
RESEARCH ARTICLE

Oxygen Distributions—Evaluation of

Computational Methods, Using a Stochastic

Model for Large Tumour Vasculature, to

Elucidate the Importance of Considering a

Complete Vascular Network
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Abstract

Purpose

To develop a general model that utilises a stochastic method to generate a vessel tree

based on experimental data, and an associated irregular, macroscopic tumour. These will

be used to evaluate two different methods for computing oxygen distribution.

Methods

A vessel tree structure, and an associated tumour of 127 cm3, were generated, using a sto-

chastic method and Bresenham’s line algorithm to develop trees on two different scales and

fusing them together. The vessel dimensions were adjusted through convolution and thresh-

olding and each vessel voxel was assigned an oxygen value. Diffusion and consumption

were modelled using a Green’s function approach together with Michaelis-Menten kinetics.

The computations were performed using a combined tree method (CTM) and an individual

tree method (ITM). Five tumour sub-sections were compared, to evaluate the methods.

Results

The oxygen distributions of the same tissue samples, using different methods of computa-

tion, were considerably less similar (root mean square deviation, RMSD�0.02) than the dis-

tributions of different samples using CTM (0.001< RMSD<0.01). The deviations of ITM from

CTM increase with lower oxygen values, resulting in ITM severely underestimating the level

of hypoxia in the tumour. Kolmogorov Smirnov (KS) tests showed that millimetre-scale sam-

ples may not represent the whole.

Conclusions

The stochastic model managed to capture the heterogeneous nature of hypoxic fractions

and, even though the simplified computation did not considerably alter the oxygen distribu-

tion, it leads to an evident underestimation of tumour hypoxia, and thereby radioresistance.

PLOS ONE | DOI:10.1371/journal.pone.0166251 November 18, 2016 1 / 17

a11111

OPENACCESS
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For a trustworthy computation of tumour oxygenation, the interaction between adjacent

microvessel trees must not be neglected, why evaluation should be made using high resolu-

tion and the CTM, applied to the entire tumour.

Introduction

A sufficient tumour vasculature is crucial for tumour cell division and for tumour growth. The

tumour is able to interfere with its vasculature, through angiogenesis, in order to increase the

oxygen delivery to the cells as the tumour volume expands and the distance between blood ves-

sels increases. Depending on the geometry and size of a tumour and the structure of its vascu-

lature, the development of the tumour as well as the feasibility of successful treatment may

differ substantially.[1,2] Consequently, knowledge of the vascular architecture, of tumours in

general and of individual tumours in particular, is valuable as it may be a determining factor to

whether the tumour is eradicated or not.

Over the years, many attempts have been made to map and model the behaviour of tumour

vasculature. Starting with the Krogh cylinder in 1919, which may be considered the foundation

of vascular modelling,[3] models have developed through countless two (2D) and three dimen-

sional (3D) approaches of various complexity and applicability. Recent examples include single

cell based 2D models,[4] 3D models with constant vessel oxygen level,[5] numerical models

using greens functions[6] and models including heterogeneity of vascular oxygen content.[7,8]

With the progress of medical imaging techniques and improved computational capacity,

the amount of available information has expanded rapidly and models become increasingly

sophisticated and realistic. For example, the work by Adhikarla and Jeraj,[5] where they build

a semi-stochastic vessel tree model by combining imaged macrovessel with two generations of

simulated vessels. They adapted the density of larger simulated vessels to a measured oxygen

map, while using a branching statistics, resembling the measurements by Op Den Buijs et.al,

[9] to develop the capillary network. Due to computer limitations, they were not able to prop-

erly evaluate the model at a high resolution, but managed to, in high-resolved sub volumes,

achieve good agreement between simulations and the oxygen map, using constant pO2 of 60

mmHg in the vessels. These results are encouraging for further development of purely stochas-

tic microscopic vessel models in large scale.

