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Abstract

The standard 26S proteasome is responsible for the majority of myofibrillar protein degrada-

tion leading to muscle atrophy. The immunoproteasome is an inducible form of the protea-

some. While its function has been linked to conditions of atrophy, its contribution to muscle

proteolysis remains unclear. Therefore, the purpose of this study was to determine if the

immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult

male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1)

mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while con-

trol mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and tryp-

sin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome

(LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius mus-

cle. Denervation induced significant atrophy and was accompanied by increased activities

and protein content of the catalytic subunits in both WT and L7M1 mice. Although denerva-

tion resulted in a similar degree of muscle atrophy between strains, the mice lacking two

immunoproteasome subunits showed a differential response in the extent and duration of

proteasome features, including activities and content of the β1, β5 and LMP2 catalytic sub-

units. The results indicate that immunoproteasome deficiency alters the proteasome’s com-

position and activities. However, the immunoproteasome does not appear to be essential

for muscle atrophy induced by denervation.

Introduction

In conditions of skeletal muscle atrophy (e.g., denervation), muscle mass is reduced, which

ultimately impairs the muscle’s force producing capacity and ability to function [1–5]. Loss of

muscle mass, also referred to as muscle atrophy, is primarily due to an imbalance between
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protein turnover with degradation exceeding synthesis. Two of the catabolic pathways respon-

sible for shifting protein balance towards degradation include the autophagy-lysosome and

ubiquitin-proteasome systems. Of these, the ubiquitin-proteasome system is responsible for

degrading the myofibrillar proteins actin and myosin heavy chain [3,6,7], making it the main

regulator of proteolysis in skeletal muscle.

One of the key components of ubiquitin-proteasome system is the standard proteasome. It

is composed of a 20S core particle that consists of four stacked rings of seven subunits each.

The outer rings of the 20S core contain constitutively expressed α-subunits, which associate

with ATP-dependent regulatory PA700 complexes. The two inner rings contain the β-sub-

units. Within the β-rings, β1, β5 and β2 are the catalytic subunits and cleave after acidic,

hydrophobic, and basic amino acid residues, respectively [8,9]. The standard proteasome is

highly abundant in skeletal muscle and is responsible for degrading ubiquitinated proteins.

Briefly, ubiquitin-conjugated proteins are deubiquitinated and transferred into the 20S protea-

some core via PA700 [10] and degraded by the catalytic β-subunits. It is well established that

several components and activities of the standard proteasome are increased in atrophying

muscle [11–14]. However, the standard proteasome is not the only proteasome present in skel-

etal muscle. A variant of the standard proteasome, termed the immunoproteasome, also exists.

The immunoproteasome associates with PA28, a regulatory complex similar to PA700, but

is ATP-independent. Another difference between the standard proteasome and immunopro-

teasome occurs within the β-rings. In the immunoproteasome, the β1, β5 and β2 subunits are

replaced with the inducible subunits LMP2 (β1i), LMP7 (β5i) and MECL-1 (β2i), respectively.

Under basal conditions, the immunoproteasome exists at low concentrations, roughly contrib-

uting 5% to the total proteasome population in skeletal muscle [15]. The immunoproteasome is

well-known for its role in immune function, specifically generation of antigenic peptides [16]

as part of immune surveillance [17–19]. Interestingly, under catabolic conditions such as aging

[20,21], muscular dystrophy [22], and denervation [11], the immunoproteasome increases,

which suggests a link between atrophy and the immunoproteasome may exist in skeletal mus-

cle. A more extensive investigation is required to establish the validity of this assumption.

The purpose of this study was to determine if the immunoproteasome influences skeletal

muscle proteolysis. To accomplish this, we determined how proteasome (i.e., standard protea-

some and immunoproteasome) content and activity in skeletal muscle of both WT mice and

lmp7-/-/mecl-1-/- double knockouts (L7M1, immunoproteasome deficient) mice responded to

denervation. Using this design, we were able to document how immunoproteasome deficient

mice responded to denervation induced-atrophy and the effect it had on proteasome content

and activity. We hypothesized that denervated muscle from L7M1 mice would be partially pro-

tected from atrophy.

