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Abstract

We present a new approach for handwritten signature classification and verification based

on descriptors stemming from time causal information theory. The proposal uses the Shan-

non entropy, the statistical complexity, and the Fisher information evaluated over the Bandt

and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six

features are easy and fast to compute, and they are the input to an One-Class Support Vec-

tor Machine classifier. The results are better than state-of-the-art online techniques that

employ higher-dimensional feature spaces which often require specialized software and

hardware. We assess the consistency of our proposal with respect to the size of the training

sample, and we also use it to classify the signatures into meaningful groups.

Introduction

The word biometrics is associated to human traits or behaviors which can be measured and

used for individual recognition. In fact, the biometry recognition, as a personal authentication

signal processing, can be used in situations or instances where users need to be security identi-

fied [1]. These kind of systems can either verify or identify.

Two types of biometrics can be defined according to the personal traits considered: a) physi-
cal/physiological which take into account the biological traits of users, like fingerprints, iris,

face, hand, etc. b) behavioral, those which consider dynamic traits such as, voice, handwritten

evidence and particular expressions. Biometric systems are attractive because of the enhanced

security [1] provided by two main facts: (i) users do not have to remember passwords or carry

access keys, (ii) it is difficult to steal, imitate or generate genuine biometric data.

The way we sign has the widest social and legal acceptance among pure behavioral biomet-

ric traits [2–6]. People sign every day to verify their identity, as this does not require any inva-

sive measurement. Allegedly, this identification and identity verification modality is the most

attacked.
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Signatures are written by moving a pen over a surface, e.g., paper or a digitizing device.

Handwritten signature verification is a problem in which the input signature (a test signature)

is classified as genuine or forged. Although signatures are intended to serve as identity verifica-

tion, the same person’s signature varies due to a number of factors and conditions.

Hilton [7] found that signatures have three main attributes: form, movement, and variation;

movement being the most important. The author found that little variations occur over time

once a signature style has been adopted. The signing processes can be described at high level as

how the the brain recovers information from long term memory in which parameters such as

size, shape, timing, etc., are specified, without any particular attention to detail. Genuine signa-

tures are associated to a spurt of neural activity, whereas the forgery signatures are the result of

deliberate handwriting which is characterized by a conscious attempt to reproduce [8, 9].

Two opposite mechanisms describing the signing process can be found in the literature.

Longstaff and Heath [10] found evidence of chaotic behavior on the underlying dynamics of

time series related to velocity profiles of handwritten texts. In opposition, most of the research

in the field of signal verification considers the input information as well described by a random

process, e.g. Hidden Markov Models [2–6]. Then, the dynamic input information acquired

through a time sampling procedure must be considered as a discrete time random sequence.

Offline signature verification is based solely on the signature image, while online proce-

dures require additional information. Our procedure exploits only the temporal information

present in the signature coordinates and, thus, can be termed quasi-offline.
Following [2–6], we describe the three main stages of our work:

• Data acquisition and pre-processing. We perform quasi-offline recognition, as we only

employ information about coordinates and do not require pressure, speed or pen-up move-

ments data.

• Feature extraction. We tackle the problem with parameter features: signatures are character-

ized as a six-dimensional vector extracted from the original data.

• Classification. Our approach is related to distance-based classifiers, as we will make decisions

based on the similarity of the features extracted from the test signature to a description of an

ensemble of genuine signatures.

Our proposal relies on the use of time causal quantifiers based on information theory for

the characterization of quasi-offline handwritten signatures: normalized permutation Shannon
entropy, permutation statistical complexity and permutation Fisher information measure. These

quantifiers have proved to be useful in the identification of chaotic and stochastic dynamics

throughout the associated time series [11, 12]. Details and further references are provided in

the Supplementary Information S1 File. Their evaluation is simple and fast, making them apt

for the signature verification problem. We apply our proposal to the well-know MCYT online

signature data base [13], but we only use time causal information about their trajectories.