In the present state of the art, vascular models are 3D with non-parallel vessels, altering

intra-vascular oxygen content and supply-dependent consumption in the tissue.[8] Because of

the complexity of the vasculature, numerical methods are commonly used, which essentially

correlates model dimensions, resolution and accuracy to runtime and computational work-

load. Obviously limitations apply, regardless of model type and design. Models of today typi-

cally handle computations on tissue dimensions on the order of millimetres, with a decent

resolution. Beyond this size, assumptions of symmetry or repetition are employed.[6,7] How-

ever, for radiologically observable clinical tumours such approach will only represent a sub-

volume of the tumour. Therefore, this approach will not embrace macroscopic variations in

the vascular fractions and its impact on the spatial oxygen distribution in a radiologically

observable tumour size. With increasing precision in external radiation treatment, such as bio-

logically guided dose painting comes a need for detailed knowledge of tumour radio resistance

and hypoxia on a microscopic as well as a macroscopic level.

The aim of this study is to construct a schematic tumour model that catches both the mac-

roscopic and microscopic vessel and oxygen heterogeneity within a clinically relevant tumour

size. For this purpose, we will utilise a stochastic method for the creation of a large, steady-

Oxygen Distributions—The Importance of Considering a Complete Vascular Network

PLOS ONE | DOI:10.1371/journal.pone.0166251 November 18, 2016 2 / 17

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



state vessel tree, which will fill a macroscopic tumour of the size just above 100 cm3. This

tumour model will be used to compare the macroscopic variations of the oxygen distributions

in millimetre sub-volumes in order to evaluate the ability to detect hypoxic regions, using a

simplified procedure for simulating of the oxygen distribution, the individual tree method

(ITM). The simplicity of this method makes it possible to apply it to the entire tumour model.

As baseline, results from a highly resolved more demanding greens function and Michaelis-

Menten approach, the combined tree method (CTM), is used. Evaluations are made for five

randomly selected sub-volumes.

Further, the similarity of the different sub-volumes of the tumour model, using the output

from the advanced model, is investigated in order to determine whether the highly resolved

millimetre-scale samples may be used to approximate the entire tumour oxygen distribution.

Methods

To effectively generate the entire vessel architecture in a macroscopic tumour and from this

vessel arrangement compute the oxygen distribution, we first developed a non-permeable

macrovessel tree to which permeable microvessel trees were attached.[10] One microvessel

tree was attached to each leaf node of the macrovessel trees to make a continuous transition

from lower generation vessels to higher generation vessels. The macrovessel trees included

nine generations, which made the end branches about 100 μm wide, using vessel dimension

data (segment lengths and radii) from Debbaut et al.[11] Vessels smaller than this, were con-

sidered permeable[12] vessels and the dimensions were calculated using the trend lines from

their data fits. [11] Five microvessel generations, down to an average segment length of 50 μm

(including variations, some vessel segments were as short as 40 μm) were included. Both the

work of Debbaut et al.[11] and of Op Den Buijs et al.[9] describe the vessel structure of liver

vasculature. We used this data because the liver vessels are undisturbed by anatomic structures,

which allows them to develop without interference and therefore makes the liver suitable for

studies of general vasculature, adjusting vessel densities of course, since the liver vasculature is

rather dense. [9] Macro- and microvessel trees were generated using a stochastic method. The

trees and tumour tissue were assumed to appear instantly and were time invariant, why the

simulation results are steady-state.

Oxygen transport and consumption, involving only microvessels, were computed. The spa-

tial resolution was 10 μm, unless otherwise stated. All computations were made using a porta-

ble workstation, with Intel1 Core™ i7 processor and 16 GB RAM, running 64-bit MATLAB1

R2014b. The parameter setting, used in the computations, is displayed in Table 1.