Materials and Methods

Animals

Male 5–7 month-old C57BL/6 wild type (WT) and the double knockout lmp7-/- and mecl1-/-

(L7M1) mice on a C57BL/6 genetic background [18] were used in the present study. All WT

and L7M1 mice were randomly assigned to either an innervated (Day 0) or denervated (DN)

group. Mice were fed ad libitum and maintained on a 14-hour light/ 10-hour dark cycle at

20˚C. At the end of the study, mice were deeply anesthetized with an intraperitoneal injection

of ketamine/xylazine (100 mg/kg ketamine, 10 mg/kg xylazine). While under anesthesia, the

mice were weighed and dissected for tissue collection. The gastrocnemius (GAS) muscle was

divided in half along the sagittal plane, flash frozen in liquid nitrogen and stored at -80˚C until

further use. Following the dissection, mice were euthanized by exsanguination. All procedures
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and protocols were approved by the Institutional Animal Care and Use Committee of the Uni-

versity of Minnesota.

Tibial nerve transection

Mice from the DN group underwent tibial nerve transection on the left hindlimb for either 7

or 14 days, similar to that previously described [2,5,23]. Mice were anesthetized by inhalation

of 2.5% isoflurane and prepped for surgery. Next, an incision (1 cm) was made from the sciatic

notch to the knee followed by cutting through the hamstring muscle. The tibial nerve was then

identified and separated from the peroneal and sural nerve branches at the area of the popliteal

fossa. One knot was made (8–0 sterile silk suture) on the distal portion of the tibial nerve. To

prevent re-innervation, the proximal portion of the tibial nerve (approximately 5 mm above

the knot) was sutured to the biceps femoris muscle. A piece of the tibial nerve was removed

between the suture site and the knot (�3 mm segment). The muscle and skin-incision were

closed by sutures and glued completely with vet-bond. After surgery, mice were given 0.1 ml

Buprenorphine (0.03 mg/ml) for analgesia and monitored until they were ambulatory.

Enriched proteasome preparation and protein extraction

An enriched proteasome preparation was modified from those previously described [21,22].

One half of the frozen GAS muscle was sealed in a pouch, dipped in liquid nitrogen and

crushed using a hammer and pestle. The crushed muscle was homogenized in buffer A (0.1 M

KCl, 20 mM MOPS, pH 7.0), centrifuged at 4,000 g for 20 minutes at 4˚C and the supernatant

was collected and saved. The remaining pellet was re-homogenized in buffer A and re-centri-

fuged at 4,000 g for 20 minutes at 4˚C. The supernatant was then collected and combined with

the supernatant that was initially saved. The combined supernatant fractions were then centri-

fuged at 1,180 g for 20 minutes at 4˚C. The supernatant following this spin was collected and

again centrifuged, but this time at 100,000 g for 16 hours at 4˚C. Upon completion, the super-

natant was discarded and the pellet containing proteasome was homogenized in buffer B (50

mM Tris-HCl, 5 mM MgCl2, 0.1% CHAPS, and 0.4% sucrose, pH7.5), stored at -80˚C.

The other half of the GAS muscle was used for detecting protein content of autophagy

marker microtubule associated protein light chain 3 (LC3). Briefly, a portion of GAS muscle

(~35 mg) was homogenized in a RIPA buffer (Thermo Scientific, Rockford, IL) supplemented

with a protease/phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL). The homog-

enate was centrifuged at 10,000 g for 15 minutes at 4˚C and the supernatant was collected and

saved at -80˚C until further use.

Western blotting

Western blotting was performed to determine the protein content of the standard proteasome,

immunoproteasome and LC3 (Table 1). Briefly, total protein content was first quantified with a

bicinchoninic acid (BCA) assay (Thermo Scientific, Rockford, IL) using bovine serum albumin

(BSA) as a standard. A portion of the muscle homogenate was diluted with reducing sample

buffer (Thermo Scientific, Rockford, IL) and heated at 95˚C for 4 minutes. Equal amounts of

protein were then loaded onto a 13% sodium dodecyl sulfate (SDS)-polyacrylamide gel and

separated by electrophoresis using a mini-vertical gel electrophoresis unit (BIO-RAD). The pro-

teins were transferred to PVDF membranes using either a Trans-blot SD semidry transfer cell

(BIO-RAD) at 14 V for 30 min (α7, β1, β5, β2 and LC3) or using a Mini Transfer-Blot Cell

(BIO-RAD) at 110 V for 1 hour (all of the remaining proteins). After blocking in 5% HiPure Liq-

uid Gelatin (Norland Products, Inc., Cranbury, NJ) or 5% non-fat dry milk in TBS/T at room

temperature for 1 hour, membranes were incubated with primary antibodies overnight at 4˚C.

