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Abstract

Purpose

Therapeutic strategies that modulate ventricular remodeling can be useful after acute myo-
cardial infarction (MI). In particular, statins may exert effects on molecular pathways
involved in collagen metabolism. The aim of this study was to determine whether treatment
with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular
remodeling in a rat model of MI.

Methods

Male Wistar rats were used in this study. Ml was induced in rats by ligation of the left anterior
descending coronary artery (LAD). Animals were randomized into three groups, according
to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed
by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation fol-
lowed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic
characteristics were obtained by a pressure-volume catheter. Hearts were removed, and
the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen
deposition, as well as the myocyte cross-sectional area. Expression levels of mediators
involved in collagen metabolism and inflammation were also assessed.

Results

End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly
reduced in the atorvastatin compared to the control group. Atorvastatin modulated expres-
sion levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I,
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PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as
indicated by lower expression levels of TLR4, IL-1, and NF-kB p50.

Conclusion

Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibro-
sis, and left ventricular hypertrophy after Ml in rats, perhaps in part through effects on colla-
gen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular
remodeling after myocardial ischemic events.

Introduction

Heart disease is the leading cause of death in developed countries. Ischemic events in cardiac
tissue can lead to cellular, molecular, and interstitial changes that modify the architecture and
geometry of the ventricles. This process of ventricular remodeling [1, 2] involves changes at
both the site and remote areas of the infarct [3]. Cardiac extracellular matrix (ECM) is com-
posed of structural proteins, such as proteoglycans, glycosaminoglycans, fibroblasts, and colla-
gen, and regulatory proteins, such as matricellular proteins that regulate interactions between
cells and ECM [4-6]. The predominant component of the ECM, collagen is synthesized and
secreted by cardiac fibroblasts [5, 7]. Collagen types I and III (COL I and COL III, respectively)
are the most abundant collagen types in cardiac tissue, together accounting for 95% of the total
collagen [2, 7, 8]. Ventricular remodeling is unfavorable to the myocardium in part because it
is associated with accumulation of collagen and other ECM components [9].

Matrix metalloproteinases (MMPs) are proteolytic enzymes who functions are directed
towards the degradation of collagen and ECM components [10-14]. MMPs are synthesized
and secreted by cardiomyocytes, fibroblasts, endothelial cells, and cells involved in inflamma-
tory processes, such as macrophages, neutrophils, and lymphocytes [10]. Elevated MMP levels
have been observed after ischemic injury in the myocardium [15]. During tissue remodeling,
tissue inhibitors of metalloproteinases (TIMPs) are secreted and regulate the activity levels of
MMPs [16, 17]. A dynamic balance between the action and inhibition of MMPs is essential to
ensuring control of the degradation and synthesis of collagen and, thus, to maintaining ECM
integrity [15]. In addition to MMPs, the inflammatory process has an important role in ven-
tricular remodeling by modulating healing and ECM properties [18]. Several mediators are
activated after ischemic insult [19], leading to the infiltration of various inflammatory cells,
including those residing in the myocardium as well as macrophages, neutrophils, and mono-
cytes, and the secretion of cytokines, such as interleukin 1 beta (IL1B) and tumor necrosis fac-
tor alpha (TNFa) [20].

3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, also known as statins, are
drugs indicated for the treatment and prevention of dyslipidemia. Statins stabilize atheroscle-
rotic plaques in cardiovascular disease. Their pleiotropic effects include antioxidant and anti-
inflammatory activities, improvement of endothelial function, and reduction of cytokine
expression [9, 21, 22]. Atorvastatin has shown beneficial effects in the inhibition of cardiac
fibroblasts in vitro, the reduction of fibrosis, and the expressions of COL I and COL III [21, 23,
24]. Atorvastatin has been observed to reduce the effects and symptoms of heart failure, which
is a deleterious consequence of ventricular remodeling [23, 25]. However, the signaling path-
ways and molecular mechanisms by which atorvastatin influences ventricular remodeling after
myocardial infarction (MI) are not well understood. Thus, the purpose of this study was to
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determine whether administration of atorvastatin for 4 weeks would influence collagen metab-
olism and ventricular remodeling in an experimental model of MI in rats.

