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Abstract

Recovering gene regulatory networks from expression data is a challenging problem in sys-

tems biology that provides valuable information on the regulatory mechanisms of cells. A

number of algorithms based on computational models are currently used to recover net-

work topology. However, most of these algorithms have limitations. For example, many

models tend to be complicated because of the “large p, small n” problem. In this paper, we

propose a novel regulatory network inference method called the maximum-relevance and

maximum-significance network (MRMSn) method, which converts the problem of recover-

ing networks into a problem of how to select the regulator genes for each gene. To solve

the latter problem, we present an algorithm that is based on information theory and selects

the regulator genes for a specific gene by maximizing the relevance and significance. A

first-order incremental search algorithm is used to search for regulator genes. Eventually, a

strict constraint is adopted to adjust all of the regulatory relationships according to the

obtained regulator genes and thus obtain the complete network structure. We performed

our method on five different datasets and compared our method to five state-of-the-art

methods for network inference based on information theory. The results confirm the effec-

tiveness of our method.

Introduction

The rapid development of high-throughput technologies has produced extensive gene expres-
sion data, and mining useful cell function information from these data has become a crucial
goal in systems biology [1,2]. Specific physiological activity in cells occurs at the gene expres-
sion level. This physiological activity results from the interaction of a large number of genes
and biologicalmolecules and is not controlled by the gene itself. The sophisticated regulatory
relationships between genes are often depicted in the form of gene regulatory networks. There-
fore, gene network inferences are crucial to identifying regulatory relationships and under-
standing regulatorymechanisms [3,4].
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A gene network can be represented by a graph, G = {V, E}, where V and E represent the
gene sets and the regulatory relationships between genes, respectively [5]. The graph depicts
the gene network topology, which makes the interactions between genes more explicit. The
main task of gene network inference methods is to recover accurate gene topologies from gene
expression data and ensure their consistency with real gene networks. However, network infer-
ence is a challenging problem because of limitations in gene expression data; for example,
when the number of samples is far less than the number of genes, an ill-posednetwork struc-
ture may result [6,7]. In addition, high noise and non-linear characteristics lead to inaccurate
network inferences. Although these limitations may cause difficultieswhen performing net-
work inferences, many inference methods of gene regulatory networks based on computational
models have been reported in recent decades [8–12].

The Boolean network model is a simple model based on natural mechanisms. The expres-
sion value of each gene is either 0 or 1, and the interaction relationships between the genes are
expressed by abstract Boolean logic, such as AND, OR, and NOT [13,14]. The Boolean network
model was first proposed by Kauffman [15], who characterized the framework of the model.
To reduce uncertainty in the data and model selection, Shmulevich et al. [16] extended the
model and proposed the probabilistic Boolean network. Recently, a variety of computational
methods have been introduced to improve Boolean network models, such as information theo-
retic [17,18], genetic algorithm [19,20], and literature-basedmethods [9]. Although Boolean
networks are easy to implement, capturing complex system behaviors and recovering large-
scale gene networks may be difficult using these network models [2,18].

The Bayesian network is a probabilistic graphical model that consists of a directed acyclic
graph (DAG) and a conditional probability table (CPT). A DAG describes the causal relation-
ships among a set of genes, and a CPT represents the conditional probability distribution of
each gene based on its parent set [21]. The Bayesian network can be static or dynamic accord-
ing to whether temporal expression profiles are used. Both static and dynamic Bayesian net-
work modeling involve two components: structure learning and parameter learning. In this
study, we mainly focused on the first component. Structure learning has become a challenging
problem in recent decades. Two categories of methods can be used in structure learning: a con-
straint-basedmethod [22,23], which adopts condition independence tests to capture the
dependent relationships among genes; and a score-basedmethod, which represents the mea-
sured probability of each structure from the given data. Recently, several score functions have
been used, such as Akaike’s information criteria [24], Bayesian information criteria [25], and
minimal description length [26,27]. Although Bayesian network modeling has certain advan-
tages with regard to noise data and incomplete data, it also has drawbacks, with the major ones
being the exponential growth of the search space size of a DAG with respect to the number of
genes and the difficulty of recovering large-scale networks [28].

Network models based on information theory are widely applied in network inference and
measure regulatory relationships between genes by the dependency of all gene pairs. Mutual
information (MI) is used as the measure of dependency because of its excellent performance in
capturing complex dependency. Many gene network inference algorithms based on MI have
been proposed [29–36]. When recovering networks based on these methods, the mutual infor-
mation matrix (MIM) is first calculated, and then different strategies are applied to distinguish
between real edges and false edges. One of the earliest of these methods is the relevance net-
work approach [29], in which a proportion of inaccurate edges are eliminated according to a
given threshold. However, the method cannot be used to assess indirect interactions between
genes. The CLR algorithm presents an MI score based on an empirical distribution [31]. The
ARACNE algorithm is used to measure data processing inequality [32] to eliminate indirect
interactions. Luo et al. [33] produced a new statistical learning strategy, MI3, for the detection
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of more complex three-way relationships. Zhang et al. [34] presented a network inference algo-
rithm based on conditional mutual information (CMI) to distinguish non-linear dependence
between genes. Meyer et al. [35] employed a new dependency paradigm by introducing a fea-
ture selection technique based on maximum relevance/minimum redundancy criteria. Villa-
verde et al. [36] presented the network inference algorithmMIDER, which is based on entropy
reduction.Methods based on information theory can effectively capture non-linear depen-
dency and apply it to large-scale networks. Nevertheless, many models only consider pairwise
interactions between genes and ignore other characteristics of the network.