Proteasome and Denervation

PLOS ONE | DOI:10.1371/journal.pone.0166831 November 22, 2016 3 / 18



Following incubation, the membranes were washed and then probed with a goat anti-mouse

(Thermo Fisher Scientific) or goat anti-rabbit HRP (BIO-RAD) secondary antibody. Prior to

Western blotting, comparison of samples and conditions for each antibody were optimized to

ensure that the reaction was within the linear ranges for signal intensity. See Table 1 for protein

load and antibody information. The membranes were developed using SuperSignal West Dura

Extended Duration chemiluminescence substrate (Pierce) and imaged using ChemiDoc XRS

(BIO-RAD). Densitometry analysis was performed using Quantity One software (BIO-RAD). A

GAS muscle from a WT mouse was used as a blot control to compare samples across different

blots. Final protein content of each individual sample was expressed as a ratio to the blot control.

Purified 20S proteasome (Boston Biochem, Cambridge, MA) and 20S immunoproteasome (Bos-

ton Biochem, Cambridge, MA) were used as positive controls for confirmation of the protea-

some and immunoproteasome subunits. Fig 1 shows the representative Western blot for each

protein from GAS muscles of WT and L7M1 mice at control, 7 and 14 days post-denervation.

Proteasome activity assay

Proteasome activities were determined using fluorogenic peptide substrates as previously

described [22]. LLE-AMC (Proteasome Substrate II, Fluorogenic, EMDmillipore, Billerica,

MA), LLVY-AMC (Proteasome Substrate III, Fluorogenic, EMDmillipore, Billerica, MA) and

VGR-AMC (Bz-Val-Gly-Arg-AMC, ENZO) were used for caspase-, chymotrypsin-, and tryp-

sin- like activities, respectively. Peptides were prepared as a 40 mM stock solution in DMSO

and diluted in 50 mM Tris pH 7.8 buffer (final concentration: LLE– 200 uM; LLVY– 75 uM;

VGR– 150 uM). Enriched proteasome preparations (4 ug/well for caspase- and chymotrypsin-

activities; 7.5 ug/well for trypsin-like activity) were incubated in buffer (50 mM Tris pH7.8, 5

mM MgCl2, 20 mM KCl, and 1mM ATP) with or without 0.2 mM MG132 (Z-Leu-Leu-Leu-H,

aldehyde, Peptides International, Louisville, KY), which is a proteasome inhibitor, for 30 min-

utes at 37˚C before adding fluoropeptides. A negative control containing the fluoropeptide

without any protein was used to determine the background signal. A serial dilution of

7-Amino-4-methylcoumarin (AMC, Sigma- Aldrich, St. Louis, MO) was used to generate a

standard curve. Fluorescence was measured at 37˚C in a CytoFluor 4000 Multiwell Plate

Reader (Applied Biosystems, Foster City, CA) / Synergy™ HTX Multi-Mode Microplate Reader

(BioTek, Winooski, VT) at a wavelength of 360/40 nm (excitation), 460/40 nm (emission) and

a gain of 70 for 2 hours at 5-minute intervals. The activities were determined by comparing

peptide fluorescence from samples with fluorescence of the standard curve of AMC.

Table 1. Antibodies used for Western blotting.

Antibody Type Host Dilution Protein load (μg) Company for primary antibody Secondary antibody dilution

Proteasome subunit α7 M M 1:1000 4 Enzo Life Sciences, Farmingdale, NY 1: 16,000

Proteasome 20S Y (β1) P R 1:1000 10 Thermo Scientific, Rockford, IL 1: 16,000

Proteasome 20S X (β5) P R 1:1000 10 Thermo Scientific, Rockford, IL 1: 12,000

Proteasome 20S Z (β2) P R 1:500 30 Thermo Scientific, Rockford, IL 1: 20,000

Proteasome subunit LMP2 M M 1:500 26 Enzo Life Sciences, Farmingdale, NY 1: 12,000

Proteasome subunit LMP7 P R 1:1000 22 Enzo Life Sciences, Farmingdale, NY 1: 16,000