We refer to “time causal information” to attest that the only causal information we use

comes from the time ordering of the data. Mutual Information, Conditional Entropy, Transfer

Entropy and other similar measures are excellent for identifying and quantifying relationships

between processes, e.g. synchronization, causality, etc. [14]. This is not the case in our study, as

we do not employ any other process apart from the observed coordinates along time. Those

information theory measures would be of great value if we had data about, for instance, the

neural activity that leads to the signatures, but we do not.

Our proposal consists, thus, in using features extracted from a nonparametric transforma-

tion of two time series. Other recent techniques have been proposed for the analysis of time

series as, for instance, transforming them into complex networks [15–19], and using multiscale
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analysis [20]. These, and other similar approaches, produce excellent results at the price of

heavy computational overload.

Fig 1 sketches the complete workflow of our proposal. Signatures are the input; they are

first scaled to fit an unitary square, and interpolated in order to have same number of data for

all subjects. Then, the time series of both horizontal and vertical writing processes are

extracted. These time series are then represented in a nonparametric manner using a time

causal descriptor: the Bandt and Pompe symbolization [21]. A histogram of these symbols is

then built for each coordinate, and information theory quantifiers are computed from these

histograms: normalized Shannon entropy, Fisher’s information measure, and statistical com-

plexity. After an exploratory data analysis, we show that simple dendrograms based on these

quantifiers reveal meaningful groups of signatures. The signature stability of each of these

groups is also evaluated. Finally, we propose using a One-Class Support Vector Machine for

signature verification, and we show that this approach has better performance than state-of-

the-art classifiers defined in feature spaces ten times larger than ours. With this, our proposal

attains better results in less computational time for an application that, besides being relevant,

requires fast responses.

Next section describes the database used in this study. In addition to the usual data flow, we

present an exploratory data analysis (EDA) of the features that enhances their appropriateness

for this problem. The expressiveness and usefulness of these descriptors for the problem of sig-

nature classification and verification follows in the sequence: we experiment their application

to the test-bed.

Handwritten signatures database

The present study is carried out on the freely available and widely used handwritten signatures

database MCYT. In the following paragraph, we reproduce the main protocol and

Fig 1. Diagram of the proposed procedure: original signature, interpolation, X and Y coordinates as time series, Band & Pompe histograms,

entropy, statistical complexity and Fisher information.

doi:10.1371/journal.pone.0166868.g001
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methodological details of the MCYT data base acquisition published by Ortega-Garcia and

coworkers in [13, 22, 23].

“The acquisition of each on-line signature is accomplished dynamically using a graphics

tablet. The signatures are acquired on a WACOM© graphic tablet, model INTUOS A6 USB.

The tablet resolution is 2540 lines/in (100 lines/mm), and the precision is ±0.25 mm. The

maximum detection height is 10 mm (so also pen-up movements are considered), and the

capture area is 127 mm (width) × 97 mm (height). This tablet provides the following dis-

crete-time sequences: a) position xt in the x-axis, b) position yt in the y-axis, and c) also the

time series corresponding to the pressure pt applied by the pen, as well as the azimuth γt
and altitude φt angles of the pen with respect to the tablet, not used in the present work.

The sampling frequency is set to 100 Hz. Taking into account the Nyquist sampling crite-

rion and that the maximum frequencies of the related biomechanical sequences are always

under 20-30 Hz [24], this sampling frequency leads to a precise discrete-time signature

representation. The signature corpus comprises genuine and shape-based highly skilled

forgeries with natural dynamics [13, 23]. The forgeries are produced requesting each con-

tributor to imitate other signers by writing naturally. For this task, they were given the

printed signature to imitate and were asked not only to imitate the shape, but also to gener-

ate the imitation without artifacts such as breaks or slow-downs. Each signer contributes

with 25 genuine signatures in five groups of five signatures each, and is forged 25 times by

five different imitators. Since signers are concentrated in a different writing task between

genuine signature sets, the variability between client signatures from different acquisition

sets is expected to be higher than the variability of signatures within the same set. The total

number of contributors in the MCYT is 330, and the total number of signatures present in

the signature database is 16,500, half of them genuine signatures and the rest forgeries.”