Inspired by the network model based on information theory and a feature selectionmethod
known as maximum relevance-maximum significance (MRMS) [37], we propose a novel infor-
mation—theoretic network inference method based on the MRMS, in which the problem of
network recovery is converted into a process whereby the regulator genes for each target gene
are selected.Our proposed strategy differs from that of the MRMS in terms of feature selection
because it fully considers network topology characteristics, such as relevance, modularity, and
sparseness. Therefore, our strategy can effectively select the regulator genes of a target gene,
and it can then be applied for network recovery. Ourmethod is compared with typical methods
based on information theory, and the results demonstrate that our method outperforms these
models.

Methods

Gene network inference can be implemented by selecting the regulator genes for each gene;
however, the key problem with this method is that it fails to present an effective selection strat-
egy. In this section, we propose a newMRMS strategy based on information theory and then
present a compact network inference method called the maximum-relevance and maximum-
significance network (MRMSn) method, which is based on MRMS. To clearly describe this
method, we first introduce the motivations of the method, its relevance and significance in net-
works and the concepts of information theory, which are the foundation of our proposed
method.

Motivation

Generally, traditional gene network inference methods recover network topologies by using a
computational model that ensures that the final network topology is the closest match to the
gene expression data. However, building an appropriate model is difficult because of the “large
p, small n” problem [38]. The fundamental task of network inference is to identify all of the
underlying regulatory relationships between genes. Therefore, if each gene is sequentially
treated as the target gene, then the problem of inferring a network involving n genes can be
decomposed into n sub-problems, and the task involves selecting the regulator genes for the
given target gene. Designing an effective selection strategy is the key to the sub-problem. At
present, many selection strategies are being applied with feature selection techniques to resolve
the classification problem. To a certain extent, the sub-problem of selecting the regulator genes
for a given target gene can be considered a two-class classification problem. Hence, the feature
selection technique is used to resolve the sub-problem in this paper.

To select the correct regulator genes for the target gene in each sub-problem, a selection cri-
terion with a high discriminating power should be designed.Although a large number of differ-
ent criteria have been applied to feature selection problems and each criterion attempts to
select the optimal feature sets that are suitable for all applications, obtaining the optimal fea-
tures is not realistic. Therefore, the optimal feature selection criterion in the above sub-problem
should fully reflect the characteristics of the network topology.
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For real network topology, relevance and significance are the most basic characteristics.
Regulator genes should have a high relevance with the target gene and directly connect with
the target gene. Thus, relevance can be used to search for the regulator genes of the target gene.
However, certain genes with high numerical relevance with the target gene may not be directly
connectedwith the target gene. Obviously, these genes, which are called redundant genes, are
not actual regulatory genes. This situation may lead to difficulties in selecting regulator genes
based on the relevance of the gene network and subsequently degrade the accuracy of the net-
work inference. Hence, redundant genes must be removed. Significance is another variable for
determiningwhether a gene is the true regulator gene of the target gene. Regulator genes
should have high significancewith the module, which is composed of the target gene and the
regulator genes. Therefore, a strategy that combines relevance and significancemay effectively
remove redundant genes and thereby improve the accuracy of the network inference.

Relevance and significance

Relevance and significance are the most basic characteristics of a network. Relevance is usually
used to measure the dependency between genes in the network, and significance reflects the
influence of the genes on the network. For a network with a target gene and corresponding reg-
ulator genes, the relevance and significance can be defined as follows.

LetG = {g1,. . .,gn} denotes the set of n genes of a givenmicroarray dataset, which is used to
infer the network. The relevance of gene gi with respect to the target gene gc is defined as fol-
lows:

ggi
¼ Rðgi; gcÞ ð1Þ

where R(�) is a measurement that represents the dependency between two genes. Mutual infor-
mation is one of the typical measures to define dependency of variables and we use it to charac-
terize the relevance of genes in this paper.

LetU = {g1,. . .,gr},U� G be the set of r selected genes. For the target gene gc(gc 2 G\U), the
significance of gene gi among U has the following form:

φgi
¼ SUðgi; gcÞ ¼ jEUðgcÞ � EUnfgig

ðgcÞj ð2Þ

where E(�) represents an energy estimation measure. The description of the energymeasure
can be different in different contexts. Entropy is an effectivemeasurement to characterize
energy dispersal, and it can be used to measure information content of variable in information
theory. Thus, we use entropy to measure the energy estimation of genes in this study. Basically,
the significance defined in Eq (2) reflects the change in energy estimation when a gene gi is
removed from the gene setU.

Information theory

Information theorywas proposed by Claude E. Shannon and has becomewidely used in
applied mathematics, electrical engineering and computer science. Entropy and MI are two
fundamental concepts in information theory that are vital for the relationships and interpreta-
tion of data.