Proteasome subunit MECL-1 P R 1:500 26 Enzo Life Sciences, Farmingdale, NY 1: 12,000

19S (PA700)/Rpt1 P M 1:1000 15 Enzo Life Sciences, Farmingdale, NY 1: 10,000

PA28α P R 1:1000 15 Enzo Life Sciences, Farmingdale, NY 1: 10,000

LC3B P R 1:500 30 Novus Biologicals, Littleton, CO 1: 10,000

All antibodies were isotype IgG. Monoclonal (M), polyclonal (P), host species mouse (M), host species rabbit (R).

doi:10.1371/journal.pone.0166831.t001
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Histology

Cross-sectional area (CSA) of individual fibers from the GAS muscle was determined as previ-

ously described [24]. Briefly, a portion of the frozen GAS muscle was mounted with OCT

(Tissue-Tek, Torrance, CA) and sliced at 10 μm using a Cryostat (Leica CM3050S, Nussloch,

Fig 1. Representative Western blots. See Methods and Table 1 for experimental procedures and specific

antibody information. These immunoblots show the gastrocnemius muscles of WT and L7M1 mice in control

(innervated, Ctrl), and following 7 (7d) and 14 days (14d) of denervation. The selected antibodies are identified on

the left.

doi:10.1371/journal.pone.0166831.g001
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Germany) at -25˚C. The muscle sections were dehydrated for 30 minutes, stained with hema-

toxylin and eosin, and imaged at 20x with a microscope (Nikon Eclipse E400). CSA was deter-

mined by circling 200–300 individual myofibers using ImageJ analysis software (National

Institutes of Health, http://rsb.info.nih.gov/ij/).

Statistical analysis

To determine the difference between strains across time a two-way ANOVA was utilized. If

an interaction was detected (strain x DN days, p< .05), data was further analyzed by Fisher’s

LSD post hoc test. For two of the proteins, LMP7 and MECL-1, a one-way analysis of variance

(ANOVA) was performed to identify the time effect of denervation in the WT mice. An α-

level of< 0.05 was used for all analyses. Values are presented in mean ± SEM. All statistical

testing was performed using IBM SPSS version 22 software.

Results

GAS atrophy following denervation

To assess the extent of atrophy in the GAS muscle after tibial nerve transection in WT and

L7M1 mice, muscle weight (muscle/body weight) and cross-sectional area (CSA) were deter-

mined in each experimental group (Fig 2). Both WT and L7M1 mice exhibited a significant

time-dependent decrease in normalized muscle weight after denervation. After 7 days of

denervation, normalized muscle weight decreased 16% in WT and 19% in L7M1 compared

to their baseline (day 0). At day 14, muscle loss continued, increasing to 35% and 39% in WT

and L7M1, respectively. Importantly, no strain difference in the normalized muscle weight

was detected (strain effect: p = .416). Consistent with these results, fiber CSA also significantly

decreased following 14 days of denervation and did not differ between strains. Together,

immunoproteasome deficiency does not appear to influence the extent of atrophy in GAS

muscles after tibial nerve transection, at either 7 or 14 days post-surgery.

Protein content of the proteasome

The α-subunits are constitutively expressed in the 20S proteasome and therefore is considered

a reliable measure of the total proteasome [25]. With denervation, α7 content increased follow-

ing denervation, but did not differ between strains (Fig 3A).

The multi-subunit regulatory complex PA700 binds to the 20S proteasome core to form a

26S proteasome. To estimate PA700 content, we measured Rpt1, one of the subunits of the

complex. After denervation, PA700/Rpt1 content showed a time-dependent increase in both

strains (Fig 3B). We also examined the content of PA28α, one of the subunits of the regulatory

complex PA28, which binds to the immunoproteasome. We found that the content of PA28α
increased significantly at day 14 when compared to day 0, and was similar between strains

(Fig 3C).

