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Abstract

Sorghum (Sorghum bicolor L. Moench) is one of the most important grain crops in the world.

The nuclear male sterility (NMS) trait, which is caused by mutations on the nuclear gene, is

valuable for hybrid breeding and genetic studies. Several NMS mutants have been reported

previously, but none of them were well characterized. Here, we present our detailed mor-

phological characterization of a new and easily recognizable NMS sorghum mutant male

sterile 8 (ms8) isolated from an elite inbred BTx623 mutagenized by ethyl methane sulfonate

(EMS). Our results show that the ms8 mutant phenotype was caused by a mutation on a sin-

gle recessive nuclear gene that is different from all available NMS loci reported in sorghum.

In fertile sorghum plants, yellow anthers appeared first during anthesis, while in the ms8

mutant, white hairy stigma emerged first and only small white anthers were observed, mak-

ing ms8 plants easily recognizable when flowering. The ovary development and seed pro-

duction after manual pollination are normal in the ms8 mutant, indicating it is female fertile

and male sterile only. We found that ms8 anthers did not produce pollen grains. Further

analysis revealed that ms8 anthers were defective in tapetum development, which led to the

arrest of pollen formation. As a stable male sterile mutant across different environments,

greenhouses, and fields in different locations, the ms8 mutant could be a useful breeding

tool. Moreover, ms8 might be an important for elucidating male gametophyte development

in sorghum and other plants.

Introduction

Sorghum (Sorghum bicolor L. Moench) is the fifth most important grain crops in the world,

providing food of subsistence to over 500 million people in Africa and South East Asian [1].

As a C4 crop with excellent tolerance to drought and high temperature stresses as well as adap-

tation to marginal soils, sorghum is becoming increasingly important as a promising bioenergy

crop for sugar, biomass, and biofuel production [2, 3]. With a moderate sequenced diploid

genome (~730 Mb), sorghum is also an emerging model for highly productive C4 crops [4, 5].
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Male sterile mutants are key tools for hybrid breeding. Male sterility in flowering plants is

often attributed to a failure in pollen production or shedding due to defective anther develop-

ment or dehiscence, while the development of female floral organs is normal [6]. There are

two types of male sterility: cytoplasmic male sterility (CMS) and nuclear male sterility (NMS)

or genic male sterility. CMS, which is maternally inherited, is caused by incompatibility of the

cytoplasmic genome with the nuclear genome [6]. The CMS must be maintained by pollina-

tion with a companion line that has a nearly identical nuclear genome but a compatible cyto-

plasm. Genetic defect in the nuclear genome results in NMS, which is usually segregated as a

recessive trait in the self-pollinated F2 offspring.

Male sterility has played a major role in production of hybrid seeds in large scale to exploit

the phenomenon of heterosis. At present, CMS is predominantly used for hybrid production

in crops. In the CMS breeding system, three lines are required for hybrid seed production [7].

The female parent (A line) is completely male sterile. A maintainer line (B line) is needed to

pollinate the A line for maintaining the absolute male sterility of the A line. During hybrid

seed production, a male parent (R line) is required to provide pollen to the A line, restoring

the fertility of the F1 plants by complementing the cytoplasmic defect of the A line with domi-

nant restoring factors in the nuclear genome [8]. Simultaneous development of all three lines

in breeding hybrids is very complicated and expensive. Moreover, strict requirements for A, B,

and R lines severely limit the use of germplasm accessions for generating all possible hybrid

vigor. In rice, two-line hybrid breeding systems using conditional nuclear male-sterility have

been explored to simplify the hybrid seed production procedure and to expand the possibilities

of making hybrids between accessions that are not possible with the three-line breeding system

[9–11]. In the two-line breeding system, a conditional male sterile line is used as the male ster-

ile line under restrictive conditions and the self-maintainer line under permissible conditions

[9]. Any other lines that do not contain the same conditional male sterile mutation can serve

as the “restorer” line. Thus, there is no limitation to the use of germplasm accessions to make

hybrids as long as the heterosis between two lines is acceptable.

In sorghum, CMS is exclusively used for hybrid breeding [7, 12]. Although several types of

cytoplasmic male sterile lines are available, A1 cytoplasm is mainly used in commercial hybrid

production [8, 13]. The A1 cytoplasmic homogeneity may predispose sorghum hybrids to the

devastation of diseases as what happened to A-cytoplasmic maize hybrids in 1970s [14].