We used the MCYT-100 subset of the database, which includes 100 subjects and for each

one, 25 genuine and 25 skilled forged signatures. The only data we use are the x- and y-coordi-

nates time series.

Fig 2 presents examples of six subjects, being the first two columns genuine and the third

column forgery signatures. In particular, one must note that the time series’ lengths are quite

variable. We pre-processed each time series as follows: a) the coordinates were re-scaled into

the unit square [0, 1] × [0, 1]; b) the original total number of data for each time series is

expanded to M = 5000 points using a cubic Hermite polynomial. In this way, for each subject k
(k = 1, . . ., 100) and associated signatures j (j = 1, . . ., 25) we will analyze two time series,

denoted by Xðk;aÞ

j ¼ f0 � ~xðk;aÞ

j;i � 1; i ¼ 1; . . . ;Mg and Yðk;aÞ

j ¼ f0 � ~yðk;aÞ

j;i � 1; i ¼ 1; . . . ;Mg,
in which the supra-index α = G, F denotes genuine and forgery signature, and ~x and ~y are the

interpolated values, respectively.

Signature features and exploratory data analysis

Handwritten classification and verification is an important and challenging problem due to

two main factors. First, intra-personal variation in speed, pressure and inclination can be

large, as signature consistency is often poor. Second, we can only obtain few samples from one

person and no forgeries in practice. The reliability of extracted features is, thus, difficult to

assess.

Developing an efficient and effective system for data acquisition is a challenging task. The

volume of their databases grows boundlessly and soon becomes unmanageable, so reducing

the raw data to parsimonious forms, without loosing important information, is at the core of

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 2. Six different subjects signatures from the MCYT database. Two genuine signatures (left, blue) and

a skilled forgery (right, red). The two first signatures were classified as H1A and H1B, the following two to

types H2A and H2B, and the last two to types H3A and H3B; cf. Sec. Signature classification.

doi:10.1371/journal.pone.0166868.g002
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intelligent solutions. We aim at discovering relevant low-dimensional features that, albeit pro-

moting the reduction of data, are able to differentiate forgery from authentic signatures.

In this work we employ time causal information theory quantifiers; see details in the Sup-

plementary Information S1 File. For each of the k subjects (k = 1, . . ., 100) in the database and

its j associated signatures (25 genuine and 25 skilled forgery), two time series Xðk;aÞ

j and Yðk;aÞ

j

are extracted and transformed into Bandt and Pompe’s PDFs with pattern length (embedding

dimension) D = 5 and time lag τ = 1 [21].

We denoted these PDFs as:

Pðk;aÞ

X;j ¼ Bandt and Pompe0s PDF of Xðk;aÞ

j jD;t; and

Pðk;aÞ

Y;j ¼ Bandt and Pompe0s PDF of Yðk;aÞ

j jD;t;

in which j = 1, . . ., 25, and α = G, F identify genuine and skilled forgery signatures,

respectively.

We chose D = 5 after trying other values: D = 3, 4 led to too coarse histograms (not enough

bins), while D = 6 (that requires counting 720 cases) produced too many zero-count bins. Note

that the condition M� D! is satisfied with D = 5. We used unlagged data (τ = 1) after checking

that there were not significant changes with lagged τ = 2, 3 series.

We computed the normalized permutation Shannon entropy H, the permutation statistical

complexity C, and the permutation Fisher information measure F from these PDFs, and the

obtained values are denoted as:

Hðk;aÞ

X;j ¼ H½Pðk;aÞ

X;j �; Hðk;aÞ

Y;j ¼ H½Pðk;aÞ

Y;j �;

Cðk;aÞ

X;j ¼ C½Pðk;aÞ

X;j �; Cðk;aÞ

Y;j ¼ C½Pðk;aÞ

Y;j �;

F ðk;aÞ

X;j ¼ F ½Pðk;aÞ

X;j �; F ðk;aÞ

Y;j ¼ F ½Pðk;aÞ

Y;j �:

We performed Exploratory Data Analysis (EDA) on these information theory quantifiers

looking for simple descriptions of the data. We also used the Pearson correlation to measure

the association between features. This analysis was performed using the R language and plat-

form version 3.2.1 (http://www.R-project.org).