The β subunits responsible for the proteasome’s catalytic activities include the standard sub-

units (β1, β5, β2) and the inducible subunits (LMP2/β1i, LMP7/β5i, MECL-1/β2i). In general,

all standard subunits increased in response to denervation in both strains (Fig 4). However,

the denervated muscles from the WT mice exhibited a robust elevation in β1 and β5 content

at day 7 compared to L7M1 (Fig 4A. p = .003 (LSD); Fig 4B. p = .002 (LSD)). Specifically, with

7 days of denervation, the increase in β1 and β5 was 600% and 500% in WT. In contrast, in

L7M1, β1 and β5 content only increased by 300% and 200%, respectively. At day 14, no strain

difference in β1 and β5 content was detected. With denervation, β2 content in both strains

showed a time-dependent increase at day 7 and day 14 (Fig 4C, p< .001).
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Fig 2. Atrophy of the GAS muscle and single fibers in WT and L7M1 mice. Two-way ANOVA was used to

detect the effect of strain (WT vs. L7M1) and time (Day 0, 7, and 14). (A) Results of muscle/body weight are

expressed relative to the WT Day 0. (B) CSA of individual fibers in GAS muscle (expressed as μm2).

Statistical comparison showed a significant denervation (time) effect in both muscle/body weight and CSA

(p < .001). No strain effect or interaction was detected in any of these measures. Values are mean ± SE.
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Fig 4D–4F highlights the LMP7, MECL-1, and LMP2 content in denervated muscles from

WT and L7M1 mice. As expected, we did not detect any protein expression of LMP7 or

MECL-1 in the L7M1 muscles (Fig 4D and 4E), which confirms the genetic knockout elimi-

nated these subunits. In WT mice, LMP7 and MECL-1 content increased at day 7 and this

increase was sustained through day 14 (Fig 4D and 4E). Lastly, LMP2 content, which is the

only inducible subunit in L7M1 mice, increased in both strains following denervation. How-

ever, the WT showed a higher overall content compared to the L7M1 mice (Fig 4E, strain

effect: p = .003).

In summary, in both strains, the subunits in the proteasome system, including α7, regula-

tory complexes, the standard β and the inducible subunits were elevated in the denervated

muscle. However, the change in composition of the subunits in both strains did not parallel

one another. Under the condition of denervation, there was a robust increase in β1 and β5

content in WT mice at day 7. However, the mice without immunoproteasome subunits LMP7

and MECL-1 had an attenuated response for β1 and β5. Also, lower content of LMP2 was

observed in L7M1 muscles.

Proteasome activities

To determine whether the genetic elimination of the two inducible subunits LMP7 and

MECL-1 influences the function of the proteasome, the caspase-, chymotrypsin- and trypsin-

like activities were monitored using fluorogenic peptide substrates with or without the protea-

some inhibitor, MG132, to measure proteasome-specific activity (Fig 5). With denervation,

both strains showed a significant increase in all three proteasome activities. The rate-limiting

proteasome activity, chymotrypsin-like activity, showed an interaction between time and

strain (Fig 5A, S x T: p = .041). Specifically, the chymotrypsin-like activity in WT mice

was greater than the L7M1 mice after 7 days of denervation (Fig 5A, at day 7, WT vs. L7M1:

p = .04 (LSD)). Similarly, an interaction was observed in the trypsin-like activity (Fig 5B, S x T:

p = .021). At day 14, the trypsin-like activity in L7M1 mice was greater than the WT (Fig 5B, at

day 14, WT vs. L7M1: p = .027 (LSD)). In contrast to the chymotrypsin-like and trypsin-like

activities, the caspase-like activity did not show an interaction; however, there was a strain

effect. Specifically, L7M1 mice showed greater caspase-like activity at baseline and across the

denervation period compared to the WT (Fig 5C, strain effect: p = .001). Taken together,

immunoproteasome deficiency altered the proteasome activities.

Autophagy markers

Autophagy is an alternative protein degradation pathway that is activated in denervation-

induced muscle atrophy [26]. Although autophagic flux is the most accurate means to estimate

the autophagy degradation activity, these measures require the application of lysosomal inhibi-

tors, which cannot be done in whole muscle in a living animal [27]. However, Western blot

analysis is still suitable to report the overall change of autophagic protein levels in a tissue, so

we assessed the protein levels of the autophagic marker LC3 in the skeletal muscles from both

strains of mice (Fig 6). During the process of autophagy, LC3I conjugates with phosphatidyl-

ethanolamine to convert to LC3II during the formation of the autophagosome [28]. These two

species can be distinguished on Western blotting by their different mobility on an SDS-PAGE

gel. We probed for both LC3I and LC3II content in order to estimate the activation of the

Sample size: for muscle/body weight: n = 7–10 per group; for CSA: n = 5–6 per group, 200–300 individual

fibers analyzed per animal.

doi:10.1371/journal.pone.0166831.g002
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Fig 3. Protein content of α7 and proteasome activators in WT and L7M1 mice with denervation. (A-C)

Results of densitometry are presented as the fold change compared to WT 0 Day for each respective protein.

