
RESEARCH ARTICLE

Effects of Soil Temperature and Moisture on

Soil Respiration on the Tibetan Plateau

Xiaoying Bao1☯, Xiaoxue Zhu2☯, Xiaofeng Chang5, Shiping Wang3,4*, Burenbayin Xu2,

Caiyun Luo2, Zhenhua Zhang2, Qi Wang3,1, Yichao Rui1, Xiaoying Cui1

1 College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, 2 Key

Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese

Academy of Sciences, Xining 810008, China, 3 Key Laboratory of Alpine Ecology and Biodiversity, Institute

of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, 4 CAS Center for

Excellence of Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing 100101, China,

5 Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Rd., 712100 Yangling,

China

☯ These authors contributed equally to this work.

* wangsp@itpcas.ac.cn

Abstract

Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under

future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric

CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full fac-

torial, 5-year alpine meadow warming and grazing experiment in the field were incubated at

three different temperatures (i.e. 5, 15 and 25˚C) with two soil moistures (i.e. 30 and 60%

water holding capacity (WHC)) in our study. Another experiment of glucose-induced respi-

ration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our

results showed that high temperature increased Rs and low soil moisture limited the

response of Rs to temperature only at high incubation temperature (i.e. 25˚C). Temperature

sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that

substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was

higher at 5˚C compared with 15 and 25˚C incubation, but GIR increased with increasing

temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the

field over time may result from a decrease in soil moisture rather than from soil substrate

depletion, because warming increased root biomass in the alpine meadow.

Introduction

Inconsistent findings about the response of soil organic matter (SOM) decomposition to
warming have been reported, including positive [1, 2], neutral and insensitive [3–7] and even
negative responses [8]. This discrepancymay result from complicated factors such as soil mois-
ture, substrate availability [7, 9–15] and microbial acclimation/adaptation to warming [4, 8, 10,
16–19]. Thus, one way to improve understanding of these different effects is to conduct studies
under controlled conditions [18, 20].
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Previous warming studies in fields [4–8, 21] showed that initially elevated rates of soil respi-
ration (Rs) in warmed soils returned to an even lower rate than those of the control soils. How-
ever, some results showed that warming increased substrate supply because it significantly
increased dissolved soil organic carbon [22], litter decomposition rate [23], belowground bio-
mass [24] and aboveground net primary productivity [25], suggesting that substrate depletion
may not limit the response of Rs to warming. Rather, our previous results demonstrate that
warming significantly reduced soil moisture in the experimental site [23, 25]. Warming experi-
ments show that decreased soil moisture induced by warming is a likely explanation for limited
positive responses of soil respiration to increased temperature (e.g. [5, 26]). Therefore, our
hypothesis is that the warming-induced decrease in Rs over timemay result from a decrease in
soil moisture rather than from soil substrate depletion.

To test the above-mentioned hypothesis, intact soil cores with roots were taken from a
warming and grazing experiment after 5-years of warming in an alpine meadow. These soils
were incubated at three different temperatures with two soil moistures, and then incubated
with substrate addition after 58-incubation days in our study. Our main aim was to determine
the relative importance of soil moisture and substrate depletion in determining the response of
soil respiration rates to warming.

Materials and Methods

Controlled warming-grazing experiment

Details of the experimental site and design were reported by Kimball et al. [27] and Luo et al.
[23]. In brief, the experimental site is located at the Haibei Alpine Meadow EcosystemResearch
Station (HBAMERS) in China, located at latitude 37° 37’N and longitude 101° 12’E. The plant
community at the experimental site is dominated by Kobresia humilis, Festuca ovina, Elymus
nutans, Poa pratensis, Carex scabrirostris and Potentilla nivea [25]. The soil developed is Mat-
Gryic Cambisol [28], corresponding to Gelic Cambisol [29].

The warming-grazing experiment was started in May 2006. The temperature differences of
the vegetation canopy between heated and corresponding reference plots were 1.2°C during
daytime and 1.7°C at night in summer through infrared heaters [23, 27]. A two-way factorial
design (warming and grazing) was used with four replicates of each of four treatments: no-
warming with no-grazing (i.e. control-C), no-warming with grazing (G), warming with no-
grazing (W), and warming with grazing (WG). In total, 16 plots of 3-m diameter were fully
randomized throughout the study site. Moderate grazing was performed during the growing
seasons from 2006 to 2010 [25].