Fig 3 shows a scatterplot of the entropy for both the genuine and skilled forgery signatures.

The 5000 points correspond to 25 genuine signatures (in blue) and 25 forgery signatures (in

red) for each of the 100 subjects. Both types of signatures show similar association (Correla-

tion): CorrðHðk;GÞ
X;j ;H

ðk;GÞ
Y;j Þ ¼ 0:9665 and CorrðHðk;FÞ

X;j ;H
ðk;FÞ
Y;j Þ ¼ 0:9770. The entropies of both

types of signatures are overlapped and scattered elliptically. However, the bivariate mean and

dispersion values differ.

Entropies are less dispersed in the genuine than in the skilled forgery signatures, a signal of

the separability between them. Marginal density plots show the distribution of entropy for

each coordinate of both types of signatures. These plots, in spite of being limited due to its

marginal nature, reveal several modes, and suggest different dispersion patterns.

Fig 4 shows the contour plots of bivariate kernel density estimates for the entropy in genu-

ine and forgery signatures. A number of features are immediately noticeable. The dispersion

in the former group is much smaller than in the latter (less than 0.4). The kernel density esti-

mates reveal skewness and a mild multimodality in the joint distribution of the data. Quite

many points that are far from these curves and cluster centers. These points correspond to

abnormal local estimates obtained in heterogeneous blocks, possibly induced by the presence

of clusters. The modes in genuine signatures are smaller than in forgery signatures, and this

may be used as discriminatory measure. Similar results are obtained for the Complexity and

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 3. Scatter plot with marginal kernel density estimates of entropy quantifiers in both trajectory coordinates time series X and Y. Genuine (blue)

and skilled forgery signatures (red points), 100 subjects. Marginal kernel densities depict the distribution of entropy quantifiers along both axes.

doi:10.1371/journal.pone.0166868.g003
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the Fisher information; these are reported in the Supplementary Information, see Figs A, B, C

and D in S3 File, respectively.

Signature classification

As pointed out by Boulétreal et al. [25], a signature is characterized by two aspects: a) a con-

scious one associated to the pattern signature; and b) an unconscious one which leads spontane-

ous movements constituting the drawing. These two factors produce high variability, being the

amount of signature variability strongly writer-dependent. In fact, the signature variability or,

conversely, the signature stability can be considered an important indicator for writer character-

ization [26]. Houmani and Garcia-Salicetti [26] argue that signature stability is required in gen-

uine signatures to characterize a writer: signature variability reduces the ability to identify

forgery. Also, complex enough signatures are required to guarantee a certain level of security, in

the sense that the more complex a signature is, the more difficult it will be to forge it [26].

Boulétreal and collaborators [25, 27] propose a signature complexity measure related to sig-

nature legibility and based on fractal dimension. They classify writer styles into: highly cursive,

very legible, separated, badly formed, and small writings, using only genuine signatures.

Unfortunately, such resulting categories were not confronted to classifiers for performance

analysis.

We classified the one hundred genuine signatures in the MCYT-100 data base with causal

information theory quantifiers: Normalized permutation Shannon entropy, permutation sta-

tistical complexity and permutation Fisher information measure of both X and Y trajectories.

The mean and standard deviation values were clustered using the neighbor-joining method

Fig 4. Contour plot superimposed on the scatterplot of entropy quantifiers for genuine (right panel) and skilled forgery signatures (left panel).

doi:10.1371/journal.pone.0166868.g004
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and an automatic Hierarchical Clustering with the Euclidean distance-based dissimilarity

matrix. Each feature was treated independently, and the results are shown as circular dendro-

grams. Fig 5 shows the results of clustering the entropy. With this, we distinguish three classes

of genuine signatures denoted by H1, H2, and H3.

