK in the effects of cantharidin on SAS cell apoptosis, the phos-

phorylations of JNK, ERK, and p38 were determined. As shown in Fig 6, cantharidin signifi-

cantly increased the phosphorylation of JNK in SAS cells, but did not affect the phosphorylations

of ERK and p38 (P<0.001 vs control for phospho-JNK).

Fig 2. Effects of cantharidin on protein expressions of caspases in SAS human tongue carcinoma cells.

Cells were treated with cantharidin (10 μM) for 14 to 24 h. (A) The protein expressions of pro-caspase-9, cleaved

form of caspase-9, pro-caspase-7, cleaved form of caspase-7, pro-caspase-3, cleaved form of caspase-3 were

determined by Western blotting. The protein expression of α-tubulin was as an internal control. In B-C, the protein

expressions were quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as

mean ± SEM of three independent experiments (n = 6). *P < 0.05 versus control group for pro-caspases (Con).

#P < 0.05 versus control group for cleaved form caspases.

doi:10.1371/journal.pone.0168095.g002
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To further investigate the role of JNK, the transfection of shRNA-JNK was used. In Fig 7A,

cells transfected with shRNA-control did not affect JNK-1 mRNA expression, which was com-

pared with control group. However, transfection with shRNA-JNK significantly decreased

JNK-1 mRNA expression in SAS cells (Fig 7A; P = 0.002 vs shRNA-control). In next experi-

ments, cells were transfected with shRNA-control or shRNA-JNK. The results showed that

Fig 3. Effects of cantharidin on mitochondrial transmembrane potential (MMP) and protein expressions of

cytochrome c and AIF in SAS human tongue carcinoma cells. (A) Cells were treated with cantharidin (1–30 μM)

for 24 h. The MMP was analyzed by flow cytometry with a fluorescent dye DiOC6. (B) Cells were treated with

cantharidin (10 μM) for 18 or 24 h. The cytosolic fraction was then subjected to Western blot analysis for cytochrome

c and AIF. The protein expression of α-tubulin was as an internal control. The protein expressions were quantified by

densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as mean ± SEM of three independent

experiments (n = 6). *P < 0.05 versus control group (Con).

doi:10.1371/journal.pone.0168095.g003
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Fig 4. Effects of cantharidin on protein expressions of Bax, Bid, Bak, and Bcl-2 in SAS human tongue

carcinoma cells. (A) Cells were treated with cantharidin (10 μM) for 1 to 4 h. The protein expressions were

analyzed by Western blot analysis. The protein expression of α-tubulin was as an internal control. In B, the protein

expressions were quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as

mean ± SEM of three independent experiments (n = 6). *P < 0.05 versus control group.

doi:10.1371/journal.pone.0168095.g004
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Fig 5. Effects of cantharidin on protein expressions of phospho-eIF-2α, CHOP, Grp78, Grp94, and

procaspase-12 in SAS human tongue carcinoma cells. Cells were treated with cantharidin (10 μM) for 6 to 24 h.

(A) The protein expressions of phospho-eIF-2α, CHOP, Grp78, Grp94 and procaspase-12 were analyzed by

Western blotting. The protein expression of α-tubulin was as an internal control. In B, the protein expressions were

quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as mean ± SEM of

three independent experiments (n = 6). *P < 0.05 versus control group.

doi:10.1371/journal.pone.0168095.g005
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Fig 6. Effects of cantharidin on protein expressions of JNK, ERK, and p38 and their phosphorylation in

SAS human tongue carcinoma cells. Cells were treated with cantharidin (10 μM) for 1 to 4 h. (A) The protein

expression of JNK, ERK, and p38 and their phosphorylation were analyzed by Western blotting. In B, the protein

expressions were quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as

mean ± SEM of three independent experiments (n = 6). *P < 0.05 versus control group for phospho-JNK.

doi:10.1371/journal.pone.0168095.g006
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shRNA-JNK transfection significantly reversed the cantharidin decreased phosphorylation of