Entropy is a measure of the average uncertainty of a random variable. Here, X represents a
discrete random variable with alphabet χ and p(x) represents the probability distribution
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function of X. The entropy of a random variable X is defined as follows:

HðXÞ ¼ �
X

x2X

pðxÞlog pðxÞ ð3Þ

where the log is to the base 2 and the entropy is expressed in bits.
Because of the discrete random variable Y and the conditional distribution function p(y|x),

the conditional entropy H(Y|X) is defined as follows:

HðYjXÞ ¼ �
X

x2X;y2Y

pðx; yÞlog pðyjxÞ ð4Þ

The definition of conditional entropy can be extended to multiple random X1,. . .,Xi and is
defined as follows:

HðY jX1; . . . ;XiÞ ¼ �
X

y2Y;x1 ;...;xi2X

pðy; x1; . . . ; xiÞlog pðyjx1; . . . xiÞ ð5Þ

H(Y|X1,. . .,Xi) is monotonically decreasing, and it follows that

HðYjX1; . . . ;XiÞ � HðYjX1; . . . ;Xi� 1Þ ð6Þ

MI is used to describe information that a random variable shares with another random vari-
able and represents a measure of the dependency relationship between the two variables. The
MI of two random variables X and Y is defined as follows:

IðX;YÞ ¼ HðYÞ � HðYjXÞ ¼
X

x2X

X

y2Y

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ

� �

ð7Þ

where p(x,y) is the joint probability distribution function of X and Y and p(x) and p(y) are the
marginal probability functions of X and Y, respectively.

MRMS strategy

In real network topologies, each regulator gene should have high relevance to the target
gene. Hence, the identification of the regulator genes for a target gene is to select a gene
set S with K regulator genes {gi}that have the greatest relevance to the target gene gc. Let
Gc = {g1,. . .,gc−1,gc+1,. . .,gn} represents the candidate gene set containing all genes in G except
for target gene gc. MI is used to represent the relevance between the target gene and the regu-
lator gene. The regulator genes of target gene gc are the genes that satisfy Eq (8), which is
called the maximum relevance criterion.

maxRðS; gcÞ; R ¼ Iðfgi; i ¼ 1; . . . ;Kg; gcÞ ð8Þ

Obviously, when K equals 1, the selected gene is the gene that maximizes I(gi,gc)(gi2 Gc).
When K>1, a simple selection scheme is adopted: suppose V is a gene set with m-1 selected
regulator genes, themth regulator gene gm is selected by maximizing R(�) in Eq (9).

Rðgm; gcÞ ¼ fIðgm; gcÞ; gm 2 GcnVg ð9Þ

Although the regulatory genes should have high relevance to the target gene, not all genes
with high relevance to the target gene are true regulator genes. A likely occurrence is that cer-
tain genes selected on the basis of the maximum relevance criterion will not be directly con-
nected with the target gene, and the genes will connect with target gene through a true
regulator gene. Obviously, these genes, which are called redundant regulator genes, are not

Gene Regulatory Network Inferences

PLOS ONE | DOI:10.1371/journal.pone.0166115 November 9, 2016 5 / 19

http://en.wikipedia.org/wiki/Joint_distribution


the correct regulator genes. Redundant regulator genes can degrade the accuracy of the net-
work inferences and must therefore be removed.

Modularity is an important characteristic of regulatory network topologies. A module is
composed of clustered genes. Compared with other genes outside of the module, the genes
inside the module have more associations with each other. Typically, a module is a relatively
balanced system in a real network, and the real gene members in this system have different
influences on the system according to their differing importance levels. Theoretically, the
members outside of the system will have no influence on the system. This influence is called
the significance of the gene in the module. A module composed of a target gene and corre-
sponding regulator genes can be a special module in which the target gene is the core of the
module, which is regulated by all of the regulator genes. Every regulator gene provides a differ-
ent contribution to the information of the target gene. Obviously, the significance of the gene
can be used to discriminate if the gene is the true regulator gene for the target gene. Thus,
defining significance in the specialmodule is key for understanding the modularity of regulator
genes and removing redundant regulator genes. Entropy is an effectivemethod of measuring
the variable amount of information in information theory and can be used to measure energy
dispersal. Based on Eqs (2) and (6), we considered using an entropy reductionmethod to mea-
sure the significance.

For a target gene gc and the gene setV with m-1 genes, the significance of gene gm has the
following form:

Sðgm; gcÞ ¼ SVUfgmg
ðgm; gcÞ ¼ HðgcjVÞ � HðgcjVUfgmgÞ ð10Þ

Clearly, for target gene gc, the regulator gene should be the top-ranked gene in the signifi-
cance score (see Eq (10)). This strategy is called the maximum significancemethod, which is
described as follows:

max
gm2GcnV

Sðgm; gcÞ ð11Þ

Based on the above description of two criteria, we note that the maximum relevance crite-
rion used to select for regulator genes may introduce redundant regulator genes. To remove
the redundant regulator genes, we consider the maximal significance strategy because the cor-
rect regulator genes tend to score higher on significance. The strategy that combines the maxi-
mal significance strategy with the maximum relevance criterion is called the MRMS. Ideally,
the correct regulator genes should have high relevance to the target gene and high significance
in the module. Thus, the following form is provided to optimize R and S simultaneously:

maxFðR; SÞ;F ¼ Rþ S ð12Þ

For feature selection, combining two strategies to select the optimal regulator genes ensures
that the selected regulator genes have maximal relevance and significance to the target gene.
Therefore, identifying the regulator genes of a target gene is the same as selectingK regulator
genes from Gc by maximizingF(�) in Eq (12). In practice, this goal cannot be achieved, and
only near-optimal regulator genes can be obtained. Inspired by the maximal relevance-mini-
mal-redundancy criterion and considering the degree of relative importance between relevance
and significance, another form is derived from Eq (12). Suppose a gene setV with m-1 regula-
tor genes has been selected.When selecting themth gene, the selected gene gm has the following
form:

max
gm2GcnV

½aIðgm; gcÞ þ ð1 � aÞðHðgcjVÞ � HðgcjVUfgmgÞÞ� ð13Þ
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Based on Eq (13), we adopt the following first-order incremental search algorithm to select the
regulator genes for the target gene gc.