The H1 group is the first group to form, i.e., the one comprised of the most similar individ-

uals. It is formed below the 25% level, and it is composed by two subgroups: H1A and H1B.

The H1A group is formed exclusively by oversimplified signatures made by mere loops with-

out identifiable letters. It encompasses the following subjects: 1, 16, 17, 22, 23, 27, 29, 37, 83.

The same group is formed when the other features are used. The H1B group is comprised of

the following subjects: 2, 5, 8, 10, 19, 21, 24, 28, 32, 35, 36, 39, 43, 48, 49, 51, 55, 58, 59, 64, 69,

70, 74, 77, 89. Although these are simplified signatures, traces of letters and/or more complex

curves appear and differentiate them from the members of H1A.

The H2 group is formed approximately at the 32% level, and, again, it is comprised of two

distinct groups: H2A and H2B. The subjects that make the H2A group are: 4, 7, 12, 15, 18, 20,

30, 31, 34, 38, 40, 41, 42, 52, 57, 60, 62, 66, 67, 68, 71, 73, 75, 79, 80, 81, 86, 87, 91, 96, 100. It is

composed by signatures with traces that resemble letters, but that are not perfectly identifiable,

and that include circling traces of large or moderate size. Signatures in this group are kind of

framed by large loops. The H2B group is similar to the previous one, i.e., it is formed by signa-

tures with large and medium size circling traces, but with more identifiable letters than in the

previous groups. Names and surnames are more readable in this group than in previous ones.

It is formed by the following signatures: 6, 9, 13, 25, 33, 45, 50, 63, 65, 76, 78, 82, 84, 85, 88, 92,

94, 95, 97, 99.

The H3 group is formed at, approximately, the 43% level by the fusion of two other highly

unbalanced subgroups: one, H3A, with only two subjects (44, 46) and the other, H3B, with

thirteen subjects (3, 11, 14, 26, 47, 53, 54, 56, 61, 72, 90, 93, 98). These two clusters form at

approximately the same level. The former is composed of calligraphic signatures where vertical

traces predominate over horizontal ones. The latter is composed of highly cursive signatures,

with separation between the surname and the family name.

The same results of clustering was obtained with the Manhattan (norm L1) and Maximum

distances (L1 norm), showing that entropy is an expressive and stable quantifier. Similar anal-

yses were carried with the permutation statistical complexity and permutation Fisher informa-

tion (presented in Supplementary Information Figs A and B in S4 File). Complexity produces

the same clusters identified by entropy, so it adds no new information. The Fisher information

measure forms the same H1A group that was identified by the entropy, but with less cohesion,

at about 15%. In other words, these nine subjects are more similar locally than globally. As

with entropy, three main groups form at similar levels. The members of these clusters are slight

variations of those identified using entropy, with very similar structure.

Table 1 presents the mean and standard deviation of the three quantifiers over the 25 genu-

ine and 25 skilled forgery signatures (X and Y time series) for each of the typical subjects, split

in types H1, H2, and H3. These data reveal interesting tendencies. Genuine signatures present

quantifiers values lower than those corresponding to forgery signatures, and the latter also

exhibit larger standard deviation. This may be explained by the imitative character of these sig-

natures, however it deserves closer studies.

The classification into subclasses of genuine signatures was also carried by the parallelepi-

ped algorithm [28], arguably the simplest model-free classification procedure. Entropy leads to

clusters with nice interpretability. Fig 6 shows the regions that define the three classes identi-

fied by the dendrogram based on entropy presented in Fig 5. All subclasses are well separated

by disjoint boxes, except H1B and H2A that overlap slightly but without compromising the

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 5. Neighbor-joining, rooted, circular dendrogram clustering of genuine signatures by entropy: H1, H2, and H3, in red, blue, and green,

respectively.

doi:10.1371/journal.pone.0166868.g005
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discrimination. The classes are preserved using this classification superimposed with Com-

plexity and Fisher information features; see Figs C and D in S4 File.