JNK (Fig 7B; P<0.001 vs shRNA-control+cantharidin) and cells viability (Fig 7C; P<0.001 vs

shRNA-control+cantharidin) in SAS cells. Further, the cantharidin-induced MMP depolariza-

tion (Fig 8A; P<0.001 vs shRNA-control+cantharidin) and apoptosis (Fig 8B and S1 Fig;

P = 0.04 vs shRNA-control+cantharidin), decreased Bcl-2 protein expression, increased Bax

protein expression (Fig 9A; P<0.001 vs shRNA-control+cantharidin), increased eIF-2α phos-

phorylation, increased CHOP protein expression, and increased caspase-3 cleavage (Fig 9B;

Fig 7. Transfection of shRNA-JNK inhibited cantharidin-induced JNK phosphorylation in SAS human

tongue carcinoma cells. (A) Cells were transfected with sh-control (siRNA-con) or shRNA-JNK for 48 h, and the

JNK-1 mRNA expression was detected by qPCR analysis. Data are presented as mean ± SEM of three independent

experiments. *P < 0.05 versus sh-control group. (B) Cells were transfected with shRNA-JNK for 48 h, and then

treated with cantharidin (10 μM) for 1 h. The JNK3/1 protein expression and phosphorylation were analyzed by

Western blotting. The protein expression of α-tubulin was as an internal control. The protein expressions were

quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as mean ± SEM of

three independent experiments. *P < 0.05 versus shRNA-control group. P < 0.05 versus shRNA-control with

cantharidin group. (C) Cells were pretreatment with shRNA-JNK for 48 h, and then added cantharidin (10 μM) for

24 h. The cell viability was analyzed by MTT assay. Data are presented as mean ± SEM of three independent

experiments (n = 6). *P < 0.05 versus sh-control group. #P < 0.05 versus shRNA-control combined with cantharidin

group.

doi:10.1371/journal.pone.0168095.g007
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P<0.001 vs shRNA-control+cantharidin) could also significantly reversed by the transfection

of shRNA-JNK in SAS cells. We also used a cationic dye, JC-1, to confirm the effect of

Fig 8. Transfection of shRNA-JNK inhibited cantharidin-induced MMP depolarization and apoptosis in SAS

human tongue carcinoma cells. Cells were pretreatment with sh-control or shRNA-JNK for 48 h, and then added

cantharidin (10 μM) for 24 h. Both MMP and apoptosis were analyzed by flow cytometry with the staining of DiOC6

and annexin V/PI, respectively. All data are presented as mean ± SEM of three independent experiments (n = 6).

*P < 0.05 versus sh-control group. #P < 0.05 versus sh-control combined with cantharidin group.

doi:10.1371/journal.pone.0168095.g008
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cantharidin on MMP. Cantharidin significantly induced MMP depolarization, which could be

significantly reversed by the transfection of shRNA-JNK (S2 Fig).

Discussion

OSCC is a common malignant cancer in the world. Although there are many clinical protocols

for OSCC, such as surgical resection and radiotherapy, the overall 5-year survival rate remained

Fig 9. Transfection of shRNA-JNK reversed the effects of cantharidin on protein expressions of Bcl-2, Bax,

phospho-eIF-2α, CHOP, and cleaved caspase-3 in SAS human tongue carcinoma cells. Cells were

transfected with sh-control (siRNA-con) or shRNA-JNK for 48 h, and then treated with cantharidin (10 μM) for 4 h

(A) or 24 h (B). The protein expressions of Bcl-2 and Bax (A) and phospho-eIF-2α, CHOP, and cleaved caspase-3

(B) were analyzed by Western blottingh. The protein expression of α-tubulin was as an internal control. The protein

expressions were quantified by densitometry and analyzed by ImageQant TL 7.0 software. Data are presented as

mean ± SEM of three independent experiments (n = 6). *P < 0.05 versus sh-control group. #P < 0.05 versus sh-

control combined with cantharidin group.