Soil sampling and analysis

On 14th August 2010, ten soil cores (1.5 cm in diameter and 10 cm in depth) were randomly
taken from each plot. Six of the ten cores were randomly selected to be left intact and the other
four cores were first sieved through a 2 mmmesh and then through a 1 mmmesh and roots
were removed at each step. All roots were collected, washed and dried at 65°C to a constant
weight to measure root biomass in each plot. The six intact cores from each plot were stored in
a desk refrigerator at -20°C until the incubation experiment was started to simulate the cold
season in the region. Sub-samples of sieved soils were used to analyze soil moisture, total car-
bon and nitrogen, microbial carbon and nitrogen. Soil gravimetricmoisture was obtained after
oven-drying samples at 105°C for 24 hours.

Total carbon and total nitrogen were determined using an isotope ratio mass spectrometer
with a Eurovector Elemental Analyzer (Isoprime-EuroEA 3000, Milan, Italy). Microbial carbon
and microbial nitrogen were measured using the fumigation-extraction method with
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chloroform describedby Vance et al. [30] and Brookes et al. [31]. In brief, fumigated and non-
fumigated soils (4-g dry weight equivalent) were extractedwith 20 ml of 0.5 M K2SO4 (soil/
extractant ratio 1:5). The fumigation lasted for 16 h using chloroform. Samples were shaken for
1 h and filtered through a Whatman 42 filter paper. Soluble organic C and N in the fumigated
and non-fumigated samples were determined using a Shimadzu TOC-VCPH/CPNAnalyzer.
Microbial carbon and microbial nitrogen were calculated using conversion factors of 2.64 for
carbon [30] and 2.22 for nitrogen [31].

Incubations

All frozen intact soils were thawed at 5, 15 and 25°C on 27th of November 2010, and were then
adjusted to 30 and 60% of water holding capacity (WHC) by adding deionizedwater [32]. Rep-
resentative soils, treated by 1 mm sieving and drying,were used approximate soil dry weight
from field-wet, bulk soils. This proportion was used to prepare one intact core from each site
(approx. 10–15 g dry weight), which were incubated in 1000 ml glass bottles for 58 days in
incubators set at three different temperatures (5, 15 and 25°C) (±0.4°C) and different soil mois-
tures (30 and 60%WHC). Therefore, there were in total 96 bottles with 4 original field treat-
ments × 3 incubated soil temperatures × 2 incubated soil moistures × 4 replicates. All bottles
were opened to air without sampling.

Glucose Addition

After 58 days of incubation, a solution containing 15 mg of glucose per gram of soil carbon was
added to a 5-g (fresh wt) subsample of each soil, with the corresponding volume (1 cm3) of dis-
tilled water added to a further 5-g subsample [13]. All solution was directly added to the soil
surface in each of the 96 bottles containing incubated cores using a 10 cc syringe with a needle
tip.

During incubation, the soil cores were maintained at the designatedWHC by weighing the
bottles every 2 days and adding the correct amount of deionizedwater over the incubation
experiment. Deionizedwater reservoirs were maintained in each incubator to allow the water
additions to be made at the correct temperature. The intact cores were broken up, passed
through a 1 mm sieve, and roots and stones removed at the end of the incubation. The roots
and stones were oven-dried at 65°C and weighed. All sieved samples were oven-dried at 105°C
to calculate the dry weight of soil in each sample.

Respiration measurements and Q10 coefficients

The measurement of respiration has been described in detail by Chang et al. [32]. In brief, gas
samples were taken from the headspace of the bottles using a 60 ml gas-tight syringe before
being sealed with rubber stoppers and after sealed for 40 minutes by drawing and plunging the
syringe three times for homogeneous gas sampling each time. Soil respiration rates were mea-
sured by the difference between accumulated CO2 concentrations during the 40 min incuba-
tion in the headspace of the sample glass bottles. Soils were incubated for 1 day before
measurements started to allow short-term equilibration after manipulating the soil. Rs was
measured during the incubation period on days 2, 9, 16, 23, 30, 37, 44, 51 and 58.

The impacts of substrate quality on short-term Rs responses to temperature were evaluated
using glucose-induced respiration rates (GIR) [14]. The average respiration rate over the entire
4h incubation period serves as an index of the GIR-responsive microbial biomass pool [33]
through the difference in GIR before and after glucose addition. The ratio of Rs before and
after glucose addition is indicative of the carbon availability in the soil sample (e.g. Carbon
Availability Index, CAI) [14]. CAI was calculated as CAI = RGl-/RGl+, where RGl- and RGl+ are
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the Rs before and after glucose addition at 4h under different incubation conditions,
respectively.