Generation of macrovessel trees

Using experimental vessel data for branching characteristics,[9] fully five hundred macrovessel

trees were included in the model, to roughly meet a functional microvessel density target of

0.04, given an average total volume per microvessel tree of 0.039 mm3.[7,15] From a random

starting point, distances and directions (azimuthal angle, ϕ and polar angle, θ) were sampled

from respective distribution, using the inverse transform method,[16] determining the coordi-

nates of the following bifurcations. The distribution of azimuthal angles is uniform and the

cumulative distributions of the polar angles, according to Op Den Buijs et al., for the two

branches are displayed in Fig 1.[9]

From every branching point, two narrower sub-vessels emerged in different directions, fol-

lowing the same principle. For each generation, the vessel radius decreased by 5–15 μm.[11]

Each new direction was relative to the previous and consequently, for the preservation of a uni-

versal frame of reference, had to be converted using direction cosines.[17] The sampling
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process was repeated, for each sub-vessel to develop a complete tree with nine vessel genera-

tions. In this case, only the leaf node coordinates of each branch were stored. These coordi-

nates were used as starting points for the microvessel trees. The general principle of vessel tree

generation is shown in a flow chart (Fig 2).

Fig 1. Angular distribution. The cumulative distribution function of the polar angles, according to Op Den Buijs

et al., for the two branches.[9].

doi:10.1371/journal.pone.0166251.g001

Table 1. Symbols and dimensions of quantities and parameter setting used in the computations.

Quantity Symbol Value Dimension

Concentration (probability of finding a molecule) c - μm-3

Oxygen consumption rate C - mmHg s-1

Oxygen demand at unlimited supply[6] C0 15 mmHg s-1

Diffusion coefficient for oxygen in tissue[6] DO 2000 μm2s-1

Hypoxic fractions (threshold 0.01 mmHg) HF0.01 - -

Hypoxic fractions (threshold 1 mmHg) HF1 - -

Hypoxic fractions (threshold 5 mmHg) HF5 - -

Normalisation constant[13] k 1000�(4�DO�t�π)-3/2 μm-3s3/2

Michaelis constant (pO2 at which C = C0/2)[14] KM 1 mmHg

Oxygen partial pressure pO2 - mmHg

Distance r - μm

Time step t 0.1 s

Azimuthal angle ϕ - -

Polar angle θ - -

doi:10.1371/journal.pone.0166251.t001
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The coordinates of the leaf nodes of all branches were stored and a tumour perimeter was

defined as the surface containing all points, calculated by triangulation. In this case, the

tumour volume is 127 cm3.

Generation of microvessel trees and oxygen sub-distributions

Using the assumptions and method described above, together with vessel dimension and prev-

alence data,[11] one hundred separate microvessel trees were simulated, including another

five vessel generations. These trees included vessel segment lengths from about 400 down to

40 μm. Vessels smaller than this were discarded due to finite resolution. In this case, an actual

tree was generated through connection of the branching points using Bresenham’s line algo-

rithm, to optimise the discrete approximation of a continuous line and avoid discontinuities in

the voxel representation.[18] Each vessel segment was convolved with a spherical smoothing

kernel, to set the vessel diameter according to experimental findings [11] and thresholded to

define the vessel surface. The microvessel tree was stored in a 3D matrix.

An oxygen level was assigned to every vessel voxel, starting at 100 mmHg (arterial oxygen

level) at the emerging point (the leaf node of the parent macrovessel tree) and falling off line-

arly with distance from this point, to a minimum value of 40 mmHg (venous oxygen level) in

the most distant voxel, i.e. the leaf node of the longest trajectory in each microvessel tree.

These values were chosen because they roughly span the oxygen tension interval of functional

blood vessels.[19] Every leaf node in the macrovessel tree was randomly associated with one of

the microvessel trees (overlapping leaf nodes were removed). In total, 130955 microvessel trees

were used for this tumour.

The oxygen matrices for each microvessel tree were temporarily padded with zeros to avoid

edge effects. Oxygen diffusion was computed, for each of the 100 microvessel tree types,

through repeated convolution of the oxygen matrix, for the respective tree, with a Gaussian

kernel,[13,16] since the Gaussian (Eq 1) is the Green’s function of the diffusion equation.

c r; tð Þ ¼ k � t � 3
2 � e

� r2
4D0 �t ð1Þ

Between iterations, tissue oxygen consumption was calculated, and subtracted, using

Michaelis-Menten kinetics (Eq 2). [14]

C ¼
C0�pO2

pO2 þ KM
ð2Þ

Iterations continued until the oxygen field volume reached a steady-state. These oxygen dis-

tributions were used by the ITM

Tumour oxygen distribution computations

Different ways of determining the oxygen distribution in the entire tumour were compared.