Methods

The study was approved by the ethics committee on animal use at the University of Campinas
(protocol 2860-1). The study was conducted in accordance with the Guide for the Care and
Use of Laboratory Animals (NIH Publication No. 85-23, Revised 1996).

Animals and induction of Ml

Four-week-old male Wistar rats, weighing approximately 180 grams, were used for this study.
MI was induced in rats by ligation of the left anterior descending coronary artery (LAD).
Briefly, anesthesia was induced by inhalation of 2% isoflurane without intubation, followed by
thoracotomy and gentle chest compression to expose the heart. A 6-0 polypropylene suture
was passed around the LAD, which was then occluded. The heart was returned to the thoracic
cavity, and the chest was closed quickly. Animals were observed during recovery and received
acetaminophen (single dose 50 mg/kg, by gavage).

Animals were randomized into three groups. Animals in the sham group (n = 14) were sub-
jected to the surgical procedure without LAD ligation. Animals in the control group (n = 27)
were subjected to LAD ligation and received 2 ml of saline solution by oral gavage daily for 4
weeks. Animals in the atorvastatin group (n = 24) were subjected to LAD ligation and received
10mg atorvastatin/kg/day (Lipitor, Pfizer) diluted with 2 ml of saline solution by oral gavage
daily for 4 weeks. Dose of atorvastatin used in this study can be considered safe, according to
studies evaluating its use in rat models [9, 23, 24]. Animals received the first dose of atorva-
statin (or saline solution, for the control group) on the same day as the surgical procedure,
after recovery. At the end of 4 weeks, animals were sacrificed under deep anesthesia using an
overdose of ketamine (75 mg/kg) and xylazine (15mg/kg), followed by exsanguination per-
formed through inserting a needle into the left ventricular (LV) cavity and aspirating the
blood. Hemodynamic, histological, and molecular evaluations were performed.

Hemodynamic assessment

Hemodynamic data of animals were assessed through an invasive procedure at the end of the 4
weeks. Animals were anesthetized with xylazine (5 mg/kg) and ketamine (75 mg/kg) through
intraperitoneal injection. At the end of the procedure the animals were euthanized by receiving
additional dose of xylazine (15 mg/kg) and ketamine (75 mg/kg). An SPR-838 pressure-vol-
ume catheter (Millar Instruments) was inserted into the cavity of the left ventricle (LV)
through the left carotid artery. Pressure and volume of the LV were monitored continuously
for correct catheter positioning. The catheter was coupled to a PowerLab 8/30 A/D converter
(AD Instruments). Parallel conductance correction was determined by injection of 20 pL of
30% hypertonic saline solution. At the end of the hemodynamic measurements, LV volume
correction was performed by using heparinized blood from the animal in a cuvette calibration
procedure.

Data of the left ventricle end-diastolic volume (EDV), end-systolic volume (ESV), isovolu-
mic relaxation constant (Tau), maximum derivative of pressure (Max dP/dt), minimum deriv-
ative of pressure (Min dP/dt), preload recruitable stroke work (PRSW), and end-systolic PV
relationship (ESPVR) were recorded.
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Histological evaluations

