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Abstract

Digital images have been extensively used in education, research, and entertainment.

Many of these images, taken by consumer cameras, are compressed by the JPEG algo-

rithm for effective storage and transmission. Blocking artifact is a well-known problem

caused by this algorithm. Effective measurement of blocking artifacts plays an important

role in the design, optimization, and evaluation of image compression algorithms. In this

paper, we propose a no-reference objective blockiness measure, which is adaptive to high

frequency component in an image. Difference of entropies across blocks and variation of

block boundary pixel values in edge images are adopted to calculate the blockiness level in

areas with low and high frequency component, respectively. Extensive experimental results

prove that the proposed measure is effective and stable across a wide variety of images. It

is robust to image noise and can be used for real-world image quality monitoring and con-

trol. Index Terms—JPEG, no-reference, blockiness measure

Introduction

Although digital images provide great convenience to our daily life, storing and transmitting
these images are problematic. Consumer cameras can produce images with size more than 12
mega pixels. Some of them can even produce images with over 20 mega pixels. The standard
JPEG algorithm installed in consumer cameras are commonly used to compress these images.
JPEG is a discrete cosine transform (DCT) -based compression scheme. The input image is
divided into 8×8 blocks, each block being transformed independently to DCT coefficients.The
DCT coefficients are then quantized using a scalar quantization matrix. At low bitrates, the
DCT-coded images generally suffer from visually annoying blocking artifacts as a result of
coarse quantization. It can dramatically degrade the image quality.
Over the past decades, research has been carried out to alleviate blocking effects in JPEG-

compressed images. Effectivemeasurement of blocking artifacts plays an important role in the
development and evaluation of these algorithms. The most widely used point-wise comparison
measures, namely mean square error (MSE) and peak signal to noise ratio (PSNR), are not very
well matched to perceived visual quality [1]. A lot of effort has been put in the development of
effective quality measures.
In this paper, we propose a no-reference adaptive blockinessmeasure for JPEG compressed

images. For areas with low frequency component, we use the difference of entropies across

PLOS ONE | DOI:10.1371/journal.pone.0165664 November 10, 2016 1 / 12

a11111

OPENACCESS

Citation: Tang C, Wang B (2016) A No-Reference

Adaptive Blockiness Measure for JPEG

Compressed Images. PLoS ONE 11(11):

e0165664. doi:10.1371/journal.pone.0165664

Editor: Dalin Tang, Worcester Polytechnic Institute,

UNITED STATES

Received: April 1, 2016

Accepted: October 14, 2016

Published: November 10, 2016

Copyright: © 2016 Tang, Wang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Natural Science Foundation of China (61403196),

the Natural Science Foundation of Jiangsu

Province (BK20140837), the Specialized Research

Fund for the Doctoral Program of Higher Education

of China (20133218120018), and the Fundamental

Research Funds for the Central Universities

(NS2014030). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165664&domain=pdf
http://creativecommons.org/licenses/by/4.0/


blocks as a measure. For areas with high frequency component, we use the variation of block
boundary pixel values in edge images as a measure. The final index is the weighted average of
the two measures. The rest of this paper is organized as follows. Section 2 gives a short review
of the related work. Section 3 introduces our blockinessmeasure. Section 4 reports experimen-
tal results. Section 5 offers some concluding remarks.

Literature Review

Image quality assessment techniques can be divided into two classes: subjective assessment and
objective assessment. In subjective assessment, a group of testers are required to rate a batch of
images compressed under different ratios. Objectivemethods try to estimate the compression
amount using mathematical techniques. They can be further divided into two types: full-refer-
ence and no-referencemethods.
Full-reference methods give an assessment through a comparison between reference and

compressed images. They mainly utilize the sensitivity of human visual system and a combina-
tion of multiple features [2]. Wang and Bovik [3] proposed a universal image quality index
which models image distortion as a combination of three factors: loss of correlation, luminance
distortion, and contrast distortion. In [4], the measure was generalized to the Structural SIMi-
larity index (SSIM) to characterize the saturation effects of the visual system at low luminance
and contrast regions and to assure numerical stability.
No-reference methods directly evaluate the compressed images. They are more useful