Because NMS lines have normal cytoplasm, they may have the potential to reduce catastrophic

yield losses if they can be configured to make hybrids either through conditional or inducible

male sterility. Eight different NMS lines have been reported previously in sorghum [15].

Unfortunately, several NMS lines are not available now. Due to the diligent effort of Jeffrey

Pedersen, five of the reported NMS lines, i.e. ms1, ms2, ms3, ms7, and msal, have been pre-

served and introduced into different genetic backgrounds [16]. However, it is difficult to dis-

tinguish these mutants from the wild-type plants, because their floret structures, including the

anther, are similar to that of wild type. Furthermore, none of these NMS mutants were mor-

phologically and genetically characterized.

Here, we show our morphological studies on a new easily recognizable NMS mutant, male
sterile 8 (ms8), which was isolated from an ethyl methane sulfonate (EMS)-mutagenized

mutant population in sorghum inbred line BTx623. Compared with wild type and the previ-

ously reported NMS lines, ms8 can be easily recognized at onset of anthesis, because its

anthers, which emerged later than stigmas, are small and white. Genetic analysis supports that

the male sterile phenotype is mediated by a single recessive nuclear gene mutation. Comple-

mentation experiments show that the ms8 mutant is a new NMS mutant that is different from

any of ms lines currently available. Further examinations demonstrate that the ms8 mutant is

normal in ovary development, but it is defective in tapetum development, which causes no
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production of pollen grains. As an easily recognizable NMS, ms8 may be a useful tool in appli-

cations of sorghum breeding.

Materials and Methods

Generation of Sorghum Mutant Library

The sorghum [Sorghum bicolor (L.) Moench] inbred line BTx623 seeds were obtained from the

National Germplasm Resources Information Network of USDA-ARS (http://www.ars-grin.

gov/). After six generations of purification through single seed descent, the BTx623 seeds were

mutagenized through treatment with EMS at concentrations ranging from 0.1 to 0.3% (v/v) as

described previously [17]. The treated seeds were thoroughly washed in about 400 ml of tap

water for five hours at ambient temperature, with changing of the wash water every 30 min.

Then the mutagenized seeds were air-dried and prepared for planting.

Field Planting and Management

The sorghum mutant library was planted annually on the Research Farm of the Plant Stress

and Germplasm Development Research Unit, USDA-ARS, Lubbock, Texas, USA (latitude 33˚

35’ N, longitude 101˚ 53’ W, and altitude 958 m). The soil type is an Amarillo fine sandy loam

(fine-loamy, mixed, superactive thermic Aridic Paleustalfs). Before planting, a mixture of bulk

ammonium sulfate and mono ammonium phosphate was applied to the field, calculated to

achieve levels of 65 kg nitrogen and 27 kg phosphorous per hectare. The plot size is 4.67-m

long with 1.02-m row spacing. Sorghum seeds were planted at 80 per row at a depth of 3 cm

using a John Deere MaxEmerge Planter. The plots were watered from underground drip lines

as needed to maintain sufficient soil moisture.

Screening of the NMS Mutant

In 2010, a panicle with no extruded anther was observed from a plant in plot 3049, in which

the mutant line 25M2-1075 was planted. The main shoot of the plant that bore the sterile pani-

cle was cut to stimulate tiller growing. Four tillers were developed later. One tiller was left

open. Three tillers were bagged before heading. One of the three bagged tillers was pollinated

with BTx623 wild-type pollen when the stigma had extruded from approximately 50% of the

sessile spikelets. The other two panicles were continually bagged until harvesting. Neither of

the two continually bagged tillers set any seed. However, both the open pollinated panicle and

the manually pollinated panicle set seeds. The F1 plants from both open-pollinated and manu-

ally pollinated panicles were completely fertile, suggesting the male sterility mutation was

recessive. The F2 plants derived from the manually-pollinated F1 progeny segregated 9 male

sterile to 31 fertile, a ratio of approximately 1 to 3. Because of the easiness to identify the male

sterility phenotype, we continued to backcross ms8 to BTx623 to develop a near isogenic line

to serve as a convenient tool for backcrossing other mutants isolated from the mutant library.

Examination of Female Fertility

After panicles were emerged, the ms8 mutant plants were determined by the anther phenotype.