After hemodynamic data were obtained, animals were killed and dissected to remove the
heart. The LV was separated from other cardiac structures, sectioned into three segments,
fixed in10% paraformaldehyde, and embedded in paraffin. Histological 4-pum-thick sections
were made. Sections were stained with Masson trichrome for analysis of fibrosis and Picrosir-
ius red for analysis of collagen. All measurements were limited to the papillary muscle as the
segment of choice for analysis. The proximal portion of the LAD is the origin of the septal
branch. The septal branch is responsible for irrigation of the papillary muscles and is not
affected by coronary occlusion, thereby guaranteeing maintenance of these muscles [26]. LV
and remote region of the infarct were analyzed. To establish fibrosis in the remote area, the
contralateral wall of the LV was identified, considering the region opposite to the infarcted
area. For quantitative analysis, the infarcted region was excluded, and just the remote region
was analyzed. Optical microscope with polarized light (Imager A2 Axio Carl Zeiss) was used to
obtain images of histological sections. Microscopy was performed with 2.5x magnifying lenses
and a coupled camera in the microscope (Axio Cam ICC 1, Zeiss). Fragments were recon-
structed to form a panoramic image by using PTGui 9.1.3 (Rotterdam, Netherlands). Areas of
fibrosis and collagen deposition were analyzed by Image ProPlus6.0 (Rockville, MD).

Myocyte cross-sectional area

As an indicator of the level of ventricular hypertrophy after MI, myocyte cross-sectional area
was evaluated as described by Stefanon et al.,[27]. Analysis was performed in a remote region
of the LV, by using an optical light microscope (Imager A2 Axio Carl Zeiss) with a 40x magni-
tying lens. Assessment was randomized by a blinded examiner for all groups. Histological 4-
um-thick sections were obtained and stained with hematoxylin and eosin (H&E), followed by
the evaluation of 12-15fields. Cross-sectional area was measured manually by counting 70
cells per animal (~5 cells per field). All analyzed cells exhibited structural integrity of the
nucleus and cytoplasm. Image ProPlus6.0 was used to evaluate cell size (in pm).

Immunoblotting

Immunoblotting was used to evaluate protein expression levels in remote regions of the
infarcts. Tissue samples were obtained, placed in liquid nitrogen, and kept at -80°C. Total pro-
tein was extracted by RIPA buffer containing protease and phosphatase inhibitors [28]. Sam-
ples were homogenized and centrifuged. Supernatant was used to determine the amount of
total protein with the BCA Protein Assay Kit (23225/23227, Thermo Scientific). Forty micro-
grams of protein were applied to an SDS-PAGE gel, electrophoresis was performed, and pro-
tein bands were transferred by Trans-Blot™ (Turbo-BioRad) to a 0.2-um nitrocellulose
membrane (BioRad).

Proteins were blocked with blocking solution for 2 hours and incubated with primary anti-
bodies for MMP-1/8 (sc30069), TIMP1 (ab61224), COL I (sc8784), COL III (sc28888), procol-
lagen C-proteinase enhancer (PCPE, sc730022), secreted protein acidic and rich in cysteine
(SPARC,ab61383), tenascin C (TN-C, ab108930), I kappa B alpha (IxBo, sc371), phosphory-
lated I kappa B alpha (pIxBa, sc8404), Toll-like receptor 2 (TLR2, ab108998), and TLR4
(ab30667). Primary antibodies were obtained from Santa Cruz Biotechnology and Abcam.
Horseradish peroxidase-conjugated anti-rabbit or anti-goat secondary antibodies (Thermo
Scientific) were added and incubated for 2 hours, followed by a revealing solution (Super Sig-
nal Chemiluminescence Solution and West Pico Chemiluminescent Substrate, Pierce). Images
of bands corresponding to proteins of interest were obtained through a photo document

PLOS ONE | DOI:10.1371/journal.pone.0166845 November 23, 2016 4/17



@° PLOS | ONE

Atorvastatin Treatment after Myocardial Infarction

system (Gel Logic Imaging System) and analyzed by densitometry. All signs of bands corre-
sponding to proteins of interest were normalized to Ponceau staining [28, 29].