because the reference image is usually unavailable. Moorthy and Bovik [5] presented two strat-
egies—visual fixation-basedweighting, and quality-basedweighting to weight image quality
measurements by visual importance, and demonstrated improvements on the SSIM index in
both its multi-scale and single-scale versions. Wang and Bovik [6] proposed an algorithm
which evaluates blockiness by computing the FFT along the rows and columns. Pan et al. [7]
proposed a method based on the fact that for images with more severe blocking artifacts, more
edge pixels are arrayed horizontally and vertically. Lee et al. [8] classified blocks by analyzing
block boundaries and converted boundary strength into blockiness score. Li et al. [9] presented
a blockinessmetric which computes the regularities of pseudo structures. In [10], Li et al. pro-
posed a quality measure for JPEG-compressed images based on Tchebichef kernels. Golestaneh
and Chandler [11] presented a measure that gets the number of zero-valued discrete cosine
transform (DCT) coefficientswithin each block. Then it uses a quality map to represent these
numbers. Freitas et. al [12] proposed a machine-learning-basedmethod that uses the histo-
grams of local ternary pattern (LTP) as features for the training procedure. Li et al. [13] pro-
posed a deep-neural-network-basedalgorithm that extracts features using shearlet transform
and evolves the features using stacked auto-encoders. Then the differences of evolved features
are identified by a softmax classifier. Ren et al. [14] developed a method which uses shearlet
transform to localize the distributed discontinuities induced by image degradation, and exhib-
its the alteration of image quality by the nature scene statistics of shearlet coefficients.
A common problem with the current blockinessmeasures is that none of them have adapt-

ability to image characteristics. Different areas in an image usually have different amount of
high frequency component. The compression process has different influences on these areas.
This property should be considered in the blockinessmeasure.

Proposed Algorithm

In this paper, we propose a no-reference blockinessmeasure which is adaptive to different
areas in an image. Low frequency component in images corresponds to pixel values that change
slowly over space, while high frequency component means pixel values that change rapidly.

Adaptive Blockiness Measure
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Edges in a digital image are the points at which the image brightness changes sharply or has
discontinuities. Therefore sharp transients like edges represent high frequency component,
while long unchanging spaces correspond to low frequency component. For the areas with low
frequency component, the compression process reduces intensity variability inside a block,
sometimes even generates blocks of constant gray scale, especially under high compression
ratio. The block boundaries produce abrupt change of intensities across blocks. Fig 1 illustrates
the influence of JPEG compression on different image areas. Fig 1(A) is an original image of a
building, where the square shows an area with low frequency component (see Fig 1(B)). After
compression, blocks of constant gray scale are produced (see Fig 1(C)). Comparing Fig 1(B)
and 1(C), we find that before compression, the entropies of pixel values inside a block and
across blocks are almost the same. However, they are quite different after compression, because
of the generated block boundaries. Considering this property, we use the difference between
the entropies of pixel values inside a block and across blocks to represent the compression
level.
For the areas with high frequency component, the entropy difference is not influenced by

the compression process, since the entropy of pixel values inside a block is already high before
compression (see Fig 1D–1F). However, the generated blocks do change the edge information.
Discontinuities appear around block boundaries in the edge image, and the higher the com-
pression ratio is, the larger the discontinuities are. Therefore, in this case, we use Sobel operator
to get horizontal and vertical edge images first. Then we capture the difference of pixel values
around block boundaries in the edge images to represent the compression level.