The sub-distributions determined in section 2 B may not be summed up into a macroscopic

distribution, as this would discard the overlapping voxels, that most likely exist at this vessel

density, resulting in an over-estimation of the oxygenation. Consequently, the geometric infor-

mation needs to be preserved. The preferred method would be to inscribe all 130955 microves-

sel trees in the tumour, using a resolution of 10 μm, sufficient to depict the vessels properly.

Fig 2. Generation of vessel trees. The process of stochastic generation of vessel trees. New directions and

distances were sampled iteratively until all branches had reached the predetermined vessel generation

number.

doi:10.1371/journal.pone.0166251.g002
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The oxygen distribution of the tumour could then be determined using the iterative convolu-

tion method described in section 2 B. This would require a 3D matrix of approximately 1012

elements, which would have to be sectioned to fit into the computer memory. The computa-

tion would take several months. To shorten the computation time, the options were to either

examine the tumour partially, using the CTM or increase the voxel size and use the ITM.

Combined Tree Method

For partial tumour examination with maintained resolution, five separate sub-volumes (3x3x3

mm3 each, including about 30–40 microvessel trees) of the tumour were selected and the oxy-

gen tension was computed iteratively, using Eqs 1 and 2. The actual samples were initially pad-

ded with additional tumour voxels (these were removed after oxygen computation) in order to

avoid the edge effects introduced by repeated convolutions. The resolution was 10 μm and

thus, each sample consisted of 2.7�107 voxels. Because this computation method included the

interaction between the separate microvessel trees, it is referred to as the CTM. These compu-

tations of the oxygen distributions for these sub-volumes were used as baseline for the ITM

results.

Individual Tree Method

For complete tumour examination, using the ITM, with increased voxel size, the entire tumour

volume was down-sampled and inscribed in a matrix with a 100 μm grid, on the order of 109

elements. The position of each voxel of the matrix was translated to the positions of the prede-

termined oxygen fields (Section 2 B) surrounding each of the microvessel trees, and the respec-

tive voxel was assigned the appropriate oxygen value. If a voxel was reached by the oxygen

fields from more than one microvessel tree, the highest oxygen value was assigned to the voxel.

This was done instead of summing or averaging over contributing voxels, in order to minimise

the error of the oxygen content of that voxel.

The ITM approach, by necessity, failed to represent the interaction between adjacent micro-

vessel trees which therefore needed to be treated individually. Since the coarse grid was unable

to accurately represent the trees, but necessary for the entire tumour to be described at once,

the sub-distributions (one for every microvessel tree) were computed at high resolution and

down-sampled to fit the coarse grid. This method was able to estimate the entire tumour oxy-

gen distribution.

Evaluation of the oxygen computation methods

The normalised oxygen distributions of the five sample volumes were compared for CTM and

ITM, through computation of hypoxic fractions for threshold levels of 0.01, 1 and 5 mm Hg

and in terms of the root mean square deviation (RMSD) between the distributions of the dif-

ferent sample volumes. RMSD was also calculated between the distributions of each sample

volume from the CTM and the corresponding volume from the ITM. These values were used

to evaluate the two computation methods. To quantify the influence of the down-sampling of

the sub volumes for the coarse grid used in the individual tree method, RMSD was calculated

between one of the high-resolved samples and its down-sampled equivalent.