Quantitative real-time PCR

RNA was extracted from a remote region of the LV by using Trizol reagent (Ambion RNA,
Life Technologies). Total RNA was quantified from the 260-/280-nm ratio on the Epoch
Micro-Volume Spectrophotometer System. For the reverse transcriptase reaction (cDNA), 1pug
of total RNA was used with the High Capacity cDNA Reverse Transcription kit (Applied Bio-
systems), in accordance with the manufacturer’s protocol. Gene expression was measured by
quantitative real-time PCR with TagMan commercially available hydrolysis probes (Applied
Biosystems) for IL-1, IL-6, NF-xB p50, and NF-xB p65. Expression levels of target genes were
normalized to the expression level of actin as a reference gene.

Statistical analysis

Statistical analyses were performed by using GraphPadPrism for Windows version 5. Continu-
ous variables were expressed as the mean + standard deviation (SD). All samples were tested
for normality by the D’Agostino-Pearson test. Comparison among three groups was per-
formed by one-way analysis of variance (ANOVA) followed by the Bonferroni or Kruskal-
Wallis test, when appropriate. P<0.05 was considered statistically significant.

Results
Atorvastatin attenuates ventricular dysfunction

Atorvastatin treatment for 4 weeks after LAD ligation significantly reduced EDV compared to
the control group. The atorvastatin group had lower ESV and higher Min dP/dT, PRSW, and
ESPVR values compared to the control group, but these differences were not statistically signif-
icant (Table 1).

Atorvastatin reduces fibrosis after Ml

We quantified areas of fibrosis and collagen deposition on the LV in the three groups (Fig 1).
Animals subjected to LAD ligation showed larger areas of fibrosis compared to animals sub-
jected to sham surgery (sham: 1.1% =+ 0.3%, control: 20.8% + 7.6%, atorvastatin: 15.0% * 6.7%;
P<0.01). Treatment with atorvastatin for 4 weeks reduced the area of fibrosis compared to the
control group (P = 0.03). We found smaller areas of collagen deposition in the LVs of rats in

Table 1. Hemodynamic Data for Rats in the Three Groups of the Study.

Parameter

EDV (uL)

ESV (uL)

Tau (ms)

Max dP/dt (mmHg/s)
Min dP/dt (mmHg/s)
PRSW

ESPVR

Data were recorded at the end of 4 weeks and are expressed as mean + SD.

* indicates P<0.05 versus sham group;
# P<0.05 versus control group.

doi:10.1371/journal.pone.0166845.t001

Sham Control Atorvastatin P value

176.2 £ 27.51 220.2+31.67 172.8+36.21" 0.04
165.3 £ 26.09 201.8+27.70 167.1 + 31.70" 0.05
10.51+1.74 20.43 £6.90* 18.11 £ 3.56* <0.01
7976 + 1268 6926 + 2828 5405 + 1651 0.13
-8462 + 1902 -4719 + 1836* -5059 + 2122* <0.01
35.34 £20.13 28.97 £ 16.68 40.79 £ 36.57 0.71
418+ 1.54 0.55 +0.49* 1.38+1.62* <0.01
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Fig 1. Histological Images Showing LVs of Animals in the Three Groups. Sham (A and D), control (B and E), and atorvastatin groups
(C and F). Sections were stained with Masson trichrome for fibrosis analysis (top) or Picro Sirius red for collagen analysis (bottom). Scale
bars: 1000pm. Histograms show that the percentage of fibrosis in the LV was reduced after treatment with atorvastatin (white), without
affecting the collagen content, compared to the control group (black). Sham group (gray) showed less collagen deposition compared to the
atorvastatin and control groups. Data are expressed as the mean + SD. *P<0.05 versus sham group, #P<0.05 versus control group.

doi:10.1371/journal.pone.0166845.9001
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Fig 2. Fibrosis and Collagen Levels in Remote Regions of the LV after MI. Histogram shows that treatment with atorvastatin (white) did
not reduce the deposition of fibrosis or collagen compared to the control group (black). Fibrosis content was reduced in animals from the
sham group (gray) compared to animals subjected to MI (atorvastatin and control groups). Data are expressed as the mean + SD. *P<0.05
versus sham group. Data are representative of 14 animals per group.

doi:10.1371/journal.pone.0166845.9002

the sham group compared to groups with LAD ligation (sham: 0.81% + 0.31%, control: 9.5% +
5.0%, atorvastatin: 7.4% + 4.5%; P<0.01). No significant difference in the extent of collagen
deposition was observed between the control and atorvastatin groups (P = 0.24).