Step 1: The candidate gene setGc and the set of the selected regulator genes V are initialized,
and Gc = G − gc and V = ϕ are set.

Step 2: The relevance values I(gi,gc) between the target gene gc and each candidate gene gi2 Gc

are calculated, and the relevance values are ranked in descending order.

Step 3: The candidate gene with the largest relevance value is selected as the first gene of V and
removed from Gc.

Step 4: In the remaining genes of Gc, a gene gm that maximizes Eq (13) is selected. If the score
in Eq (13) of the selected gene lies above the given score threshold T0, then the gene is
inserted into V and removed from Gc. Otherwise, the selection procedure is terminated.

Step 5: Step 4 is performed again until the number of selected genes in V is more than the given
number K; otherwise, the selection procedure is terminated.

Note that the parameter α represents the weight of the relevance, and it is used to adjust the
importance between the relevance and significance. Parameter K represents the number of
selected regulator genes. Considering the sparseness of the network, the number K is set to
dlog2 ne, where n is the number of genes in the network.

Gene network inference based on the MRMS strategy

Inferring a gene network involves identifying all of the regulatory relationships between genes.
In the above section, we describe an MRMS strategy that helps to identify the regulatory rela-
tionships of a target gene. The remaining work involves inferring the gene network topology
based on this strategy. We propose a novel regulatory network inference method called
MRMSn, which recovers gene networks through the following three stages.

The first stage is the regulatory relationship initialization. In this stage, a MIM is built
according to Eq (7), and this MIM can reflect the likelihoodof most direct regulatory relation-
ships among genes. Generally, a greater value corresponds to a higher likelihoodof a direct reg-
ulation relationship. However, the sparsity of the network means that only a few regulatory
relationships occur between genes. Hence, a regulatory relationship with small values in the
matrix must be removed. The most commonly used removal method is the selection of a uni-
fied threshold to remove false regulatory relationships. If the MI value is less than the threshold
value, then the MI value is set to zero and the corresponding regulation relationship is
removed. However, the numerical range of the MI value for each gene is different. When the
unified threshold is too large, all regulatory relationships of certain genes may be lost, which is
an undesired result. Therefore, in the network inference algorithm, we provide different thresh-
olds for the regulatory relationships of different genes, and the threshold for the regulatory
relationship of a given gene is set according to the MI values between the given gene and other
genes. For a MIMM(n×n),Mi denotes the MI values between gene gi and other genes.We
choose parameter θ as the threshold for initializing regulatory relationships because it satisfies
θ = ε×max(Mi), where ε2(0,1). Parameter ε is typically set to a small value; specifically, it is set
as 0.01 by default.

The second stage involves selecting the regulator genes for all genes. Each gene in a given
gene dataset will in turn be a target gene, and the regulator genes of each target gene are
selected using the MRMS strategy.
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The last stage is to adjust all of the regulatory relationships and build a complete network
structure. Although all of the regulatory genes of each target gene have been obtained, we can-
not accurately obtain the complete network. A case that should be considered is when gene gi is
the regulator gene of gene gj and gene gj is not the regulator gene of gene gi. To resolve this
problem, we provide a constraint to adjust the regulation relationships to obtain the complete
network structure. The constraint is defined such that the regulatory relationship between gene
gi and gene gj only occurs if gene gi is the regulator gene of gene gj and gene gj is the regulator
gene of gene gi. After the regulation relationships are adjusted according to this constraint, cer-
tain target genes may not have a regulator gene. To ensure that each target gene has at least one
regulator gene, the first selected regulator gene of the target gene in the MRMS strategy is
regarded as the regulated gene of the target gene.

The gene network inference methodMRMSn is summarized in Table 1.

Parameter tuning problem

The parameter α plays an important role in gene regulatory network inferences based on the
MRMS strategy because it adjusts the degree of relative importance between the relevance and
significance in the model. If α increases, the importance of the relevance increases, but the
importance of the significance decreases. Thus, this parameter directly influences the perfor-
mance of the proposedmethod.

To determine the optimum value of α, an optimization method based on the local density is
provided. The local density ρc of the target gene gc is defined as follows:

rc ¼
Xn

j¼1

wðIðgc; gjÞ � dÞ ð14Þ

where χ(x) = 1 if x� 0 and χ(x) = 0 otherwise and d is a cutoff distance. Basically, ρc is equal to
the number of genes with which the relevance of gene gj is more than d, which reflects the
approximate number of regulator genes of gene gc. Clearly, the value of ρc will be affected by d,
and the value of d should be determined according to the datasets. Let smgc

(gc 2 G) denote the
sum of the MI between gene gc and any other genes. For each target gene gc 2 G, the smgc

is cal-
culated and gene gγ that satisfies Eq (15) is selected.

gg ¼ arg min
gc2G

fsmgc
g ð15Þ

Table 1. MRMSn for network inference.