Fig 1. Illustration of the influence of JPEG compression on different image areas. (a) is an original image of a

building, where the square shows an area with low frequency component; (d) is the same original image, where the

square shows an area with high frequency component; (b) and (e) are the selected image areas in (a) and (d),

respectively; (c) and (f) are the JPEG compressed versions of (b) and (e) at 0.071 bpp, respectively.

doi:10.1371/journal.pone.0165664.g001
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Let I be a compressed image, and Mx and My be the Sobelmasks defined as follows:

Mx ¼

� 1 0 1

� 2 0 2

� 1 0 1
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5; My ¼

� 1 � 2 � 1

0 0 0
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5: ð1Þ

The convolution results between I and Mx,My are denoted as:

Cx ¼ I �Mx; Cy ¼ I �My; ð2Þ

where � is the convolution operator, and Cx and Cy are the horizontal and vertical edge images,
respectively. Then Cx and Cy are decomposed into 8×8 non-overlapping blocks, since DCT
transform is performed by 8×8 blocks in JPEG compression.
For the kth 8×8 block in the image, if it has edges (with high frequency component), four

regions in Cx and Cy, Rih, Riv, Roh, and Rov, are considered. Rih and Riv denote the pixels just
inside the horizontal and vertical boundaries, respectively. Roh and Rov denote the pixels just
outside the horizontal and vertical boundaries, respectively. Fig 2A–2D illustrate these regions.
We definemeasure s1 for the areas with high frequency component. It is calculated according
to the following equations:

si ¼
1

Ni

X

ði:jÞ2Riv

jCxði:jÞj
maxðCxÞ

þ
X

ði:jÞ2Rih

jCyði:jÞj
maxðCyÞ

 !

; ð3Þ

Fig 2. Illustration of the block areas involved in the blockiness measure. Dark elements represent the

regions (a) Rih, (b) Riv, (c) Roh, (d) Rov, (e) Ib and (f) Ibo.

doi:10.1371/journal.pone.0165664.g002
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so ¼
1
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sk ¼
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s1 ¼
1

Nk

XNk

k¼1

sk; ð6Þ

whereNi and No are the number of elements in the summation (here Ni = 32,No = 40). Nk is
the number of blocks in this area. The measure s1 is obtained from the luminance variance of
pixels inside and outside block boundaries.
For the tth 8×8 block in the areas without edges (with low frequency component), the

regions Ib and Ibo are considered. Ib denotes an 8×8 block, while Ibo represents a 10×10 pixel
area with the 8×8 block in the center. Fig 2E and 2F illustrate these regions.We definemeasure
s2 for the areas with low frequency component. It is calculated according to the following equa-
tions:

st ¼

jEnðIbÞ � EnðIboÞj

EnðIboÞ
; if EnðIboÞ 6¼ 0

0 if EnðIboÞ ¼ 0

; ð7Þ

8
><

>:

s2 ¼
1

Nt

XNt

t¼1

st; ð8Þ

where En(�) is the function to compute entropy. Nt is the number of blocks in this area. The
measure s2 is obtained from the entropy difference of pixels inside and across blocks.
The final blockinessmeasure is defined as the weighted average of the two measures:

s ¼

X2

i¼1

wisi

X2

i¼1

wi

; ð9Þ

wherewi (i = 1, 2) is the weight of the two measures which is determined as the total numbers
of the two different kinds of blocks in an image.
Take Fig 1(A) as an example. After compression, Nk,Nt, s1 and s2 are 637, 1721, 0.220 and

0.812, respectively. In the areas with low frequency component, the average values of En(Ib)
and En(Ibo) are 0.366 and 0.734, respectively. It can be seen that the entropy increases after
compression, because of the generated block boundaries in Ibo. The final blockinessmeasure s
is 0.652.