We evaluated the areas of fibrosis and collagen in remote infarct regions for rats in the three
groups (Fig 2). Animals in the sham group had smaller areas of fibrosis compared to animals in
the control or atorvastatin group (sham: 0.6% + 0.4%, control: 3.5% + 2.7%, atorvastatin: 2.6%
+ 1.4%; P<0.01). No significant difference in collagen deposition area was found among the
three groups (sham: 0.7% + 0.3%, control: 1.1% + 0.7%, atorvastatin: 0.9% + 0.4%; P = 0.14).

Atorvastatin reduces ventricular hypertrophy

To evaluate the extent of ventricular hypertrophy, we analyzed the myocyte cross-sectional
area in histological sections of remote regions of the infarcts from animals in the three groups
(Fig 3). After 4 weeks, we found significantly smaller myocyte cross-sectional areas in the
sham compared to the control or atorvastatin group (sham: 209.6 + 45.34 um, control:

446.8 £ 133.0 pm, atorvastatin: 261.1 + 79.35 um; P<0.01), as well as in the atorvastatin com-
pared to the control group (P<0.01).

Atorvastatin modulates collagen metabolism

We studied expression levels of proteins related to collagen metabolism (i.e., MMP-1/8,
TIMP1, COL I, COL III, PCPE, and SPARC) in remote regions of LV infarcts from animals in
the three groups (Fig 4). The atorvastatin group showed significantly higher MMP-1/8 and
TIMP1 but lower COL I expression levels compared to the control group. We found signifi-
cantly lower expression levels of PCPE and SPARC in the atorvastatin group compared to the
control group. The COL III level did not significantly differ among the three groups. Taken
together, these results show that atorvastatin treatment strongly influenced collagen metabo-

lism in the LV infarcts.

Atorvastatin reduces inflammatory response

Using immunoblotting, we analyzed expression levels of several potent mediators involved in
the inflammatory response after MI (Fig 5). Treatment with atorvastatin influenced the activity
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Sham Control Atorvastatin

Fig 3. Myocyte Cross-sectional Areas in Remote Regions of LV Infarcts. Images correspond to sham (A), control (B), and atorvastatin
groups (C). Scale bars: 100um. Sections were stained with H&E. Seventy cells were analyzed per plate (n = 14 animals per group). Data are
expressed as the mean + SD. *P<0.05 versus sham group, #P<0.05 versus control group.

doi:10.1371/journal.pone.0166845.g003

(phosphorylation) of IkBa., but this difference was not significant among the groups. TN-C
showed lower expression levels in animals from the sham compared to the other two groups,
but the difference between the atorvastatin and control groups was not significant. We found
lower expression levels of TLR4 in the atorvastatin compared to the control group, but no sig-
nificant difference between the groups for TLR2.

Using quantitative real-time PCR, we evaluated the anti-inflammatory properties of atorva-
statin by analyzing the mRNA expression levels of genes encoding some pro-inflammatory
cytokines, such as IL-1, IL-6, NF-xB p50, and NF-xB p65 (Fig 6). Atorvastatin treatment signifi-
cantly reduced the mRNA expression level of the NF-xB p50 compared to the control group,
but without affecting the expression of the NF-xB p65. Atorvastatin treatment significantly
reduced mRNA levels of the IL-1, but did not significantly affect levels of the IL-6, compared
to the control group.

Discussion

In this study, we evaluated the action of atorvastatin in collagen metabolism and ventricular
remodeling using a rat model of MI. Our main finding was that atorvastatin treatment for 4
weeks helped to prevent or mitigate these deleterious effects.