Signature stability measure

We now assess the stability of the features the classification procedure will use as input. Two

measures of instability are computed over the PDFs obtained for each time series: one global

(the Jensen-Shannon divergence [29–31]) and another local (the Jensen-Fisher divergence

[32, 33]).

We propose using, for each subject, the square root of the Jensen-Shannon divergence over

his/her 25 genuine signatures (denoted by η(k)) as a global index of instability

Z
ðkÞ
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
1

25

X25

j¼1

Pðk;GÞ
X;j

" #

�
1

25

X25

j¼1

S Pðk;GÞ
X;j

h i
v
u
u
t ; ð1Þ

Z
ðkÞ
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
1

25

X25

j¼1

Pðk;GÞ
Y;j

" #

�
1

25

X25

j¼1

S Pðk;GÞ
Y;j

h i
v
u
u
t ; ð2Þ

Table 1. Sample mean and standard deviation (S.D.) of the time series quantifiers for the 25 genuine (G) and 25 skilled forged (F) signatures, for

each of the typical subjects: H1A, H1B, H2A, H2B, H3A, and H3B (same order as in Fig 2).

Entropy Complexity Fisher Information

Type Sub–Type Subject Coordinate Class Mean S.D. Mean S.D. Mean S.D.

H1 H1A 22 X F 0.1568 0.0052 0.1490 0.0039 0.4688 0.0070

G 0.1519 0.0019 0.1457 0.0015 0.4766 0.0035

Y F 0.1595 0.0071 0.1511 0.0052 0.4665 0.0097

G 0.1512 0.0042 0.1447 0.0037 0.4734 0.0046

H1B 39 X F 0.2212 0.0384 0.1941 0.0257 0.4286 0.0147

G 0.1749 0.0037 0.1620 0.0028 0.4497 0.0029

Y F 0.2270 0.0449 0.1980 0.0296 0.4277 0.0153

G 0.1776 0.0043 0.1644 0.0031 0.4491 0.0035

H2 H2A 60 X F 0.2482 0.0593 0.2112 0.0365 0.4212 0.0107

G 0.2010 0.0056 0.1803 0.0040 0.4331 0.0031

Y F 0.2442 0.0544 0.2090 0.0339 0.4219 0.0134

G 0.2079 0.0043 0.1861 0.0030 0.4315 0.0024

H2B 6 X F 0.2621 0.0584 0.2194 0.0334 0.4143 0.0137

G 0.2337 0.0149 0.2032 0.0095 0.4205 0.0066

Y F 0.2648 0.0538 0.2218 0.0304 0.4136 0.0134

G 0.2314 0.0102 0.2018 0.0067 0.4211 0.0050

H3 H3A 98 X F 0.3236 0.0646 0.2529 0.0320 0.3937 0.0208

G 0.2707 0.0101 0.2268 0.0064 0.4106 0.0032

Y F 0.3204 0.0794 0.2497 0.0388 0.3970 0.0208

G 0.2664 0.0124 0.2243 0.0077 0.4105 0.0034

H3B 46 X F 0.3514 0.0641 0.2691 0.0294 0.3940 0.0156

G 0.3480 0.0282 0.2720 0.0156 0.4019 0.0047

Y F 0.3419 0.0681 0.2639 0.0323 0.3940 0.0163

G 0.3270 0.0263 0.2599 0.0148 0.4008 0.0052

doi:10.1371/journal.pone.0166868.t001
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Fig 6. Classification by the rule of the parallelepiped of genuine signatures using entropy (one signature example from each of the three

groups is shown). Each subject is identified by its ID.

doi:10.1371/journal.pone.0166868.g006
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in which, S[•] represents the Shannon entropy, Pðk;GÞ
X;j and Pðk;GÞ

Y;j are the Bandt-Pompe’s PDF

associated to time series of coordinates ~x and ~y of the j genuine signature (α = G, j = 1, . . ., 25)

of subject k (k = 1, . . ., 100).