The similarity of sub-volume oxygen distributions retrieved using CTM was also investi-

gated through pairwise two-sample Kolmogorov-Smirnov (KS) tests. This is a robust, non-

parametric test, designed to compare unknown distributions. The test-statistic produced by

the test is the maximum difference (DKS) between the cumulative distributions. The null

hypothesis (H0) here was that the sub-volume distribution samples were drawn from the same

distribution, i.e. that they were sufficiently similar to each represent the entire tumour oxygen
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distribution on their own. H0 was tested for a confidence level (α) of 0.05 and was rejected if

DKS > c að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

n1 � n2

r

ð3Þ

where c(α) is a parameter depending on the confidence level, e.g. c(0.05) = 1.36 and c(0.001) =

1.95, n1 and n2 are the number of values in the distributions (the sample sizes), in this case the

number of voxels in the sub-volumes (2.7�107). The uncertainty of the test decreases with

increasing sample size. In this context, this sample size is very large.[20]

Results

The method used to develop an entire vasculature in a tumour, was robust and efficient; the

computation time was less than an hour once the microvessel trees were generated. This time

was proportional to the number of nodes in the macrovessel tree, i.e. to the tumour size and

the average vessel density. The border of the generated tumour was defined by triangulation of

the positions of the most peripheral microvessel trees, which generated an irregular 127 cm3-

sized tumour (Fig 3).

The computation of the oxygen distribution was quite time consuming; the computation

time for the oxygen distribution in only one microvessel tree was about 15 minutes. This

means that the number of individual microvessel trees used in the model to a great extent

determines the computation time for the oxygen sub-distributions, while the computation

times for both the ITM and CTM are independent of this. For each combined microvessel tree

Fig 3. Tumour shape. The shape of the tumour generated through triangulation. The total volume of the irregular

tumour is 127 cm3.

doi:10.1371/journal.pone.0166251.g003
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section of 27 mm3, the corresponding computation time was some 20 minutes. This time is

proportional to the number of iterations, which in turn together with time-step and matrix res-

olution determines the accuracy of the calculation. A small time-step preserves a realistic oxy-

gen gradient, which, in combination with small voxel size, gives more accurate calculations

but requires a large number of iterations. Furthermore, the time-step should be adjusted to the

voxel size for the convolution kernel to be applicable, as a high temporal resolution in combi-

nation with a low spatial dito will not allow any measureable diffusion to take place between

iterations. The relation of the calculation time to the section volume (or inversely to resolu-

tion) is a bit unpredictable, mainly depending on the time for the fourier transformation of the

matrix, while the section size in turn is limited by computer memory. The computation time

for the whole tumour, using the ITM, was 150 hours. This time is proportional to the number

of tumour voxels used, i.e. to the tumour size and the inverse of the voxel volume. One micro-

vessel tree with corresponding isosurface at pO2 = 0.01 mmHg is shown in Fig 4 and a 3x3x3

mm3 sample of the combined tumour vasculature in Fig 5.

The estimated time to compute the entire oxygen distribution in the macroscopic tumour

would have been 200 days, using the CTM on the computer in question, with the current

parameter setting. Therefore, we investigated if any of two more simplified approaches, i.e. the

CTM applied to sub volumes or the ITM, could be used for estimating the whole tumour oxy-

gen distribution. Fig 6 shows the oxygen tension in a section through the middle of each of the

five tumour samples, where each panel represents a tissue thickness of 100 μm and an area of 9

mm2. The top and bottom row of each column should, in the ideal case, contain the same

information. Although there are similarities, the visual impression is that the ITM overesti-

mates the fraction of normoxic tissue.

Fig 4. Microvessel tree. Microvessel tree (red) inside a semi-transparent isosurface (blue), marking a partial

oxygen pressure level of 0.01 mmHg.

doi:10.1371/journal.pone.0166251.g004
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This impression is supported by the cumulative pO2 distributions of Fig 7, which show that,

in all samples, the ITM gives a smaller hypoxic fraction and a larger fraction in the intermedi-

ate region, while there is little difference in the high values. From a radiosensitivity point of

view, the low and intermediate pO2 regions are the most important, why the ITM becomes

highly inappropriate.

Table 2 shows the hypoxic fractions, mean pO2 and the vascular fractions for the five sam-

pled tumour segments.

There are notable differences in oxygenation between and within individual samples for

both methods. For the CTM, there is, as can be expected, significant positive correlations

between average pO2 and vascular fraction as well as significant negative correlations between

HF and VF or pO2. The correlations are less pronounced for the lowest threshold of hypoxia.