After tissue injury, production and deposition of collagen are increased in the ECM, leading
to fibrosis, heart stiffness, as well as systolic and diastolic dysfunctions [30]. Atorvastatin treat-
ment reduced the fibrotic area in the LVs of rats. We were able to demonstrated a reduction of
fibrosis, but not collagen deposition assessed by histological qualitative analyses. The Masson
trichrome permits a quantitative analysis of all types of collagen and extracellular matrix
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Fig 4. Inmunoblotting Results for Expression Levels of Proteins Related to Collagen Metabolism in Remote Regions of LV
Infarcts. Representative blots for expression levels of each studied protein. Bands corresponding to each protein (top) were normalized by
Ponceau staining (red bands on bottom). Histograms show expression levels determined by densitometry. Data are expressed as the
mean + SD. *P<0.05 versus sham group; #P<0.05 versus control group. Data are representative of nine animals per group.

doi:10.1371/journal.pone.0166845.9004

components in a sample. Whereas, the Picrusirius red is more specific for staining types I and
III collagen molecules. However, the protein expression assessed by immunoblotting revealed
lower content of collagen I and similar levels of collagen IIL.

Atorvastatin was also effective in maintaining the ventricular integrity and function, as
demonstrated by the lower values of ESV and EDV. Previous studies using animal models
showed that the systolic and diastolic functions of the heart can be preserved and enhanced
with the use of other statins, such as pravastatin and fluvastatin [13, 31]. Seven statin types are
currently available that can potentially provide similar effects and properties to atorvastatin
[32]. Atorvastatin treatment before and after induction of MI can attenuate ventricular dys-
function by improving Max dP/dt, EDP, and PRSW [9]. Consistent with these findings, we
observed that PRSW and ESPVR were higher after atorvastatin treatment (albeit without sig-
nificant differences between the groups), indicating that atorvastatin treatment minimized
contractile dysfunction and improved heart stiffness.

We evaluated the possible influence of atorvastatin on collagen metabolism after MI.
MMPs are zinc-dependent endopeptidases. After activation in the myocardium, MMPs regu-
late ECM structure through the degradation of ECM components, particularly collagen [33],
and contribute to ventricular remodeling [34, 35]. TIMPs are endogenous regulators of the
catalytic action of MMPs. TIMPs regulate the processes of inflammation, dilation, and ventric-
ular dysfunction [36]. Expression of TIMP1 after ischemic insult is fundamental to ensuring
maintenance of the ventricular geometry. Increased expression levels of MMPs and TIMPs

PLOS ONE | DOI:10.1371/journal.pone.0166845 November 23, 2016
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Fig 5. Inmunoblotting Results for Expression Levels of Proteins Related to Inflammatory Processes in Remote Regions of LV
Infarcts. Representative blots for expression levels of studied proteins. Signs of bands corresponding to phosphorylated IkBa (top) were
normalized by total IkBa expression (bottom). Signs of bands corresponding to Tenascin-C (TN-C), TLR2, and TLR4 (top) were normalized
by Ponceau staining (red bands on bottom). Histograms show expression levels determined by densitometry. Data are expressed as the
mean + SD. *P<0.05 versus sham group, “P<0.05 versus control group. Data are representative of nine animals per group.

doi:10.1371/journal.pone.0166845.g005

may be involved in the reduced development of fibrosis after 4 weeks of atorvastatin treatment.
This effect occurs because the rate of collagen degradation is greater than the rate of synthesis,
leading to reduced collagen deposition in the ECM and less cardiac fibrosis [23].