For all samples, CO2 concentration was measured by gas chromatography (HP Series
4890D, Hewlett Packard, USA) within 24 h following gas sampling. Soil respiration rates were
expressed as μg CO2 g-1 soil h-1 [32].

Based on the Rs of different original field treatments and 3 different soil temperatures with
2 soil moistures, the Q10 values were calculated as Q10L (Low; based on the Rs measured at 5
and 15°C), Q10M (medium; based on the Rs measured at 5 and 25°C) and Q10H (high; based
on the Rs measured at 15 and 25°C), with each moisture level using the average Rs at two inter-
val temperatures (T) [34, 35]:

Q10 ¼
R2

R1

� � 10
T2 � T1

where R1 and R2 indicate the Rs on different sampling dates or the mean Rs within a certain
incubation period at T1 and T2 temperature levels, respectively. The Q10 value was the average
of Q10L, Q10M and Q10H for a certain treatment. We calculated the average increase in Q10L,
Q10M and Q10H (ΔQ10) between before- and after- glucose addition (i.e. Gl+ and Gl- treat-
ments) as a simple difference, i.e. Q10 (Gl+)-Q10 (Gl-) (see [14]).

Statistical analysis

Repeatedmeasures method of General LinearModel (SPSS 13.0, SPSS Inc. Chicago, Illinois,
USA) (ANOVA) was used to assess the significance of the impacts of original treatment, incu-
bation temperature, moisture, and incubation day, and their interactions on Rs, with original
treatment, incubation temperature and moisture treated as between-subject variables and incu-
bation day treated as a within-subject variable. A similar statistical method was used for Q10

during the incubation period, but omitting the temperature factor. Three-way ANOVAs were
performed for the difference in Rs before- and after- glucose addition, CAI, GIR increase, glu-
cose-inducingQ10 values and its change among treatments. Multi-comparisons were measured
for all variables measured under different treatments when ANOVA was significant. Simple
linear regression analysis was performed to test the possible dependencies of Rs on root bio-
mass under different treatments. All significancesmentioned in the text are at the 0.05 level,
unless otherwisenoted.

Results

Root biomass and soil properties

Only the original warming without grazing treatment in the field (i.e. W treatment) had signifi-
cantly greater root biomass within 10 cm depth compared with C, G andWG treatments
(Table 1). Generally, there were no significant differences in total carbon (8.15–8.84%), total
nitrogen (0.69–0.72%),microbial carbon (1.54–1.86 g kg-1) or microbial nitrigen (0.49–0.51 g
kg-1) between treatments after the 5-year warming-grazing experiment in the field (Table 1).

Soil respiration rate (Rs) over incubation time

Soil incubation temperature and incubation day alone had significant effects on Rs, whereas
the original field warming and grazing treatment alone had no significant effects on Rs
(Table 2). Average Rs during the incubation periodwas 4.83, 7.82 and 14.52 μg CO2 g-1 soil h-1

at 5, 15 and 25°C, respectively (Fig 1A). An interactive effect between soil moisture and incuba-
tion day on Rs was found (Table 2 and Fig 1B). Moreover, the effects of soil moisture and the
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original field warming treatment on Rs varied with soil temperature and incubation day
(Table 2 and Fig 2). Rs decreasedwith incubation days for all treatments, whereas the effect of

Table 1. Concentrations of total carbon (TC), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN) and root biomass in 0–10

cm soil depth under different treatments.

Treatment TC (%) TN (%) MBC (g kg-1) MBN (g kg-1) Root biomass (g per intact core)

C 8.59 0.69 1.67 0.50 4.0b

G 8.15 0.69 1.54 0.49 4.3b

W 8.68 0.70 1.62 0.51 6.1a

WG 8.84 0.72 1.86 0.51 4.2b

se 0.37 0.03 0.21 0.05 0.17

Note: C: no-warming with no-grazing (i.e. control); G: no-warming with grazing; W: warming with no-grazing; and WG: warming with grazing. Different letters

indicate significant differences for root biomass under different treatments. se: standard error.

doi:10.1371/journal.pone.0165212.t001

Table 2. Summary of repeated-measure ANOVAs for soil respiration using original treatments, soil

temperature and soil moisture incubated as main factors.

Source df F Sig.