Each panel contains results of two-way ANOVA that were used to detect the effect of strain (WT vs. L7M1)

and time (Day 0, 7, and 14) for (A) α7, (B) PA700/ Rpt1, and (C) PA28α (# indicates significant effect of strain/

time/S x T interactions, p < .05). Statistical comparison showed a significant denervation (time) effect in all the

Proteasome and Denervation
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autophagy pathway. The content of both LC3I and LC3II increased (Fig 6A and 6B) after

denervation in both strains. These results indicate autophagy was activated in skeletal

muscle and immunoproteasome deficiency did not alter the process of autophagy following

denervation.

Discussion

The purpose of this study was to determine if the immunoproteasome influences skeletal mus-

cle proteolysis. To accomplish this, we denervated WT and L7M1 mice for up to 14 days and

assessed the extent of muscle atrophy, proteasome content and proteolytic activity. From

these experiments three important findings were noted. First, immunoproteasome content

increased in response to denervation. Second, immunoproteasome deficiency affected specific

catalytic sites of the proteasome following denervation, which changed the kinetics of protea-

some activation. Lastly, in contrast to our hypothesis, immunoproteasome deficiency did

not attenuate the loss of muscle mass at 7 or 14 days post-denervation. Taken together, these

results suggest that the absence of immunoproteasome influences proteasome’s composition

and function but does not appear to be essential for protein degradation during denervation-

induced atrophy.

Proteasome content following denervation

A significant time-dependent increase in content of standard proteasome was observed in

both WT and L7M1 mice following denervation. In fact, α7, β1, β2, β5 and PA700 were all sig-

nificantly greater at 7 and/or 14 days post-denervation when compared to control muscle (day

0). These results are consistent with that of others who demonstrated similar findings at the

mRNA and/or protein level following 3, 7 and/or 14 days after denervation [5,11–14]. We

also observed a significant increase in several components associated with the immunoprotea-

some. Specifically, PA28, MECL-1, LMP2, LMP7 all increased over 80% after 7 and 14 days of

denervation in the WT mice. Although no study has yet to perform such a comprehensive

examination of immunoproteasome content following denervation, work by Gomes et al. [11]

demonstrated the protein content of MECL-1 was elevated ~ 2.3 fold in 14 day denervated

muscle. Together, our findings confirm that the standard proteasome is upregulated in atro-

phying muscle but more importantly, demonstrate for the first time that all the immunopro-

teasome subunits also increase in response to denervation at the protein level for the first time.

Incorporation of the proteasome subunits

There were some proteins in the L7M1 mice that did not increase to the same extent as in the

WT mice. In particular, the catalytic subunits β1 and β5 were significantly lower 7 days post-

denervation when compared to that of the WT muscle. It is possible that this blunted response

is due to an impaired incorporation of these subunits into the 20S core of the standard protea-

some [20,29]. In support of this, β5 was found to be more efficiently incorporated into the

immunoproteasome when MECL-1 was present [30], while others have demonstrated that 20S

assembly was decreased in LMP7 mutant cell lines [31]. Similar findings have been demon-

strated in the spleen, retina [18,25], and C2C12 myoblasts [32], where decreased incorporation

of LMP2 was noted with deletion or inhibition of LMP7 and/or MECL-1. Together, LMP7

and MECL-1 likely exhibit a role in facilitating the incorporation of the standard proteasome

proteins (p < .001). No strain effect was detected in any of these proteins. Values are mean ± SE. Sample size

per group: n = 7–10. Representative Western blot for each protein is presented in Fig 1.

doi:10.1371/journal.pone.0166831.g003
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Fig 4. Protein content of standard catalytic and immunoproteasome subunits in WT and L7M1 mice with denervation. Results of

densitometry are presented as the fold change compared to WT Day 0 for each respective protein. (A-C) Standard catalytic subunits. Each

panel contains results of two-way ANOVA that were used to detect the effect of strain (WT vs. L7M1) and time (Day 0, 7, and 14) for (A) β1,

(B) β5, and (C) β2 (# indicates significant effect of strain/time/S x T interactions, p < .05). When an effect of interaction was detected, a

Fisher’s LSD post-hoc test was followed to compare differences between strains at each time point (* indicates L7M1 is significant different
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subunits, as well as the inducible subunit LMP2. Because we used an enriched-proteasome

preparation, which only contains proteasome subunits fully incorporated into the mature 20S

core [21,33], we are not able to quantify the proteasome subunits that are not incorporated

into the 20S core.