For the ITM, however, the above correlations are weak and non-significant, with the exception

of the relations between HF1, HF5 and pO2. The correlations are quantified in terms of correla-

tion coefficients and p-values. These are displayed in the checkerboard plots of Fig 8.

Fig 5. Microvascular network section. A 3x3x3 mm3 section of the complete microvascular network used in the

combined tree method.

doi:10.1371/journal.pone.0166251.g005

Oxygen Distributions—The Importance of Considering a Complete Vascular Network

PLOS ONE | DOI:10.1371/journal.pone.0166251 November 18, 2016 10 / 17



The results from the RMSD computations are shown in Table 3. When applied to normal-

ised distributions, as in these cases, an RMSD of 0 means identical distributions and 1 means

total lack of agreement between them. Each distribution from the CTM was compared against

the corresponding distribution from the ITM, but also against the other distributions from the

CTM. The agreement is better between independent locations within CTM than between the

same location using different methods. The down-sampled version of CTM 1 is included to

assure that the down-sampling itself (used in ITM) does not account for a considerable loss of

information. The KS tests also clearly showed that the oxygen samples were not drawn from

the same distribution, as H0 was rejected at α = 0.001, for all pairwise comparisons.

Discussion

Hypoxia is of interest from a prognostic point of view, not only due to its correlation with

tumour aggressiveness,[21,22] but it is also important to survey for the long-known indirect

effect it has been shown to have on radiation treatment outcomes. This tumour model does

not attempt to accurately describe the oxygen distribution in a clinical tumour but, contrary to

many simpler models, it captures the important characteristic and the heterogeneous nature of

the spatial distribution of anoxia and, by extension, necrosis; unlike common general descrip-

tions, necrotic regions often tend to distribute throughout the tumour rather than concentrate

to the tumour core.[23] We know from previous work that the quantity hypoxic fraction is

obsolete and insufficient for the prediction of radiosensitivity.[24] For the same reason, i.e.

essentially loss of information due to partial volume effects, it is reasonable that the higher the

Fig 6. Sample slices. A 100 μm thick centre slice of samples 1 (left) through 5 (right) from the CTM (upper row)

andITM (lower row) computations. The image width and height is 3 mm each and the colour bar illustrates the pO2

scale in mmHg.

doi:10.1371/journal.pone.0166251.g006

Fig 7. Oxygen distributions. Cumulative pO2 distributions for the five sample volumes. The resolution is 1 mmHg.

doi:10.1371/journal.pone.0166251.g007
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Table 2. The vascular fractions, hypoxic fractions with threshold levels 0.01, 1 and 5 mmHg and average value and standard deviation of pO2for

five samples from the CTM and the corresponding samples from the ITM.

Sample HF0.01 mmHg HF1 mmHg HF5 mmHg VF Avg pO2 SD(pO2)

CTM 1 0.3977 0.523 0.595 0.0396 15.61 23.51

CTM 2 0.4908 0.607 0.675 0.0272 11.97 21.05

CTM 3 0.4568 0.5864 0.6577 0.0291 12.20 20.95

CTM 4 0.4380 0.5296 0.5877 0.0398 16.43 23.97

CTM 5 0.3696 0.5141 0.5964 0.0325 14.63 22.40

CTMDS 1 0.4004 0.5276 0.6019 0.0396 15.35 23.19

ITM 1 0.0126 0.386 0.4829 0.0396 18.41 23.45

ITM 2 0.0086 0.3905 0.4914 0.0272 18.06 23.23

ITM 3 0.0041 0.3979 0.4980 0.0291 17.63 22.87

ITM 4 0.0013 0.2648 0.3628 0.0398 23.46 24.56

ITM 5 0.0006 0.3802 0.4792 0.0325 18.37 23.25

doi:10.1371/journal.pone.0166251.t002

Fig 8. Correlation and significance. Correlation coefficients and p-values for the properties of the five samples. The

correlation coefficients (upper panels) show the sign and strength of the correlations, while the p-value (lower panels) may

be used to evaluate the significance. The lower left to upper right diagonals of all panels, by necessity, contain nonsense

values.