Analogously, we define a local instability index using the Fisher information measure, F ½��,
and evaluating the Jensen-Fisher divergence. We then have

x
ðkÞ
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

25

X25

j¼1

F Pðk;GÞ
X;j

h i
� F

1

25

X25

j¼1

Pðk;GÞ
X;j

" #v
u
u
t ; ð3Þ

x
ðkÞ
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

25

X25

j¼1

F Pðk;GÞ
Y;j

h i
� F

1

25

X25

j¼1

Pðk;GÞ
Y;j

" #v
u
u
t : ð4Þ

Fig 7 shows the plots of mean with standard error bars of instability index calculated by

each type of genuine signatures by subclasses as obtained from preclasification. The first obser-

vation is that the Jensen-Fisher local measure of instability (bottom) is the same in the hori-

zontal (left) and right (left) time series, whereas it changes when measured by the Jensen-

Shannon global measure (top).

The global measure of instability indicates that the most unstable group of genuine signa-

tures is H3B, but only two samples are available in this class. Both H2 classes exhibit similar

instabilities in both horizontal and vertical time series X and Y. The X and Y time series show

a symmetrical behavior in class H1: X is more stable than Y in H1A, whereas Y is more stable

than X in H1B. The least variable instability is observed in the H2 class.

All mean local stabilities, except that of H3B, are similar in the horizontal and vertical direc-

tions. The subclass H3B is, again, the most unstable, but it is more stable in the vertical

direction.

Overall, the measured instability is small in all subclasses granting, thus, stable classification

results based on these features.

Quasi-offline signature verification

The problem we have at hand consists of identifying suspicious signatures given that we only

have examples from genuine signatures. In practice, it is too expensive, too hard or even

impossible to obtain a significant number of good quality forgery signatures for every possible

individual in the data base. This, thus, configures a One-Class classification problem.

Support Vector Machines (SVMs) are suitable for solving machine learning problems even

in large dimensional feature spaces [34–36]. We provide a brief description of SVMs and One-

Class SVMs in the Supplementary Information S2 File along with a toy example with simulated

data. We used the libsvm (version 2.0) tool, linked with the R software that implements

SVM classification and regression, and One-Class SVMs (OC-SVM) [37] tools, with the

default parameters.

We assess the consistency of our procedure in a reproducible manner by evaluating the per-

formance of the proposed verification system for different training samples. Were selected ran-

dom samples of size n = 5, 10, 14, 18, 22 of genuine signatures for each user. Table 2 presents

the average value of all performance metrics using σ2 = 10 (see Supplementary Information S2

File). The observed Accuracy (ACC) suggests that the larger the training sample is the better

the performance is. The Area Under the ROC Curve (AUC) presents a similar tendency, and

its average is larger than 0.88, indicating that our verification system produces excellent

classification.
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Table 2. Performance of the system trained with varying number n of samples of genuine signatures;

" and # denote measures of quality (the higher the better) and of error (the smaller the better),

respectively.

n ACC (") AUC (") EER(%) (#)

5 0.6940 0.8816 0.1890

10 0.7678 0.8940 0.1711

14 0.8144 0.8975 0.1634

18 0.8250 0.8866 0.1731

22 0.8389 0.8909 0.1632

doi:10.1371/journal.pone.0166868.t002

Fig 7. Global Jensen-Shannon (top) and local Jensen-Fisher (bottom) measures of instability in genuine signatures. Bars show the mean, and

lines show the standard error over the subjects. The standard error of H3B is not plotted because there are only two subjects in this class.

doi:10.1371/journal.pone.0166868.g007
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As mentioned in the introduction, the two methodologies with best results are those based

on Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). In the following we

compare our proposal with these two recent state-of-the-art methods using the Equal Error

Rate, EER(%) over the same data base:

• Fierrez-Aguilar et al. [38], ERR(%) = 2.12 (five training signatures; Global (Parzen WC) and

local (HMM) experts function);

• Fierrez-Aguilar et al. [22], ERR(%) = 0.74 (ten training signatures; HMM based algorithm);

• Pascual-Gaspar et al. [39], ERR(%) = 1.23 (five training signatures; DTW-bases algorithm,

result with scenario-dependent optimal features.