In the present study, we found that atorvastatin treatment significantly increased expression
levels of MMP-1/8 and TIMP1. Atorvastatin exerted this effect on collagen synthesis via two
specific markers: PCPE and SPARC. PCPE is a glycoprotein involved in enhancement of pro-
collagen C proteinases, which are key enzymes in the synthesis of new collagen molecules [37].
SPARC is a matricellular protein that is expressed after pathological events, such as MI, fibro-
sis, and hypertrophy [38]. SPARC modulates the formation of new collagen fibers through its
binding to procollagen molecules [39]. SPARC levels are decreased in the normal adult heart,
where as expression levels are elevated after tissue injury [40]. We found that atorvastatin
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Fig 6. Quantitative PCR Results for mMRNA Levels of Genes Related to Inflammatory Processes. Expression levels were normalized
using actin as a reference gene. Data are expressed as mean + SD.*P<0.05 versus sham group, #P<0.05 versus control group. Data
representative of 8 animals in each group.

doi:10.1371/journal.pone.0166845.9006

negatively influenced expression levels of PCPE, SPARC, and COL I, but we did not observe
any effects in relation to COL III. Taken together, our findings of increased expression levels
of MMP1 and TIMP1 and reduced expression levels of PCPE, SPARC, and COL I indicate that
atorvastatin strongly increased the degradation and decreased the synthesis of collagen, result-
ing in lower fibrosis content. We believe that the potent effect of atorvastatin on collagen
metabolism was also reflected in the improvement of ventricular function (i.e., lower EDV).

A consequence of ventricular remodeling after MI, cardiac hypertrophy is directly associ-
ated with heart failure [41]. Statins have anti hypertrophic effects through mediation of the
peroxisome proliferator-activated receptor (PPAR) pathway [42]. PPARs inhibit cardiac
hypertrophy by reducing pro-inflammatory cytokine levels [42, 43]. Prior studies demon-
strated that atorvastatin prevents the reduction of PPAR levels and, thereby, limits cardiac
hypertrophy [44, 45]. We evaluated the degree of hypertrophy through the myocyte cross-
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sectional area, which was considerably reduced in animals treated with atorvastatin. Although
we did not study the PPAR pathway, we found that atorvastatin reduced the development of
hypertrophy through its anti-inflammatory properties. PPARs may influence these effects.

After an initial ischemic insult, several inflammatory mediators are activated and stimulated
to move to the site of tissue injury [19]. Infiltrating cells (i.e., macrophages, monocytes and
neutrophils) secrete cytokines that exacerbate the inflammatory response [20], which may
induce an expansion of the infarct to remote regions of the LV.

Beyond stabilizing atherosclerotic plaques, statins can improve endothelial function and
reduce cytokine expression through their pleotropic effects [9, 21, 22]. We evaluated the
anti-inflammatory properties of atorvastatin by studying expression levels of some pro-
inflammatory cytokines at remote regions of the LV. Treatment with atorvastatin induced a
reduction in the levels of IL-1, but not of IL-6, in remote infarct regions. Reduced IL-1 levels
were accompanied by reduced phosphorylation of IxkBo. IL-1 is a pro-inflammatory cyto-
kine responsible for some deleterious consequences after infarction, such as exacerbation of
the inflammatory response, apoptosis of cardiomyocytes, fibrosis, and cardiac hypertrophy
[18, 46]. Cardiomyocyte apoptosis leads to activation of the complement system and toll-
like receptors (TLRs), as well as the generation of free radicals that stimulate nuclear factor
kappa B(NF-kB) in cardiomyocytes, thereby inducing expression of cytokines, chemokines,
and adhesion molecules [47]. NF-«B is regulated through the phosphorylation and degrada-
tion of IxB proteins, especially IkBo, which are responsible for the cytoplasmic activation
and nuclear translocation of the NF-kB heterodimer p50/RelA [48-50]. Anoxic events, reac-
tive oxygen species, and pro- inflammatory stimuli mediated by TNF-o and IL-1 can lead to
the activation of the IxB kinases [48, 51-53]. In the nucleus, NF-kB p50/RelA acts as a tran-
scription factor stimulating the expression and release of TNF-a, IL-1, IL-6, acute phase
proteins, and adhesion molecules, such as ICAM1 and YCAM], all of which are involved in
the inflammatory response [53]. Thus, the beneficial effects of atorvastatin treatment may
relate to its induction of reduced IL-1 levels, with concomitantly reduced stimulation of
IkBa and, consequently, inhibition of NF-«xB p50 expression. Although we did not observe
changes in NF-xB p65 expression after atorvastatin treatment, we did observe the inhibition
of NF-kB p50, associated with improvements in ventricular remodeling after MI. Absence
of NF-kB p50 in knockout mice after MI can attenuate ventricular remodeling [54]. Atorva-
statin was reported to inhibit NF-«kB, potentially due to reduced stimulation of cytoplasmic
IxBa [55-57,58].