Input: Microarray data G = {g1,. . .,gn}

The number of the selected regulator gene K

The weight of network relevance α
The threshold of initializing regulatory relationships ε
The threshold of scoring in MRMS T0

Output: A gene network

1: Construct a MI matrix M according to Eq (7).

2: Adjust MI matrix M using the threshold ε
3: for each gene gc, c 1 to n do

4: Select K regulator genes of gene gc using MRMS criterion

5: end

6: Adjust the regulation relationship using the constraint.

7: Return the gene network.

doi:10.1371/journal.pone.0166115.t001
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Intuitively, the number of regulator genes of gene gγmay be lowest among all of the genes.
In a sparse network, this number is typically one, although in a complex method, it is more
than one. Thus, the value of d can be calculated as follows:

d ¼ max
gj2G

Iðgg; gjÞ ð16Þ

Basically, d in Eq (16) is equal to the highest MI value between gene gγ and any other gene.
When the value of d is used in Eq (14), the density of certain genes that present the highest MI
value among other genes with values lower than d in Eq (16) may be zero. Thus, when the den-
sity of certain genes is zero, the value of d is adjusted as follows:

d ¼
1

n � 1

Xn

j¼1

Iðgg; gjÞ ð17Þ

After the cutoff distance d is calculated, the density ρc of each gene can be obtained. The
parameter α is defined as follows:

a ¼

Xn

i¼1

Gðdlog
2
ne � riÞ

n
ð18Þ

where Γ(η) = 1 if η>0; otherwise,Γ(η) = 0. Considering that relevance and significance are the
basic characteristics of the network, a constraint in which the value of α is varied from 0.1 to
0.9 is included. If α is less than 0.1, the final α is set to 0.1, and if α is more than 0.9, the final α
is set at 0.9.

The above optimization method is applied to each dataset. The optimum value of α is 0.25
for Reaction chain with 4 species data, 0.90 and 0.10 for the DREAM3 10 genes data and
DREAM3 50 genes data, respectively, and 0.20 and 0.78 for the IRMA benchmark data and
SOS data, respectively.

Parameter T0 represents the threshold of the score in Eq (13) and is used to select regulator
genes. A gene is considered to be the regulator gene of a target gene when the gene score
exceedsT0. During the selection process, all scores in Eq (13) can be observed, and they are
obtained in the process of selecting the regulator gene for each target gene. Based on extensive
experiments, the value of T0 is set to 70% of the maximum score. Thus, the optimum values of
T0 are 0.55, 0.09, 0.12, 0.51 and 0.18 for Reaction chain with 4 species data, DREAM3 10 gene
data, DREAM3 50 gene data, IRMA benchmark data and SOS data, respectively.

Computational complexity

In this section, we detail the computational complexity of the proposedmethod. Let n be the
number of genes in the network and n0 be the number of selected regulator genes in already-
selected gene set. All of the relevance values of the target genes are obtained by calculating the
mutual information matrix, which requires a o(n2) time complexity. The gene with the largest
relevance value to the target gene is selected in step 3 of the MRMS strategy, and this step
requires o(n−1). After obtaining the first regulator gene, the genes in the candidate gene set are
selected based on the maximum-relevance and maximum-significance strategy in step 4, and
this step requires a o(n−n0) time complexity. Because the top K regulator genes are selected for
the target gene, the selection procedure in step 4 is executedK−1 times. In the last stage of the
MRMSn, a time complexity of o(2Kn + n) is required to adjust the relationships and build a
complete network structure. Thus, when inferring the network with n genes, the overall
computational complexity is o(n2)+o(n((n−1)+(K−1)(n−n0)))+o(2K+n). Because the number
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of total genes is significantly larger than the number of selected regulator genes (n>>n0), the
computational complexity can be approximated as o(Kn2).

Experiments

To evaluate the performance of the proposedMRMSn, we compare the method with five algo-
rithms: CLR, ARACNE, MRNET, MI3 and MIDER. The first two methods are based on infor-
mation theory and are widely used in network inference. MRNET and MI3 are regarded as two
typical methods in which the regulation relationships involving other regulator genes are iden-
tified.MIDER can detect interactions with entropy reduction. CLR, ARACNE and MRNET
can be implemented in the R package MINET. To avoid unfair comparisons, we chose the
default parameter eps = 0.0 in ARACNE [39]. For CLR and MRNET, we calculate the true pos-
itive rate (TPR) and the false positive rate (FPR) at different thresholds and select the optimum
threshold, for which (TPR-FPR+1) is the maximum in the method. For the datasets in Table 2,
the thresholds of CLR are set to 0.4959, 0.0, 0.1233, 0.2505, 0.25 and the thresholds of MRNET
are set to 0.0, 0.0114, 0.0105, 0.0577, and 0.0. MI3 is also implemented in R with the package
mi3. MIDER and the proposedMRMSn are performed in the MATLAB environment on a per-
sonal computer with an Intel core i7 (2.2 GHz) and 16 GB of RAM. The proposedMRMSn
does not provide network directions, and the network direction in MI3 and MIDER is not
considered.

Data sets

Five datasets were used in the experiments to evaluate the performance of the method. All of
the datasets included simulated data and real data obtained from previous studies [40–43].
Details of the datasets are given in Table 2.

Reaction chain with 4 species data [40] is a small reaction pathway that contains 10 samples
for 4 variables. The true network is composed of 4 nodes and 3 edges.