The results of our proposal using five (ten, respectively) training samples, are ERR(%) =

0.19 (0.17, respectively). Our system, thus, provides better performance using similar number

of training signatures (see Table 2 for more details).

In the following we analyze the performance of the proposed procedure applied selectively

to the pre-classified samples. Table 3 presents the performance of the system when applied to

genuine pre-classified signatures. For all classes, larger training samples lead to larger average

ACC. The best average AUC are observed for the class H2, followed by H1 and H3. This indi-

cates that H2 signatures are easily identifiable. Note that the mean values of ERR(%) for H2 are

smaller than H1 and H3. The ERR(%) values in H3 indicate that identifying forgeries in this

class is hard.

Conclusions

We proposed a quasi-offline procedure for identifying skilled forgery of handwritten signa-

tures using time causal information Theory quantifiers and One-Class Support Vector

Machines. This is a competitive proposal from the computational viewpoint as it uses only the

signatures coordinates, and it produces better results than state-of-the-art techniques. The

improvement is obtained in a six-dimensional feature space, while other techniques employ

forty or more features. As a consequence, the processing time, memory and storage required

Table 3. Performance of the classification of pre-classified samples varying the number n of samples

of genuine signatures used for training; same coding as in Table 2.

Class n ACC (") AUC (") EER(%) (#)

H1 5 0.6758 0.8692 0.1976

10 0.7566 0.8828 0.1812

14 0.8039 0.8857 0.1717

18 0.8217 0.8894 0.1662

22 0.8277 0.8788 0.1631

H2 5 0.7059 0.8945 0.1784

10 0.7819 0.9079 0.1548

14 0.8284 0.9096 0.1509

18 0.8327 0.8900 0.1734

22 0.8515 0.8996 0.1608

H3 5 0.6948 0.8653 0.2053

10 0.7450 0.8720 0.2036

14 0.7907 0.8832 0.1874

18 0.8062 0.8686 0.1874

22 0.8214 0.8889 0.1716

doi:10.1371/journal.pone.0166868.t003
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are reduced and, at the same time, the procedure is less prone to the problems induced by the

curse of dimensionality. Such improvements make our proposal apt for becoming stand-alone

application in, e.g., mobile banking.

The technique also produces meaningful classification of the input data, as it is able to sepa-

rate different types of signatures. To the best of our knowledge, this is the first time informa-

tion theory quantifiers have been used for this problem.

The central contribution is the use of the Bandt and Pompe (BP) PDF symbolization which

is invariant to a number of transformations of the input data. In fact, the original time series

are pre-processed only to facilitate the signal sampling, and this scaling has no effect on the BP

PDFs. This representation, which is sensitive to the time causality, is able to capture essential

dynamical characteristics of the signatures that lead to excellent discrimination between skilled

forgery and genuine handwritten signatures, despite the high variability the data possess.

Additionally, obtaining the BP PDFs is computationally simple and efficient.

Only six information theory features are required for the classification, three from each hor-

izontal and vertical direction: Shannon entropy, statistical complexity, and Fisher information.

This contrasts many state-of-the-art works that require features in high-dimensional spaces,

e.g. forty or even more. As said, our proposal does not require highly specialized hardware

able to capture signature speed, pressure, orientation, etc.

The classification was performed by a One-Class Support Vector Machine trained with gen-

uine signatures. The learned rule is consistent with respect to the number of training samples,

and with as few as five examples it surpasses the performance of recent successful techniques.

We assessed the performance of our proposal using the same data base employed in the cur-

rent literature, with also the same measures of quality and error.

Future work includes the use of other variables already available in the MCYT data base

(pressure, and azimuth and altitude angles), along with other features, e.g. clustering coeffi-

cient entropy, network clustering coefficient, permutation min-entropy [40–42], and cluster-

ing and classification techniques as, for instance, deep learning [43].
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