doi:10.1371/journal.pone.0166251.g008

Oxygen Distributions—The Importance of Considering a Complete Vascular Network

PLOS ONE | DOI:10.1371/journal.pone.0166251 November 18, 2016 12 / 17



resolution of the oxygen estimations, the better, at least down to the scale of one single cell. We

see, in Table 2, that a down-sampling from high (voxel size 10 μm) to moderate (voxel size

100 μm) resolution causes a slight overestimation of the level of hypoxia and therefore the

radioresistance. Assuming small scale heterogeneity of hypoxia and necrosis, this becomes

increasingly important. The differences within and between samples, in vascular fraction and

oxygenation, suggest a potential for both macro- and microscopic optimisation of absorbed

dose, to improve radiation treatment results and minimise normal tissue complications.

This work further emphasises the importance of considering interaction between adjacent

microvessel trees, as in the CTM. One microvessel tree is not enough to give a reliable descrip-

tion of the oxygenation (Table 3), even on a small scale (due to intra-tumoural variations), but

considerably overestimates the normoxic fraction (Fig 7 and Table 2) and thereby would under-

estimate the absorbed dose required for tumour control. The reason for this is presumably that

the oxygen contribution from an individual vessel tree becomes greater, due to higher oxygen

gradients. This means that when the trees are isolated and diffusion is calculated, the apparent

vessel density becomes low, causing more oxygen to leave the vessels, due to the poor oxygen-

ation in the surroundings. This, in turn, causes the oxygen to transport further from the vessel,

giving a larger fraction of oxygenated tissue when the sub-fields of different trees are combined.

Therefore, the result of the ITM was misleading and the agreement with CTM was poor. The

ITM also fails to capture obvious correlations (Fig 8) and is, consequently, clearly inadequate

for its purpose, as is the CTM, when applied only to sub-volumes of the tumour, because of the

lack of periodicity in the vessel structure. The results from the KS tests clearly show that the

intra-tumoural heterogeneity on a larger scale is too pronounced for sub-samples on the order

of 107 voxels, side of 10 μm, to give a good estimate of oxygen distribution. At higher vascular

densities, the spatial variations in oxygenation are likely to decrease, but as tumours generally

have irregular vascularisation and oxygenation,[25] sub-sampling is preferably avoided.

The tumour model used here is easy to modify regarding branching characteristics, vessel

oxygen levels, vessel density, vessel size, number of generations, number of trees etc. The cut-

off in capillary length, which essentially means that capillaries shorter than 40 μm are excluded,

is reasonable. This is due to that these vessels in general would run very close to the parent ves-

sels, in fact partly overlap in most cases, given the branching angles and resolution. As a conse-

quence of the use of constant vessel oxygen content, their contribution to the oxygen pressure

field would most likely be completely negligible and including them would simply weigh the

Table 3. RMSD, for five samples from the ITM and the corresponding samples from the ITM. A down-sampled version of CTM sample 1 (CTMDS 1) is

also included.

RMSD

Sample CTM 1 CTM 2 CTM 3 CTM 4 CTM 5

CTM 1 0 0.0084 0.0064 0.0011 0.0012

CTM 2 0.0084 0 0.0021 0.0078 0.0094

CTM 3 0.0064 0.0021 0 0.0058 0.0073

CTM 4 0.0011 0.0078 0.0058 0 0.0022

CTM 5 0.0012 0.0094 0.0073 0.0022 0

CTMDS 1 0.0007 - - - -

ITM 1 0.0139 - - - -

ITM 2 - 0.0219 - - -

ITM 3 - - 0.0190 - -

ITM 4 - - - 0.0267 -

ITM 5 - - - - 0.0135

doi:10.1371/journal.pone.0166251.t003
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model down, although it can be done if desired, but preferably in combination with an

increase in resolution.

The correlations between pO2 distribution characteristics and vascular fraction imply that

parametric models may be constructed for, presumably faster, image based oxygenation esti-

mations, given that the circumstances (e.g. variable relations and computational load) allow it.