Experimental Results and Discussion

Extensive experiments were conducted to evaluate the performance of the proposed blockiness
measure. In the first experiment, the images “sailing2” from LIVE database [15] with different
levels of blocking artifacts were adopted. The bitrates of the three compressed images are
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0.3929, 0.1710 and 0.1638, respectively. The subjective evaluating results of the images are rep-
resented using differencemean opinion score (DMOS). In general, the higher DMOS an image
has, the lower the image quality is. Therefore a reasonable blockinessmeasure should be pro-
portional to the DMOS values. The blockinessmeasures given by Wang’s [6], Pan’s [7], Lee’s
[8], Li’s [9] and the proposedmethod are summarized in Table 1. It can be seen that images
No. 2 and 3 have severe blocking artifacts, and image No. 3 is a little bit more serious. There-
fore, the blockinessmeasure of No. 3 should be larger than that of No. 2. However, inWang’s,
Pan’s and Lee’s results, the score of No. 3 is smaller. It can be seen that these measures cannot
accurately evaluate images with similar DMOS values. Li’s and the proposedmethod achieve
correct results. However, the difference between Li’s scores of No. 2 and No. 3 is too large com-
pared with the difference between the corresponding DMOS values. The scores given by the
proposedmethod is more consistent with DMOS values. To evaluate the entropy component
in the proposedmeasure, we calculatedmeasure s2 in Eq (8) for the three images and put them
in the last column of Table 1. It can be seen that s2 increasesmonotonically with the compres-
sion ratio, which means that entropy is able to describe compression level.
In the second experiment, we used six benchmark images with different themes to do evalu-

ation. The image sizes vary from 256×256, 320×240, 512×512, to 480×720. These images were
compressed under quality factors of 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, and 95, using the baseline JPEG standard in MATLAB. The corresponding bitrates can be
obtained accordingly. We compared our results with a classical no-reference measure, Perra’s
[2], and two full-referencemeasures, Qi index [3] and SSIM index [4]. BecauseQi index and
SSIM index give higher results for images with better quality, we use their reciprocals as blocki-
ness indices, i.e., higher index corresponds to more serious blocking artifacts. To have a better
observation,we normalize their variations to the range of 0 and 1. Fig 3 reports the experimen-
tal results. All of them have areas of different amount of high frequency component. The sensi-
bility to the JPEG blockiness distortion was evaluated using the images compressed at different
bitrates. The results show that Perra’s [2] does not change monotonically with the increase of
bitrates for any of the images. In other words, its value does not represent the blockiness level
in an image. Qi index has the property of monotonicity only for the image of ‘lena’ (see Fig 3
(A)). For the images of ‘couple’ (Fig 3(B)), ‘bird’ (Fig 3(D)), and ‘statue’ (Fig 3(F)), the index
varies drastically up and down for bitrates between 0.5 and 2.5. For the image of ‘landscape’
(Fig 3(C)) and ‘lighthouse’ (Fig 3(E)), it even increases for bitrates higher than 1. SSIM index
decreasesmonotonically with the increase of bitrates for all the images. However, it is a full-ref-
erence measure, so it requires the original image as a reference. The proposedmeasure has a
good property of monotonicity for all the images.
In the third experiment, we evaluated the influence of noise on the proposed blockiness

measure. The six benchmark images were adopted again. In this experiment, we added Gauss-
ian white noise of mean 0 and variance 0.01 into the images, and then compressed them using
the baseline JPEG standard in MATLAB. The following procedure was the same as in the sec-
ond experiment. Fig 4 reports the experimental results. It can be seen that even SSIM does not
have correct result for the image of ‘couple’ (Fig 4(B)). The proposedmeasure still has better
performance than other no-reference measures. To evaluate whether the entropy component

Table 1. Comparison of blockiness measures for the image“sailing2” from LIVE database with different compression levels

Image No. Bitrates DMOS Wang [6] Pan [7] Lee [8] Li [9] proposed measure s2

1 0.3929 44.81 35289.05 0.99 0.54 47.25 0.6042 0.7088

2 0.1710 59.21 103213.29 1.46 4.46 96.84 0.6945 0.9409

3 0.1638 60.08 103157.94 1.44 3.78 98.89 0.7195 0.9744

doi:10.1371/journal.pone.0165664.t001
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can correctly represent the compression level for images with different noises, we calculated
measure s2 in Eq (8) for images added with Gaussian white noise of different variances and salt
& pepper noise with different densities, and compressed with different levels. For the sake of

Fig 3. Relationship between normalized blockiness measures and bitrates of some benchmark images. (a)

lena, (b) couple, (c) landscape, (d) bird, (e) lighthouse, and (f) statue. For the copyright issue, the original images are

not shown here.