Warming (W) 1 0.027 0.880

Grazing (G) 1 1.013 0.388

Incubation temperature (ST) 2 41.404 0.000

Incubation soil moisture (SM) 1 5.302 0.105

Incubation day (D) 8 31.071 0.000

W *G 1 0.002 0.967

W * ST 2 0.859 0.470

G * ST 2 4.749 0.058

W *G * ST 2 2.349 0.176

W * SM 1 4.650 0.120

G * SM 1 0.991 0.393

W *G * SM 1 0.453 0.549

T * SM 2 2.964 0.127

W * ST * SM 2 2.462 0.166

G * ST * SM 2 0.043 0.958

W *G * ST * SM 2 0.317 0.740

W * D 8 2.242 0.060

G * D 8 0.706 0.684

W *G * D 8 0.181 0.991

ST * D 16 10.398 0.000

W * ST * D 16 2.033 0.030

G * ST * D 16 1.302 0.235

W *G * ST * D 16 0.725 0.755

SM * D 8 3.792 0.005

W * SM * D 8 2.039 0.085

G * SM * D 8 0.941 0.502

W *G * SM * D 8 0.962 0.487

ST * SM * D 16 2.747 0.004

W * ST * SM * D 16 0.696 0.783

G * ST * SM * D 16 1.180 0.317

W *G * ST * SM * D 16 0.595 0.872

doi:10.1371/journal.pone.0165212.t002
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soil moisture on Rs was significant only at 25°C (Fig 2A). Similarly, compared with the no-
warming original field treatment, the original field warming treatment had significantly higher
Rs only at incubation day 2 (Fig 2B).

There were significant positive correlations betweenRs and root biomass for all treatments
except under incubation at 15 and 25°C at 30% soil moisture, and root biomass explained 30–
64% of variation in Rs (Fig 3). Moreover, the dependency of Rs on root biomass increasedwith
increase in incubation temperature at 60% soil moisture (Fig 3B–3F). Soil moisture did not

Fig 1. Effects of incubation temperature (A) and incubation day (B) on soil respiration. Mean ±se is shown

in the figures. Different letters and * indicate significant difference at 0.05 level.

doi:10.1371/journal.pone.0165212.g001
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affect Rs at 5°C incubation (Fig 3A and 3B), whereas it increasedwith soil moisture under 15°C
(Fig 3C and 3D) and 25°C (Fig 3E and 3F) incubation.

Glucose-induced Rs (GIR)

The increased in GIR significantly increasedwith incubation temperature (Fig 4A) and soil
moisture (Fig 4B), whereas the original field warming and grazing treatments had no signifi-
cant effects on increase in GIR (P = 0.790). Only incubation temperature significantly affected
CAI. CAI was greater under incubation at 5°C (i.e. 0.15) than at 15 and 25°C (i.e. 0.07 and 0.08,
respectively) (Fig 4C).

Fig 2. Dynamics of soil respiration over the incubation period under different treatments. (A) Combination

of incubation temperature and soil moisture. (B) combination of original warming treatment and incubation

temperature. T1M1: 5˚C with 30% water holding capacity (WHC); T1M2: 5˚C with 60% WHC; T2M1: 15˚C with

30% WHC; T2M2: 15˚C with 60% WHC; T3M1: 25˚C with 30% WHC; and T3M2: 25˚C with 60% WHC. NWT1: no-

warming with 5˚C incubation; NWT2: no-warming with 15˚C incubation; NWT3: no-warming with 25˚C incubation;

WT1: warming with 5˚C incubation; WT2: warming with 15˚C incubation; WT3: warming with 25˚C incubation;

Mean±se in the figures. Different letters indicate significant difference at 0.05 level.

doi:10.1371/journal.pone.0165212.g002
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Rs temperature sensitivity (Q10)

The Q10 value was greater for the original field grazing treatment (i.e., G: no-warming with
grazing) compared with the control (i.e., C: no-warming with no-grazing), warming (i.e., W:
warming with no-grazing) and warming with grazing (i.e., WG: warming with grazing) treat-
ments (Fig 5A). There were no significant differences among incubation days, except on incu-
bation days 9 and 23, which were the highest (i.e. 2.4 and 2.6, respectively) over the incubation
period (Fig 5B). Q10 differences before and after glucose addition were not significantly affected
after 4 h of glucose addition for all treatments (data not shown).

Discussion

Our findings indicate that the original warming and grazing treatments over 5-years in the
field had little effect on Rs under all incubated soil temperature and soil moistures (Table 2),

Fig 3. Relationships between soil respiration and root biomass under different treatments. T1M1: 5˚C with 30%

water holding capacity (WHC); T1M2: 5˚C with 60% WHC; T2M1: 15˚C with 30% WHC; T2M2: 15˚C with 60% WHC;

T3M1: 25˚C with 30% WHC; and T3M2: 25˚C with 60% WHC.

doi:10.1371/journal.pone.0165212.g003
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although the original field warming treatment significantly increased substrate supply to Rs
through increases in plant biomass and litter decomposition rate [22–25]. CAI did not decrease
with an increase in incubated temperature (Fig 4C), and lower soil moisture with greater root
biomass limited the response of Rs to temperature only at higher incubated soil temperature
(Fig 2). Thus, our results supported our hypothesis that warming-induced low soil moisture
rather than substrate depletionmay weaken the positive effect of warming on soil respiration
rates in the field.