Proteasome proteolytic activity

The standard β and inducible subunits all perform distinct enzymatic activities to catalyze the

digestion of proteins into peptides. Thus, any changes in subunit composition have the poten-

tial to influence and subsequently explain the enzymatic activity response. Chymotrypsin-like

activity is orchestrated by β5, LMP2, and LMP7 while trypsin-like activity is regulated by β2

and MECL-1 and caspase-like activity is regulated by β1. Our results demonstrate all activities

are increased for both WT and L7M1 mice following denervation, similar to that previously

reported [11]. However, with the deletion of two inducible subunits, all three proteasome

activities were altered post-denervation compared to the WT mice. The difference in kinetics

of proteasome activation between strains was consistent with the findings in proteasome sub-

units after denervation.

The rate-limiting proteasome activity [34–36], chymotrypsin-like activity, was blunted in

the immunoproteasome deficient mice at 7 days in contrast to the WT. This response is consis-

tent with its subunit composition (lower β5 and LMP2 and no LMP7), which is likely due to

the impaired incorporation of these subunits into the proteasome core [29,30], as mentioned

above. Although LMP7 and LMP2 both contribute to chymotrypsin-like activity and their con-

tent is increased, their direct contribution to the overall proteolytic function is likely minimal

due to two reasons. First, in un-manipulated skeletal muscle the immunoproteasome repre-

sents a small percentage (5%) of the total 20S proteasome [15]. Second, with denervation both

standard and immunoproteasome content increase; however, the fold increase is greater in the

standard subunits.

The caspase- and trypsin-like activities were also altered in the immunoproteasome defi-

cient mice, though they have less importance in protein degradation than the chymotrypsin-

like activity. For instance, inhibition of caspase-like or trypsin-like activity did not lead to

dysfunction of protein degradation [34,37,38]. One interesting finding in the current study

involves the time course of the caspase-like and the trypsin-like activities associated with

denervation in the L7M1 mice. The content of β2, MECL-1 and β1 within each muscle does

not appear to support the kinetic changes in the enzymatic activities. This unexpected finding,

lack of a relationship between subunit composition and its activity, may involve the presence

of intermediate proteasomes. The intermediate proteasome is a mixture of both standard and

inducible subunits in the 20S core, where the inherent quality of the proteasome enzymatic

activity is reported to be quite variable [15]. Therefore, the variability of the trypsin-like and

the caspase-like activities in the current study may be due to presence of the intermediate pro-

teasomes [15,20,25].

from WT at that given time point, p� .05). Statistical comparison showed a significant denervation (time) effect in all the proteins above

(p < .001). No strain effect was detected in any of these proteins. (A) β1 was significantly higher at day 7 in the WT compared to L7M1 (S x T,

p = .01, LSD post-hoc test: p = .003). (B) β5 was significantly higher at day 7 in the WT compared to L7M1 (S x T, p = .01, LSD post-hoc test:

p = .002). (D-F) Immunoproteasome subunits. For (D) LMP7 content and (E) MECL-1 content, the one-way ANOVA statistical comparison

showed a significant denervation (time) effect in LMP7 and MECL-1 content (p < .001). # indicates significant time effect; ¶ indicates

significant difference comparing to the 0d. (F) For LMP2 content: The two-way ANOVA result is shown in this panel (# indicates significant

effect of strain/time, p < .05). Statistical comparison showed a significant denervation (time) effect (p < .001) and strain effect (p = .003) in

LMP2 content. Values are mean ± SE. Sample size per group: n = 4–10. Representative Western blot for each protein is presented in Fig 1.

doi:10.1371/journal.pone.0166831.g004
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Fig 5. Proteasome enzymatic activities in WT and L7M1 mice with denervation. Results are presented

as the fold change compared to WT Day 0 for proteasome enzymatic activity in each experimental group.