The top parts of BTx623 and ms8 panicles were cut and bagged. One day later, the cut panicles

were manually pollinated by the BTx623 pollen. Ovaries were dissected out from panicles

before as well as 2 and 3 days after pollination. Ovaries were observed and imaged with the

Olympus SZX7 dissection microscope equipped with an Olympus DP 70 digital camera

(Olympus, Center Valley, PA, USA).
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Pollen Staining and Anther Sectioning

Alexander staining was used to determine pollen viability as described previously [18, 19].

Briefly, anthers just before anther dehiscence were dissected out and fixed 24 h in the fixative

(methanol, 60mL; chloroform, 30mL; distilled water, 20 mL; picric acid, 1 g; and HgCl2, 1 g).

Anthers were transferred through 70%, 50%, and 30% ethanol followed by distilled water (1 h in

each change) and incubated in the staining buffer (ethanol 95%, 10 ml; malachite green, 10 mg;

acid fuchsin, 50 mg; orange G, 5 mg; phenol, 5 g; glacial acetic acid, 2 ml; glycerol, 25 ml; and

distilled water 50 ml) at 50˚C for 48 h. Anthers were mounted on the glass slide for observation.

Semi-thin sectioning was carried out as described in our previous studies [18, 20]. Sorghum

spikelets were fixed in the fixative (2.5% glutaraldehyde, 0.1M HEPES, 0.02% Triton X-100,

pH7.2) overnight at room temperature. Samples were washed three times (30 min each) in the

wash buffer (0.1M HEPES, 0.02% Triton X-100, pH7.2) and then post fixed in 1% OsO4 over-

night at room temperature. Samples were dehydrated through an acetone series (10% incre-

ments, 1 h each change) and infiltrated in 20%, 40%, 60%, and 80% of low viscosity Spurr’s

resin (3 h each change). Samples were then transferred into 100% Spurr’s resin three times (24

h each change) and embedded in 100% Spurr’s resin. Samples were finally polymerized at

60˚C overnight. Semi-thin (0.5 μm) sections were performed using an Ultracut E ultramicro-

tome (Reichert-Jung) and were stained with 0.05% of Toluidine Blue O. Images of pollen stain-

ing and anther semi-thin sections were photographed with an Olympus BX51 microscope

equipped with an Olympus DP 70 digital camera (Olympus, Center Valley, PA, USA).

Results

The ms8 Mutant Is an Easily Recognizable NMS Mutant

In the wild-type BTx623, yellow anthers appeared earlier than stigmas in all sessile spikelets

during anthesis (Fig 1A and 1C). Conversely, anthers in the ms8 mutant were small and white

(Fig 1B and 1D). Furthermore, white hairy stigmas emerged before anthers in the ms8 mutant.

Thus, the ms8 mutant can be easily recognized via observing clearly visible white anthers and

stigmas in all sessile florets at the beginning of anthesis.

Compared with the wild type (Fig 2A), no seeds were produced in the ms8 panicle (Fig 2B).

The seed production of ms8 mutant plants was fully recovered when pollinated with BTx623

pollen grains (Fig 2E), indicating that ms8 is a male sterile mutant. To eliminate the effects of

other unlinked mutations, we backcrossed ms8 to the wild-type BTx623 for six generations.

The ms8 mutant plants were never observed to produce any seeds in the absence of a pollen

source over the last several field seasons in Lubbock, TX, USA (Fig 2B) and Puerto Rico (Fig

2C), as well as under greenhouse conditions (Fig 2D). Our results demonstrated that the ms8
male sterility phenotype can be easily recognized and stable. The backcrossed ms8 can be rou-

tinely used as a near isogenic line of BTx623 to backcross other plants to avoid hand emascula-

tion or plastic-bag crosses [7].

The Female Fertility Is Normal in the ms8 Mutant

To examine whether female organs are affected by the ms8 mutation, we examined ovaries

before and after manual pollination in ms8 plants. We found that there was no difference in

ovary size and appearance before pollination (Fig 3A). After manual pollination, ovaries in

both wild-type and ms8 mutant plants developed similarly (Fig 3B). Without pollination, the

ms8 panicle had no developing seeds (Fig 3C). However, after the manual pollination, a full set

of normally developing seeds were observed (Fig 3D). Therefore, our results suggested that the

ms8 mutation only affected the male sterility but had no effect on the female fertility.