doi:10.1371/journal.pone.0168095.g009
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poor [34]. A characteristic of mucosal lining cells is dividing rapidly and thus highly susceptible

and damage to radiotherapy [35, 36]. Although patients received dental consultation prior to

the initiation of radiotherapy, it still produced serious oral cavity problems that affect life quality

[36]. Natural compounds have been preclinically and clinically investigated to be the chemo-

preventive or therapeutic agents for oral cancer [35, 37, 38]. Blister beetles are insects of family

Meloidae, which contains about 2500 species, divided among 120 genera and 4 subfamilies (Ele-

ticinae, Meloinae, Nemognathinae, and Tetraonycinae) [39, 40]. Cantharidin is a pure active

compound, which is isolated from dried bodies of blister beetle. The concentration of canthari-

din is various among species. The highest concentration of cantharidin is extracted from Epi-
cauta vittata, which is 5.4% in dry weight bodies. While in the Spanish fly, the concentration of

cantharidin almost reached to 5% in dry weight bodies [41]. Cantharidin has been reported to

induce many poisoning symptoms during ingested, including burning of mouth, dysphagia,

nausea, hematemesis, gross hematuria, dysuria, significant GI hemorrhage, renal dysfunction,

coagulopathy, and cardiac dysrhythmias [40, 41]. However, cantharidin has been widely used in

topical medication for warts, furuncles, and skin ulcer [15, 41]. Studies showed that cantharidin

caused apoptosis in many kinds of cancer cells and possessed therapeutic potential in animal

study and clinical trial for some cancers [25, 26, 42, 43]. Thus, cantharidin may be used to

develop a preventive or therapeutic reagent for OSCC. However, the detailed effects and molec-

ular mechanism of cantharidin on OSCC still remain to be clarified. In the present study, we

demonstrated that cantharidin was capable of inducing OSCC cell apoptosis and death. Can-

tharidin induced OSCC cell apoptosis through the MAPK/JNK-regulated mitochondria and ER

stress-related signaling pathways.

Apoptosis leads programmed cell death, which is a key regulator in physiological and

homeostasis. Most of cancer therapies result in the activation of caspases. Activation of cas-

pases initiates two pathways in cells. One is receptor pathway, which is the plasma membrane

upon ligation of death receptor. Another is mitochondrial pathway [44–46]. Cantharidin

derivative norcantharidin has been found to induce cytosolic cytochrome c accumulation and

caspase-9 activation, but did not trigger Fas and FasL-related apoptosis [27]. In the present

study, we found that cantharidin significantly decreased cell viability and induced apoptosis-

related caspases activation in OSCC cells. The results for the increase of MMP depolarization,

release of cytochrome c and AIF, Bcl-2 expression decrease, and Bax/Bid/Bak expressions

demonstrated that cantharidin induced OSCC cell apoptosis through the mitochondria-

dependent pathway.

Following chemicals or toxicants stimulation, it may change intracellular calcium homeo-

stasis, protein synthesis, post-translational modification, and protein folding to lead ER stress.

ER stress is occurred after excessive protein misfolding accumulation during protein biosyn-

thesis [47]. After mitochondrial Bax and Bak protein expression, calcium is released from ER

lumen into cytoplasm and subsequently induces calpain activation, triggering ER stress-related

apoptosis [48–50]. In this study, we found that cantharidin significantly altered ER stress-

related molecules expressions, including increased eIF-2α phosphorylation, increased CHOP

protein expression, and decreased pro-caspase-12 protein expression, although the protein

expressions of Grp78 and Grp94 were not changed. On the other hand, the initiation of eIF-2α
phosphorylation is known to arrest protein translation, which reduces the loading into ER and

restoration of ER homeostasis. However, prolong of ER stress leads caspase-12 activation and

mediates cell apoptosis [47]. CHOP is a 29 KDa protein, which is composed of N-terminal

transcriptional activation domain and C-terminal basic-leucine zipper (bZIP) domain. The

JNK, p38, and ERK belong to the MAPK family. CHOP serves as a substrate for p38 MAPK.