Initial efforts at this have been made.[5] There is likely to exist an optimal microvessel density

resolution, for which the correlation is maximised and, from what we see here regarding inter-

actions between adjacent vessel trees, this optimal resolution may vary with the structure of

the microvascular network. This assumption is further supported by the weaker correlation

between vascular fraction and anoxia (HF0.01).

In this study, we show how stochastic methods may be used to model, with a realistic

appearance and on a clinically relevant scale, the chaos that is tumour vasculature. The esti-

mated simulation times for computing the oxygenation of the entire tumour makes it ineffec-

tive for repeated investigations of factors that affect the oxygen distribution in a macroscopic

sized tumour, e.g. the deflection angles at the branching points, the variations in artery length

and the oxygen level in the vessels. Figs 6 and 7 as well as Tables 2 and 3 and the KS test results

indicate a notable variation in oxygen distribution within and between individual samples

which makes the common model expansion by mirroring or repetition an inappropriate mea-

sure. To access the full potential of this type of modelling, evaluation therefore should be per-

formed on a cluster of processors, preferably one or several CUDA-compatible Graphic cards

(GPU) or equivalent, so that computations may be parallelised, thereby considerably reducing

the computation time so that entire tumours may be studied using sufficient resolution.

Supporting Information

S1 File. Oxygen levels for sub volume 1 using ITM. 30x30x30 matrix containing the oxygen

levels for sub volume 1. Data is single precision, little endian.

(BIN)

S2 File. Oxygen levels for sub volume 2 using ITM. 30x30x30 matrix containing the oxygen

levels for sub volume 3. Data is single precision, little endian.

(BIN)

S3 File. Oxygen levels for sub volume 3 using ITM. 30x30x30 matrix containing the oxygen

levels for sub volume 3. Data is single precision, little endian.

(BIN)

S4 File. Oxygen levels for sub volume 4 using ITM. 30x30x30 matrix containing the oxygen

levels for sub volume 4. Data is single precision, little endian.

(BIN)

S5 File. Oxygen levels for sub volume 5 using ITM. 30x30x30 matrix containing the oxygen

levels for sub volume 5. Data is single precision, little endian.

(BIN)

S6 File. Oxygen levels for sub volume 1 using CTM. 300x300x300 matrix containing the oxy-

gen levels for sub volume 1. Data is single precision, little endian.

(ZIP)

S7 File. Oxygen levels for sub volume 2 using CTM. 300x300x300 matrix containing the oxy-

gen levels for sub volume 3. Data is single precision, little endian.

(ZIP)
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S8 File. Oxygen levels for sub volume 3 using CTM. 300x300x300 matrix containing the oxy-

gen levels for sub volume 3. Data is single precision, little endian.

(ZIP)

S9 File. Oxygen levels for sub volume 4 using CTM. 300x300x300 matrix containing the oxy-

gen levels for sub volume 4. Data is single precision, little endian.

(ZIP)

S10 File. Oxygen levels for sub volume 5 using CTM. 300x300x300 matrix containing the

oxygen levels for sub volume 5. Data is single precision, little endian.

(ZIP)

S11 File. Vessel data for sub volume 1. 330x330x330 matrix containing the vessel representa-

tion for sub volume 1. Data is single precision, little endian.

(ZIP)

S12 File. Vessel data for sub volume 2. 330x330x330 matrix containing the vessel representa-

tion for sub volume 3. Data is single precision, little endian.

(ZIP)

S13 File. Vessel data for sub volume 3. 330x330x330 matrix containing the vessel representa-

tion for sub volume 3. Data is single precision, little endian.

(ZIP)

S14 File. Vessel data for sub volume 4. 330x330x330 matrix containing the vessel representa-

tion for sub volume 4. Data is single precision, little endian.

(ZIP)

S15 File. Vessel data for sub volume 5. 330x330x330 matrix containing the vessel representa-

tion for sub volume 5. Data is single precision, little endian.

(ZIP)
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16. Lagerlöf J, Göteborgs universitet (2014) Tumour vasculature, oxygenation and radiosensitivity a numer-
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