Two-way ANOVA was used to detect the effect of strain (WT vs. L7M1) and time (Day 0, 7, and 14) for (A)

Chymotrypsin- like (CT-L) activity, (B) Trypsin- like (T-L), and (C) Caspase- like (C-L) activity (# indicates

significant effect of strain/time/S x T interactions, p < .05). When an effect of interaction was detected, a
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Signaling pathways

Several major signaling proteins/pathways are known to up-regulate proteasome content.

These include the mammalian target of rapamycin (mTOR) and the HDAC/Mitogen-activated

protein kinase (MAPK). mTOR [39,40] is often identified as a negative regulator of the autop-

hagy pathway [12,41], but also can increase expression of the standard proteasome subunits

and PA700. In supports of this, inhibition of mTOR with rapamycin attenuated increases in

standard proteasome subunits and the activator PA700 in the mouse liver [42]. The HDAC/

Mitogen-activated protein kinases (MAPK) cascade is also known to influence proteasome

content. In denervated muscle, HDAC4 triggers MAP3 kinase, which in turn regulates activa-

tor protein 1 (AP1) and specificity protein 1 (Sp1) [43,44], two transcription factors associated

with LMP2, LMP7 and MECL-1 expression [45,46]. It is likely that the protein content of the

standard proteasome and immunoproteasome increased following denervation due to changes

in both mTOR and HDAC signaling.

Atrophy and Autophagy

Despite the notable differences in the proteasome subunit content and activities between the

two strains, the overall extent of muscle atrophy remained the same. It seems likely, even with

the 25% lower rate-limiting chymotrypsin-like activity and the potential impaired proteasome

assembly in the immunoproteasome deficient mice, lacking the two inducible subunits was

not enough to affect proteasome-mediated proteolysis. It is possible that the actual impact

of the immunoproteasome on muscle size is too small to detect under conditions of severe,

rapid atrophy (i.e. denervation) due to the fact that it represents a low percentage of the total

proteasome (5%) [15]. Consistent with others [13,14], we observed autophagy activation in

the denervated WT mice. However, the denervated muscle from the WT and L7M1 did not

differ in this autophagy activation, meaning that this proteolytic pathway, like the proteasome,

remained intact. One additional point to be considered is that the rate and extent of atrophy is

not only controlled by proteolysis but rather reflects the balance between protein synthesis and

degradation. Since the current study did not evaluate protein synthesis, we can only speculate

that differences in protein synthesis also contribute to our findings.

Conclusions

The current study demonstrated that immunoproteasome content increased in response to

denervation-induced skeletal muscle atrophy. Moreover, we also observed that genetic elimi-

nation of the two inducible catalytic subunits, LMP7 and MECL-1, altered the kinetic changes

in chymotrypsin-like activity by potentially suppressing β5 and LMP2 incorporation into the

20S core. Despite these changes, L7M1 mice experienced the same extent of muscle atrophy as

that of the WT mice. Taken together, these results indicate that although the immunoprotea-

some content is upregulated with denervation, while it does not appear to have a major role in

the overall myofibrillar proteolysis that is associated with atrophy. It is possible that the immu-

noproteasome has a role in regulating changes in cell signaling that accompany denervation.

Fisher’s LSD post-hoc test was performed to compare differences between strains at each time point

(* indicates L7M1 is significant different from WT at that given time point, p� .05). Statistical comparison

showed a significant denervation (time) effect in all proteasome activities (p < .001). No strain effect was

detected in either CT-L or T-L activities; whereas the C-L activity showed significant strain difference (p = .01).

(A) CT-L activity was significantly higher in the WT at day 7 compared to L7M1 (S x T, p = .04, LSD post-hoc

test: p = .04). (B) T-L activity was significantly lower in the WT at day 14 compared to L7M1 (S x T, p = .02,

LSD post-hoc test: p = .03). Values are mean ± SE. Sample size per group: n = 7–10.

doi:10.1371/journal.pone.0166831.g005
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Fig 6. Protein content of autophagy markers LC3 in WT and L7M1 mice with denervation. (A-B) Results of

densitometry are presented as the fold change compared to WT Day 0 for the autophagy marker LC3. Each

panel contains results of two-way ANOVA that were used to detect the effect of strain (WT vs. L7M1) and time

(Day 0, 7, and 14) for (A) LC3I and (B) LC3II (# indicates significant effect of strain/time/S x T interactions,

p < .05). Statistical comparison showed a significant denervation (time) effect in both LC3I and LC3II content
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