The activation of CHOP by p38 MAPK causes alteration in gene expressions that trigger cell

apoptosis [51, 52]. The phosphorylation of JNK, p38, and ERK has been found to be involved
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in the natural compound gingerol-induced apoptosis in human colon cancer cells [53]. Block-

age of JNK activation has been shown to reduce cell apoptosis in various cancer cells, such as

prostate cancer cells, breast cancer cells, pancreas cancer cells, and colon cancer [53–57]. In

Fig 10. The schematic representation of proposed mechanisms of cantharidin on oral squamous cell

carcinoma cells. Cantharidin induced cell apoptosis via the JNK-regulated mitochondrial and ER stress signaling

pathways.

doi:10.1371/journal.pone.0168095.g010
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the present study, we found that cantharidin significantly induced phosphorylation of JNK,

but not ERK and p38 in OSCC cells. It seems that JNK activation may be involved in the can-

tharidin-induced cytotoxicity. Transfection of shRNA-JNK to block JNK expression and acti-

vation could significantly reverse the MMP depolarization, decreased Bcl-2 protein

expression, increased Bax protein expression, eIF-2α phosphorylation, CHOP induction, cas-

pase-3 cleavage induced by cantharidin in OSCC cells. These findings indicate that JNK signal-

ing is involved in the cantharidin-induced OSCC cell apoptosis.

A fatal case of cantharides poisoning showed that the concentration of cantharidin in post-

mortem serum was 72.3 ng/mL [16]. Nevertheless, two non-fatal cases of cantharidin poison-

ing has been reported that cantharidin induces acute toxicity at high concentrations (approxi-

mately 75 and 175 mg), producing nausea, severe lips, mouth, tongue, throat, and abdominal

pain, dysuria, hematuria, renal tubular necrosis, hepatic degeneration, and myocarditis [58].

Cantharidin has been shown to induce cytotoxicity in carcinoma cells. The IC50 levels of can-

tharidin on human bladder carcinoma cell line T24 cells were 21.8, 11.2 and 4.6 μM for 6, 24

and 48 h, respectively [59]. Moreover, the IC50 level of cantharidin on tumor Hep 3B cells was

2.2 μM for 36 h; however, the IC50 level of cantharidin on normal Chang liver cells was 30 μM

for 36 h [60]. It has been estimated that the selective index of cantharidin for normal Chang

liver cells is 13 times higher than that for tumor Hep 3B cells [60]. An in vivo study showed

that cantharidin (1.25–2 mg/kg, intraperitoneally or orally) possessed a definite inhibitory

effect on murine ascites reticulum cell sarcoma and ascites hepatoma [25]. Moreover, several

clinical trials have shown that cantharidin and its analogs combined with chemotherapy

enhance clinical benefit response and reduce side effects of chemotherapy against breast can-

cer [26], gastric cancer [61], and primary hepatoma [62]. In the present study, cantharidin at

the concentration of 10 μM effectively induced apoptosis and cell death in SAS OSCC cells via

the JNK-regulated mitochondria and ER stress-related signaling pathways. Comprehensive

understanding of the toxicological effects and mechanisms of cantharidin on tumor cells and

normal cells may provide insight for the development of less toxic cantharidin analogues with

good anti-cancer activity in the future.

In conclusion, the current study presented the evidence showing that cantharidin decreased

cell viability and activated apoptosis in OSCC cells via the mitochondria- and ER stress-related

signaling pathways. This proposed molecular mechanism underlying the action of cantharidin

is illustrated in Fig 10. These findings suggest that cantharidin possesses the possible chemo-

therapeutic potential for OSCC.

Supporting Information

S1 Fig. The 2D plots of annexin V and PI staining from flow cytometry for apoptosis in

cantharidin-treated SAS human tongue carcinoma cells with or without shRNA-JNK

transfection.

(TIF)

S2 Fig. Transfection of shRNA-JNK inhibited cantharidin-induced MMP depolarization in
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