A New Sorghum Male Sterile Mutant
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Fig 1. Comparison of BTx623 wild-type panicle and spikelets with that of the ms8 mutant. (A) Fresh

yellow anthers were extruded from sessile spikelets of the BTx623 wild-type panicle at the anthesis stage. (B)

Anthers were small and white in ms8 spikelets at the anthesis stage; thus they were nearly invisible in the

panicle. (C) Yellow anthers are shown in BTx623 spikelets at the anthesis stage. (D) White small anthers and

hairy stigmas were observed at the anthesis stage.

doi:10.1371/journal.pone.0165195.g001
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ms8 Is a Novel Male Sterile Locus Distinct From All NMS Lines Currently

Available

Our results provided several lines of evidence to support that ms8 is a recessive mutation in a

nuclear encoded gene. First, the F1 plants between a cross of the ms8 mutant and the wild-type

BTx623 were completely fertile (Table 1), suggesting that ms8 is a recessive mutation. Second,

the male sterility was segregated as a single recessive nuclear gene mutation during the subse-

quent backcrosses to the wild-type BTx623. Third, the F2 plants after six backcrosses segre-

gated as 108 male sterile and 320 fertile (Table 1). Statistical analysis indicates that the 1:3

(mutant:wild type) segregation ratio can be accepted according to the X2 test (Table 1), sug-

gesting that the ms8 recessive mutation occurred in a single nuclear gene. Furthermore, to

increase the frequency of male sterile plants that can be used for backcrossing, we crossed the

ms8 heterozygous plants (fertile) with the ms8 homozygous mutant plants (male sterile). Fifty

plots (4.5 m × 1 m) of resulting F1 seeds were planted in the winter nursery in Puerto Rico

from November 24, 2015 to 18 March 2016. Three plots were examined for male sterile and

fertile plants. The segregation ratio was 59 male sterile to 63 fertile plants, which agrees with

the expected ratio of 50% male sterile (homozygous at ms8 locus) to 50% fertile (heterozygous)

plants.

To test if the ms8 mutant was allelic to other NMS mutants reported previously in sorghum,

we obtained all NMS mutants preserved by Dr. Pedersen [16]. These included ms1, ms2, ms3,

ms7, and msal. Pollen collected from the heterozygous ms8 plants were used to pollinate male

sterile plants from the previously reported ms mutants. If ms8 was allelic to those male sterile

lines, the progeny would segregate for 50% male sterile and 50% fertile plants. If ms8 belonged

to a different locus from the examined NMS line, all F1 plants would be male fertile. As shown

in Table 1, all F1 plants were male fertile for all crosses. Thus, ms8 represents a new male sterile

Fig 2. ms8 is a stable male sterile mutant. (A) A self-pollinated BTx623 panicle showing the normal seed set. (B-D) ms8 panicles

bagged before anthesis showing no seed set from fields in Lubbock, TX (B) and Puerto Rico (C), as well as under the greenhouse

condition (D). (E) A manually pollinated ms8 panicle showing the normal seed set.

doi:10.1371/journal.pone.0165195.g002
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Fig 3. The female fertility is normal in the ms8 mutant. (A) The BTx623 wild-type ovary (left) was the same as that of the ms8

mutant (right) without manual pollination. (B) There was no difference of ovary development between BTx623 and the ms8 mutant

after manual pollination. dap: days after pollination. Bars = 1 mm in A and B. (C) An ms8 panicle bagged before anthesis showing

no developing seeds. (D) Seeds are being normally developed in a manually pollinated ms8 panicle.

doi:10.1371/journal.pone.0165195.g003
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mutant. We could not determine whether ms8 was allelic to ms4, ms5, or ms6, because these

lines are no longer available. Collectively, our results support that ms8 is a novel male sterile

locus distinct from all NMS lines currently available [21, 22].