DREAM3 10 gene data [41] represent a yeast network that contains 10 samples for 10
genes. The true network is composed of 10 nodes and 10 edges.

DREAM3 50 gene data [41] represent a yeast network that contains 50 samples for 50
genes. The true network is composed of 50 nodes and 77 edges.

IRMA benchmark data [42] represent a yeast synthetic network that contains 125 samples
for 5 genes. The true network is composed of 10 nodes and 33 edges.

S0S data [43] represent an Escherichia coli network that contains 9 samples for 9 genes. The
true network is composed of 9 nodes and 24 edges.

Evaluation metrics

Ourmethodmust be compared with other methods that use different metrics to assess its per-
formance. Therefore, we used the true positive rate (TPR), false positive rate (FPR), positive
predictive value (PPV), and accuracy (ACC). We let true positives (TP), true negatives (TN),

Table 2. The details of the data sets used in our experiments.

Datasets Variables Samples Type network nodes network edges

Reaction chain with 4 species 4 10 Simulated 4 3

DREAM3 10 genes 10 10 Simulated 10 10

DREAM3 50 genes 50 50 Simulated 50 77

IRMA benchmark 5 125 Real 5 7

S0S 9 9 Real 9 24

doi:10.1371/journal.pone.0166115.t002
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false positives (FP), and false negatives (FN) denote the numbers of true positives, true nega-
tives, false positives, and false negatives, respectively. These measures are defined as follows:

TPR ¼
TP

TP þ FN
ð19Þ

FPR ¼
FP

FP þ TN
ð20Þ

PPV ¼
TP

TP þ FP
ð21Þ

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
ð22Þ

Experimental results

To fairly evaluate the performance of our proposedmethod, we compared it with other meth-
ods using simulation data and real data. It was important to consider network size when choos-
ing these datasets. The number of network nodes varies from 4 to 50 in our datasets. Network
sparsity is an important aspect that should be considered. Network datasets that have different
degrees of sparsity were chosen to reflect the scalability of our method. The experiment process
for different datasets is described in detail in the following subsection.

Reaction chain with 4 species. The proposedmethod was tested on a reaction chain that
includes data for 4 species to verify how well it performs in special networks, such as linear
chain networks. In this experiment, we chose 0.25 as the weight of the network relevance and
0.55 as the threshold of scoring in the MRMS according to the optimization methods proposed
above. We set 2(dlog2 4e) as the number of the selected regulator genes. Fig 1 shows the net-
work structure of different methods to facilitate a visual observation of the network topology.
We found that MRMSn, CLR, ARACNE and MIDER can infer the same network topology
with the true network, although redundant edges are produced in MRNET and MI3. To further

Fig 1. Comparison of different methods on reaction chain with 4 species dataset.

doi:10.1371/journal.pone.0166115.g001
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reflect the efficiencyof our method, the performance of MRMSn with regard to evaluationmet-
rics was compared with the listed methods. Table 3 presents the comparison results and shows
that CLR, ARACNE, MIDER and MRMSn can identify all of the correct edges and do not pro-
duce redundant edges (TP = 3, FP = 0). For MRNET and MI3, the values of ACC are 0.833 and
0.333, respectively, and these values are less than that of MRMSn (ACC = 1), which indicates
that the proposedmethod performs better than the CLR and MRNETmethods.

DREAM3 challenge network. The DREAM project provides benchmarks and tools that
can be used for the rigorous testing of gene network inference methods. To assess the ability of
the MRMSn to analyze simulation data, we tested the proposedmethod with the DREAM3
challenge, which provides three sub-challenges with networks of sizes 10, 50, and 100. Only the
results of the first two sub-challenges are presented here.

First, we tested the MRMSnmethod with the yeast dataset that contains 10 samples for 10
genes.We set 0.90 as the weight of the network relevance and 0.09 as the threshold of scoring
in MRMS. The number of the selected regulator genes for the target gene can be calculated as 4
(dlog2 10e). The network topologies of the different methods for the dataset are shown in Fig 2,
which shows that the MRMSnmethod can select all of the correct edges except for edge G4–
G9. In addition, edge G2–G9 is the only redundant edge. The MRMSnmethod clearly per-
forms better than the other methods. To support this finding, Table 4 presents a comparison of
the results in the evaluationmetric among the different methods.MRMSn can obtain 9 correct
edges (TP = 9), whereas the other methods only obtain 6–8 correct edges. Note that MIDER
cannot be used with the dataset. In addition, MRMSn only produces 1 redundant edge
(FP = 1), whereas the other methods produce 6–12 redundant edges. The accuracy of our
method is 0.956, which is much higher than the accuracy values of the other methods.

Then, MRMSn was tested on the yeast dataset that contains 50 samples for 50 genes. In the
experiment, we chose 0.10 as the weight of the network relevance and 0.12 as the threshold of
scoring of the MRMS. The number of the selected regulator genes for the target gene was 6
(dlog2 50e). In the experiment, we observed that FP increased dramatically as TP increased in
the other five methods. The experimental results are shown in Table 5 and indicate that the
MRMSnmethod can identify 21 correct edges and that it includes only 17 redundant edges
(TP = 21, FP = 17). In addition, this method can performwell with other metrics, especially
PPV and ACC (PPV = 0.553, ACC = 0.940). Our approach clearly performs better than the
other tested methods.