doi:10.1371/journal.pone.0165664.g003

Fig 4. Relationship between normalized blockiness measures and bitrates of some benchmark images

interfered by Gaussian noise. (a) lena, (b) couple, (c) landscape, (d) bird, (e) lighthouse, and (f) statue. For the

copyright issue, the original images are not shown here.

doi:10.1371/journal.pone.0165664.g004
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space limit, we show the results of one image (“rushmore” from CSIQ database [16]) in Table 2
and Table 3. The bitrates, the blockinessmeasure and the corresponding s2 are shown for each
variance and each compression level. It can be seen that for any case of the noises, both of the
measures increase monotonically with the decrease of bitrates, which means that neither of
them is interfered by noise. Therefore, the block differentiationmechanism in the proposed
measure which depends on high frequency component will not be influenced by noise. In the
fourth experiment, the JPEG images from four image-quality databases, includingMICT[17],
IVC[18], TID2008 [19], and TID2013 [20], were used to evaluate the overall performance of
the proposedmeasure. The JPEG subsets in MICT, IVC, TID2008, and TID2013 contain 98,
60, 125, and 150 images, respectively. In these databases, 14 of 98, 10 of 60, 25 of 125, and 25 of
150 are reference images. Pearson linear correlation coefficient (PLCC) and root mean square
error (RMSE) were used to evaluate the prediction accuracy, and Spearman rank-order correla-
tion coefficient (SROCC)was used to evaluate the predictionmonotonicity. These criterions
were computed between the predicted scores and the subjective scores, where nonlinear fitting
was first conducted to bring them on the same scale [10][21]. For comparison, the results of
some popular no-reference blocking artifact metrics were also provided, including Perra’s [2],
Wang’s [6], Pan’s [7], Lee’s [8], Li’s [10], Bovik’s [22], Wang’s [23], Liu’s [24], Chen’s [25],
Mittal’s [26], Ye’s [27], Liu’s [28], and Liu’s [29]. A good quality measure should achieve high

Table 2. Evaluation of the proposed measure and the corresponding s2 for the image“rushmore” from CSIQ database with Gaussian white noise

of different variances and with different compression levels

Gaussian white noise of variance 0.01

bitrates 5.5465 3.6013 3.1507 2.5128 2.0625 1.7472 1.4565 1.1735 0.8571 0.4667

proposed measure 0.1136 0.1137 0.1137 0.1137 0.1150 0.1154 0.1180 0.1185 0.1238 0.2812

s2 0.0600 0.0604 0.0609 0.0613 0.0624 0.0633 0.0648 0.0668 0.0783 0.3210

Gaussian white noise of variance 0.03

bitrates 6.1328 4.0526 2.9955 2.7547 2.2047 1.6802 1.4709 1.2530 0.8175 0.5655

proposed measure 0.1149 0.1150 0.1156 0.1156 0.1173 0.1175 0.1186 0.1187 0.1190 0.1576

s2 0.0668 0.0670 0.0679 0.0680 0.0682 0.0689 0.0695 0.0703 0.0759 0.1386

Gaussian white noise of variance 0.05

bitrates 6.4532 4.9935 4.2770 3.2258 2.2845 2.0960 1.6778 1.4246 1.1627 0.6384

proposed measure 0.1174 0.1180 0.1181 0.1189 0.1190 0.1192 0.1197 0.1204 0.1227 0.1316

s2 0.0697 0.0702 0.0702 0.0703 0.0706 0.0705 0.0706 0.0716 0.0722 0.0959

doi:10.1371/journal.pone.0165664.t002

Table 3. Evaluation of the proposed measure and the corresponding s2 for the image“rushmore” from CSIQ database with salt and pepper noise

of different densities and with different compression levels

salt and pepper noise of density 0.01

bitrates 3.6381 2.5671 2.0251 1.6732 1.4392 1.2310 1.0114 0.8861 0.7511 0.4349

proposed measure 0.1195 0.1218 0.1255 0.1286 0.1305 0.1369 0.1438 0.1527 0.1625 0.2853