Response of soil respiration rate (Rs) to soil temperature and moisture

Generally, we found that Rs increasedwith temperature, and soil moisture alone had no effect
on Rs (Table 2), implying that substrate availability and soil moisture were not limitations on
Rs at lower incubation temperatures (i.e., 5 and 15°C) in our study. However, previous studies
in arid and semiarid ecosystems [36, 37] and in mesic systems [38] have shown that the indi-
rect effects of warming on soil moisture can outweigh the effects of thermal stimulation on
microbial activity [39]. In our study, however, at 25°C temperature 60%WHC significantly
enhanced average Rs compared with 30%WHC during the incubation period, suggesting that
limitation of soil moisture on Rs may occur at the higher temperature relative to 5 and 15°C
(Fig 2A). Soil moisture could be a limiting factor when substrate availability (i.e. root biomass)
increased at the higher temperature in our study (Fig 3). Moreover, when substrate is sufficient
(i.e. with glucose addition), soil moisture had a significant effect on Rs (Fig 4B). Previous labo-
ratory studies found that soil moisture and substrate availability affected the temperature sensi-
tivity of Rs [40, 41]. In our study, we found that soil moisture did not significantly affect the
temperature sensitivity of Rs (i.e. Q10), but the original field grazing treatment significantly
increasedQ10 (Fig 5A). This is probably because grazing reduced aboveground and litter bio-
mass [23], which could decrease labile carbon in soils [10, 38]. Therefore, our results suggest
that there may be a soil moisture-temperature threshold on Rs. Limitation of soil moisture on
Rs may be small when environmental temperature is lower during early and late growing sea-
sons, whereas warming-induced decrease in soil moisture may limit the response of Rs to tem-
perature during mid-summerwhen environmental temperature is higher in the field.

Response of soil respiration rate (Rs) to substrate quality

There were no significant differences in Rs between the original field warmed plots and control
plots whenmeasurements were made at a common temperature (Fig 2A), which is inconsistent
with previous reports [12], although warming increased root biomass in our study, which is a
contrary finding to those reported by Hartley et al. [12]. However, the dependency of Rs on
root biomass increasedwith soil temperature and soil moisture under incubation (Fig 3), sug-
gesting that higher Rs may stem from root decomposition and its potential priming effect on
microbial respiration at higher soil temperature and higher soil moisture [12, 15, 42–44]. Glu-
cose-induced respiration rates are usually performed to evaluate the impacts of substrate avail-
ability on short-term Rs responses to temperature [14]. If the response of Rs to temperature is
suppressed due to substrate depletion [12, 45], glucose addition should increase the response of

Fig 4. Difference in soil respiration (μg CO2 g-1 soil h-1) before and after 4h of glucose addition under

different incubation temperatures (A) and soil moistures (B), carbon availability index (CAI) (C)

under different incubation temperatures. Fig A and C show the mean values of 30 and 60% water holding

capacity treatments under 5, 15 and 25˚C incubation temperatures, and Fig B shows the mean values at 5,

15 and 25˚C incubation temperature of the 30 and 60% water holding capacity treatments. Mean ±se is

shown in the figures. Different letters indicate significant difference at 0.05 level.

doi:10.1371/journal.pone.0165212.g004
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Rs to temperature. However, we found that there were no significant differences in CAIs after
58 days of incubationwith glucose addition among the original field treatments whenmeasure-
ments were made at a common soil moisture rate (data not shown). Some empirical studies
suggest that the decomposition of recalcitrant carbon is more sensitive to temperature changes

Fig 5. Temperature sensitivity (Q10) of soil respiration under different original field treatments. C: no-

warming with no-grazing; G: no-warming with grazing; W: warming without grazing; WG: warming with grazing.

Mean ±se is shown in the figures. Different letters indicate significant difference at 0.05 level.

doi:10.1371/journal.pone.0165212.g005
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than labile carbon [46–48]. However, we found that Q10 did not significantly decline over the
incubation period (Fig 5B), suggesting further that soil substrate depletionmay not limit the
response of Rs to temperature in our study.
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