IRMA benchmark network. To verify the effectiveness of the MRMSnmethod on real
gene expression data, the method was tested on IRMA benchmark data and used to infer the
IRMA benchmark network, which is a true yeast synthetic network.When the method was
performed, the weighting of network relevance and the threshold of scoring in the MRMS
strategy were set as 0.2 and 0.51, respectively. The number of regulator genes selected for the
target gene was set to 3(dlog2 5e). Fig 3 presents the network structure of different methods
using the IRMA benchmark dataset. The figure shows that the MRMSn correctly selects five of

Table 3. Comparison of the performance by different methods on the reaction chain with 4 species dataset.

TP FP TPR FPR PPV ACC

CLR 3 0 1 0 1 1

ARACNE 3 0 1 0 1 1

MRNET 3 1 1 0.333 0.750 0.833

MI3 2 3 0.667 1 0.400 0.333

MIDER 3 0 1 0 1 1

MRMSn 3 0 1 0 1 1

doi:10.1371/journal.pone.0166115.t003
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Table 4. Comparison of the performance by different methods on DREAM3-10 genes dataset.

TP FP TPR FPR PPV ACC

CLR 6 10 0.600 0.286 0.375 0.689

ARACNE 6 6 0.600 0.171 0.500 0.778

MRNET 6 12 0.600 0.343 0.333 0.644

MI3 8 6 0.800 0.171 0.571 0.822

MIDER ------ ------ ------- ------ ------- ------

MRMSn 9 1 0.900 0.029 0.900 0.956

doi:10.1371/journal.pone.0166115.t004

Fig 2. Comparison of different methods on DREAM3-10genes challenge.

doi:10.1371/journal.pone.0166115.g002

Table 5. Comparison of the performance by different methods on DREAM3-50 genes dataset.

TP FP TPR FPR PPV ACC

CLR 19 115 0.247 0.144 0.103 0.818

ARACNE 13 125 0.170 0.109 0.094 0.846

MRNET 21 215 0.273 0.187 0.089 0.779

MI3 21 68 0.273 0.059 0.236 0.899

MIDER 4 79 0.052 0.069 0.048 0.876

MRMSn 21 17 0.273 0.015 0.553 0.940

doi:10.1371/journal.pone.0166115.t005
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the seven true edges. However, SWI5–GAL80 and CBF1–GAL4 are lost and GAL80–CBF1 is a
redundant edge. Similar comparison results with different methods can be obtained for the
IRMA benchmark dataset. Table 6 shows that our method and MIDER perform better than
CLR, ARACNE and MRNET, whereas MI3 (TPR = 0.857, FPR = 0.333) performs better than

Fig 3. Comparison of different methods on IRMA benchmark.

doi:10.1371/journal.pone.0166115.g003

Table 6. Comparison of the performance by different methods on IRMA benchmark dataset.

TP FP TPR FPR PPV ACC

CLR 3 1 0.427 0.333 0.750 0.500

ARACNE 3 2 0.429 0.667 0.600 0.400

MRNET 3 2 0.429 0.667 0.600 0.400

MI3 6 1 0.857 0.333 0.857 0.800

MIDER 5 1 0.714 0.333 0.833 0.700

MRMSn 5 1 0.714 0.333 0.833 0.700

doi:10.1371/journal.pone.0166115.t006
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the MRMSn (TPR = 0.714, FPR = 0.333). Nevertheless, our MRMSnmethod performs well
with the IRMA benchmark dataset (PPV = 0.833, ACC = 0.700).

SOS network in E. coli. The SOS network is a signal pathway in the DNA repair system. It
is inferred from real gene expression data and is frequently used to test the effectiveness of net-
work inference methods. Here, we test the MRMSn on the network of E. coli. We set the
weighting parameter of network relevance as 0.78 and the threshold of scoring as 0.18. The
number of regulator genes selected for the target gene was 4(dlog2 9e). Table 7 presents the
results of the six methods applied to the SOS network in the E. coli dataset. The results show
that the MRMSn performs better than all of the other methods except MRNET in terms of
accuracy. Although our method did not identify the highest number of correct edges, it pro-
duced the fewest redundant edges of all of the methods. In addition, MIDER cannot be used
with the SOS dataset. Although the performance of our method is poor for the TPR
(TPR = 0.417), it performs better than the other methods for the FPR and PPV (FPR = 0.167,
PPV = 0.833). Compared with previous experiments with other datasets, the effectiveness of
the MRMSn on the SOS network is not ideal. The principal reason for this finding is related to
the characteristics of the SOS network becausemost genes have 6–8 edges. However, the num-
ber of regulator genes selected for the target gene in the MRMSn is set to 4, which causes our
method to overlook correct edges. Although the experimental results are not ideal, Table 7
shows that our method is nonetheless more effective than all of the other tested methods except
MRNET.

More performance evaluation

MRMSn was implemented to evaluate the performance based on the optimum threshold. To
test the efficiencyof the method on a variety of thresholds, we calculated the area under the
receiver operating characteristic curve (AUROC) of the method on five datasets. We also com-
pared the AUROC value of MRMSn with that of CLR, ARACNE, MRNET, MIDER and MI3.
Except for MI3, these inference methods have some tunable parameters. Consequently, we did
not show results for MI3. Table 8 presents the AUROC value results of the five methods for
five datasets. From the table, we can seeMRMSn, CLR, ARACNE and MIDER perform very

Table 7. Comparison of the performance by different methods on SOS dataset.