s2 0.0504 0.0545 0.0616 0.0689 0.0756 0.0847 0.1006 0.1148 0.1336 0.3325

salt and pepper noise of density 0.03

bitrates 3.5220 2.7173 2.2278 1.8708 1.6075 1.3334 1.0214 0.8584 0.6801 0.4766

proposed measure 0.1213 0.1239 0.1276 0.1297 0.1349 0.1418 0.1527 0.1625 0.1906 0.2853

s2 0.0526 0.0585 0.0655 0.0712 0.0812 0.0915 0.1148 0.1336 0.1819 0.3325

salt and pepper noise of density 0.05

bitrates 3.0583 1.8757 1.5526 1.3313 1.0866 1.0072 0.9111 0.6891 0.5635 0.4167

proposed measure 0.1248 0.1274 0.1282 0.1283 0.1291 0.1300 0.1328 0.1351 0.1496 0.2172

s2 0.0513 0.0559 0.0601 0.0627 0.0696 0.0719 0.0759 0.0903 0.1179 0.2272

doi:10.1371/journal.pone.0165664.t003
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values in PLCC and SRCC, while low values in RMSE. Tables 4 and 5 provide the results,
where the best result is marked in boldface. As shown in Table 4, the proposedmeasure yields
the best results of both PLCC and SROCC for MICT, IVC, and TID2013. For TID2008, its
SRCC is also the best, and its PLCC is very close to the best result. It can be seen that the pro-
posedmeasure has a very high correlation with the subjective quality ratings. As for RMSE, the
proposedmeasure also provides the best result for TID2008.
The experimental results show that the proposed blockinessmeasure is effective and stable

across a wide variety of images. It has a good estimation of compression level over different

Table 4. PLCC and SROCC of blockiness measures for the JPEG images in MICT, IVC, TID2008, and

TID2013 databases.

Database Measure PLCC SROCC

MICT Perra [2] 0.7432 0.7516

Wang [6] 0.7914 0.7689

Pan [7] 0.8017 0.8253

Lee [8] 0.7625 0.8097

Li [10] 0.9107 0.9007

Bovik [22] 0.8855 0.8067

Wang [23] 0.9125 0.8952

Liu [24] 0.8126 0.8136

Chen [25] 0.8030 0.8227

Proposed 0.9491 0.9828

IVC Perra [2] 0.7816 0.8034

Wang [6] 0.7112 0.7172

Pan [7] 0.7946 0.7973

Lee [8] 0.8982 0.8968

Li [10] 0.9286 0.9169

Bovik [22] 0.9049 0.9006

Wang [23] 0.9517 0.9456

Liu [24] 0.8295 0.8284

Chen [25] 0.8601 0.8840

Proposed 0.9557 0.9900

TID2008 Perra [2] 0.7263 0.0727

Wang [6] 0.6850 0.6691

Pan [7] 0.7062 0.5357

Lee [8] 0.7484 0.6152

Li [9] 0.7853 0.7401

Li [13] 0.9531 0.9311

Ren [14] 0.897 0.840

Bovik [22] 0.7479 0.6169

Chen [25] 0.7520 0.6866

Proposed 0.9512 0.9840

TID2013 Freitas [12] 0.8877 0.7133

Mittal [26] 0.8145 0.6567

Ye [27] 0.8467 0.6622

Liu [28] 0.7805 0.5922

Liu [29] 0.8315 0.6533

Proposed 0.9555 0.9920

doi:10.1371/journal.pone.0165664.t004
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image areas. Moreover, it is robust to image noise and can be used for real-world image quality
monitoring and control.

Conclusions

In this paper, we proposed a no-reference JPEG blockinessmeasure which is adaptive to the
high frequency component in different image areas. It uses difference of entropies across blocks
and variation of block boundary pixel values in edge images to estimate the blockiness level in
an image. Extensive experiments were conducted to evaluate the performance of the proposed
measure. The results indicated that compared with other blockiness indices, the proposedmea-
sure has satisfying and stable performance across a wide variety of images. It is robust to image
noise and has positive perspectives in applications such as image quality monitoring and
control.
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