TLRs are pattern recognition receptors expressed by leukocytes after ischemic injury in the
heart [59-61]. TLRs regulate the inflammatory response by mediating the translocation of NF-
kB and the release of inflammatory cytokines, such as IL-1, IL-6, and TNFa. [61, 62]. TLR2
and TLR4 are the most-studied TLRs in cardiac tissue [63]. Atorvastatin treatment signifi-
cantly reduced expression levels of TLR4, but not of TLR2, in our rat model of MI. From this
finding, we infer that reductions in TLR4 levels were responsible for inducing lower expression
levels of IL-1 and, consequently, of pIkBo and NF-kB p50. Our results are similar to the find-
ings of Yang et al.,after fluvastatin treatment [62].

TN-C is a matricellular protein and an important marker of inflammation. TN-C acts on
the formation of new collagen molecules and regulates NF-kB activation [6]. Absence of TN-C
attenuates cardiac dysfunction after MI, by improving diastolic function and reducing fibrosis
development [38, 64]. We found that atorvastatin treatment can lead also to lower expression
levels of TN-C, which may contribute to reduce the inflammatory response via NF-xB p50 and
to minimize the progression of adverse ventricular remodeling. In our manuscript atorvastatin
had a beneficial influence on ventricular remodeling. The ventricular remodeling process may
occur in several different clinical scenarios such as chronic aortic regurgitation and chronic
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mitral regurgitation. Although we did not evaluate the atorvastatin effect on those clinical situ-
ations, we may extrapolate a potential beneficial effect with regarding of collagen metabolism.
However, we do not have data for this assumption. Further clinical trials and further investiga-
tions are necessary.

Previous studies have investigated the use of atorvastatin at a dosage of 10mg/kg/day. Simi-
larly to our findings, these previous studies showed improvement of ventricular function,
reduction of collagen deposition due to lower synthesis, and reduced levels of fibrosis [9, 23].
Atorvastatin may exhibit similarities or differences compared to other statins. However, we
did not perform experiments comparing atorvastatin with other statins, and further studies
are needed for this purpose.

As limitation of this study we can mention that is an experimental model and not a clini-
cal study. However, this MI experimental model has been utilized extensively reported in the
literature and mimics the pathophysiological events in humans after coronary artery occlu-
sion [65].

For the surgical procedures, isoflurane was used as an anesthetic agent. The isoflurane may
attenuate the deleterious effects caused by ventricular remodeling as demonstrated by Roehl
and collaborators [66]. However, all animals underwent to the same anesthesia protocol being
exposed to isoflurane for a short time, approximately 2 minutes. Therefore, if there were any
isoflurane effect on the left ventricle remodeling, this will be observed throughout all groups.
All the results were reported in comparison to the SHAM and Control groups.

In conclusion, the administration of atorvastatin for 4 weeks may be a therapeutic strategy
to modulate and limit the reparative processes of ventricular remodeling. We found that ator-
vastatin improved ventricular function and attenuated the fibrotic, hypertrophic, and inflam-
matory responses after MI, in addition to modulating collagen metabolism in the experimental
model. Atorvastatin may be a treatment choice for reversing these conditions and for control-
ling the effects and damage caused by ventricular remodeling.
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