TP FP TPR FPR PPV ACC

CLR 12 5 0.500 0.417 0.706 0.528

ARACNE 7 3 0.292 0.250 0.700 0.444

MRNET 17 6 0.708 0.500 0.739 0.639

MI3 9 5 0.375 0.417 0.643 0.444

MIDER ------- ------ ------ ------ ------ ------

MRMSn 10 2 0.417 0.167 0.833 0.556

doi:10.1371/journal.pone.0166115.t007

Table 8. AUROC scores for five datasets using different methods.

Datasets CLR ARACNE MRNET MIDER MRMSn

Reaction chain with 4 species 1 1 0.889 1 1

DREAM3 10 genes 0.654 0.709 0.629 ------ 0.944

DREAM3 50 genes 0.542 0.531 0.530 0.509 0.690

IRMA benchmark 0.476 0.476 0.500 0.667 0.667

S0S 0.559 0.519 0.559 ------ 0.660

doi:10.1371/journal.pone.0166115.t008
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well on Reaction chain with 4 species data, and the AUROC values reach 1. For other datasets,
we can observe that our method performs better than all other methods. In particular, the
AUROC value on DREAM3 10 gene data reaches 0.944, which is significantlymore than other
methods. All the results show the effectiveness and efficiencyof the MRMSnmethod.

Discussion

In this paper, we emphasize that the feature selection technique can be effectively applied to
recover gene regulatory networks and obtain satisfactory accuracy. Our method converted the
recovery of the gene regulatory network to the selection of the regulator genes of all of the tar-
get genes based on a feature selection strategy. The process of selecting the regulator genes is
independent for each target gene. Therefore, this approach enables the use of parallel technolo-
gies to recover gene regulatory networks, and it is advantageous for inferring large-scale gene
networks.

The MRMS selection criterion was proposed to measure the relevance between a target gene
and regulator genes and simultaneously maintain the significance in local network structures.
MIDER is also a network inference method based on the significance strategy, which refines
the existing edges based on the significance strategy (entropy reduction) and infers the network
structures. However, MRMSn refines the edges among genes according to a score function,
which combine the relevance and significance strategy. Furthermore, there are some difference
betweenMRMSn and MIDER: for each target genes, MRMSn stops adding genes when a pre-
definedmaximum K is met, whileMIDER uses a different stopping criterion; and MSMRn
uses local density to calculate the threshold for different datasets, whileMIDER gives the
threshold based on entropy reduction. All the experimental results show that the MRMSn can
effectively infer gene regulatory networks in most cases. However, as the number of genes
increases, calculating the criterion, which involves MI and multivariate conditional entropy,
will lead to inaccuracies and difficultieswhen inferring large-scale networks.

Simulation data and real data were applied in our experiments. For the simulation data, the
accuracy of the MRMSn is satisfactory and most of the correct regulation relationships can be
identified.MRNET is another network inference method based on the feature selection tech-
nique. However, our method stresses the importance of significance in modularity in addition
to relevance. The comparison indicates that the MRMSn is better than MRNET and the other
methods for certain evaluationmetrics. Significance can also eliminate redundant edges caused
by the maximum relevance strategy. For the real data, the performance of the MRMSn outper-
formedmost of the other methods, although not with perfect accuracy. These drawbacks may
have been due to various causes, including the strong noise that may be contained in real data,
which might lead to failures in selecting the real relationships between genes. Another cause
involves the selection of parameter K in the MRMSn scheme. The number of regulator genes
for a target gene in certain real networks may bemore or less than the parameter provided in
our paper, which will affect the accuracy of the regulator selection. For example, in the SOS
network of E. coli, the maximum number of regulator genes for the target gene can reach 6,
which is more than the given parameter. Thus, for the given parameter, certain regulation rela-
tionships will be lost, which was confirmed by the experimental results.

In the experiments, we found that the MRMSn works better in simple networks than in
complex networks, especially for predicting certain special networks. For example, all of the
regulatory relationships can be found in the reaction chain with 4 species. However, our results
show that certain regulatory relationships can be lost in more complex networks, such as in the
complicated SOS networks, in which almost all of the genes have connections with each other.
This finding is still determined by parameter K. Although this type of network is uncommon
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and most networks still follow the sparsity of networks, the MRMSn is limited because it may
not be able to estimate the optimal parameter K. Therefore, future work will focus on develop-
ing theoretical estimations for the number of regulators for target genes.

Conclusions

In this paper, we developed the novel methodMRMSn for inferring gene regulatory networks.
The method treats the problem of network recovery as a problem of selecting regulator genes
for each gene. We proposed an MRMS algorithm based on information theory. The definition
of relevance and significance is the key to this algorithm, and these parameters are measured
by MI and the reduced entropy of the target gene. A first-order incremental search algorithm
can be used to search for regulator genes. After obtaining regulator genes for all of the target
genes, a strict constraint is adopted to adjust the regulatory relationships and obtain the com-
plete network structure. Five standard datasets were applied to test the methods, and we found
that the MRMSnmethod can infer network structures efficiently on both simulated and real
data. We compared our method with the CLR, ARACNE, MRNET, MI3 and MIDERmethods
and found that the performance of our method was superior.

Supporting Information

S1 File. The Matlab implement for the MRMSn method.The compressed file includes the
source code of MRMSnmethod and all the datasets in experiments.
(ZIP)
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