Tapetum and Pollen Development Are Abnormal in ms8 Anthers

To investigate what causes male sterility in the ms8 mutant, we examined pollen viability and

anther development. In the BTx623 wild-type mature spikelet (sessile spikelet), there are three

extruding yellow anthers and two stigmas with pollen grains (Fig 4A). However, in the ms8
mutant spikelet (sessile spikelet), three extruding anthers are pale colored and flattened (Fig

4B). In addition, pollen grains were not observed on the ms8 stigmas (Fig 4B). To evaluate pol-

len production and viability of ms8 mutant anthers, we performed Alexander staining of pollen

grains prior to anthesis. In BTx623 anthers, round red pollen grains were evenly distributed in

anther lobes (Fig 4C). Conversely, no pollen grains were found in ms8 mutant anthers (Fig

4D). To further examine what results in the failure of pollen production in ms8 mutant, we

carried out semi-thin sectioning of wild-type and ms8 anthers. In the late-vacuolated stage,

except for the degenerated middle layer, the BTx623 anther showed concentrically organized

epidermis, endothecium, tapetum, and vacuolated microspores (Fig 4E). However, in the ms8
mutant anther, abnormal anther cell layers were observed. The tapetum had degenerated pre-

maturely relative to that of BTx623, while the degeneration of the middle layer failed to occur

by this stage in the ms8 mutant (Fig 4F). Moreover, the microspores were collapsing, indicated

by their irregular shape (Fig 4F). Our results suggest that the precocious degeneration of tape-

tum causes abnormal development of microspores, and consequently the absence of pollen

grains.

Discussion

Here we reported a new sorghum NMS mutant, ms8, isolated from the mutant library estab-

lished in sorghum inbred line BTx623 [17]. At present, genetic crosses between two sorghum

lines, which is required for breeding and many genetic studies, is primarily carried out by

hand emasculation to remove anthers or using plastic bag to prevent pollen shedding from the

maternal parent [7]. The hand emasculation method is inefficient and painstaking. The plastic

bag method is to tightly wrap a plastic bag around the panicle during anthesis. The resulting

high moisture around the panicle prevents anthers from dehiscence. Two or three days after

anthesis when pollen grains are died, the anthers are shaken off. After the plastic bag is

removed, the panicle is manually pollinated. This method is widely used for making crosses

between two lines that are phenotypically different, so that the F1 plants can be visibly

Table 1. Genetic analysis of the sorghum nuclear male sterile mutant ms8.

Cross Number of Plants F1 Phenotype Fertile F2 Sterile F2 X2 (p-value)

BTX623* ms8 8 All Fertile 320 108 0.91

ms8*msx F1 16 9 ms, 7 fertile 0.61

ms1* ms8 F1 16 All Fertile

ms2* ms8 F1 16 All Fertile

ms3* ms8 F1 16 All Fertile

ms7* ms8 F1 15 All Fertile

msal* ms8 F1 13 All Fertile

The ms8 male sterility was mediated by a novel recessive mutation in a nuclear gene.

doi:10.1371/journal.pone.0165195.t001
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Fig 4. Morphological analyses of pollen and anther development in BTx623 wild-type and ms8 mutant

plants. (A) A BTx623 sorghum spikelet with three mature anthers. Pollen grains released from anthers and

stacked on hairy stigmas (A, inset). (B) An ms8 mutant spikelet with three pale and flattened anthers. No

pollen grains on the ms8 stigma (B, inset). (C) A part of BTx623 anther showing round pollen grains inside

anther lobes. (D) A part of ms8 mutant anther showing no pollen grains inside anther lobes. (E) A semi-thin
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separated from the self-pollinated plants because the plastic bag covering cannot kill all pollen

grains and the probability to produce self-pollinated is pretty high. The high temperature and

high moisture within the plastic bag also kill ovaries, leading to low or no seed set. In addition,

the plastic bag method is not feasible for making crosses between two lines that have similar

appearance or between mutants isolated from the same genetic background unless molecular

markers are available to distinguish the F1 plants from the self-pollinated plants. As an easily

recognizable NMS mutant, ms8 can greatly facilitate breeding and genetic crosses in sorghum.

Because of the ease of recognition at early stage of anthesis, the ms8 mutant has been used

as a convenient tool to backcross other mutants isolated from our sorghum mutant library.

The ms8 mutant may also serve as a valuable tool as an accurate test of heterosis potential dur-

ing development of new inbred lines in sorghum [23]. Examining heterosis between inbred

lines in A/B and R system is complex, time consuming, and expensive. It is often necessary to

make crosses with several combinations of A/B and R pairs to determine the value of new

inbred lines. The ms8 mutation can be introduced into a core collection of diverse sorghum

accessions that serve as potential B lines, because the ms8 mutant is derived from the BTx623 B

line. The modified B lines with the ms8 mutation can be used to cross with many diverse R

lines to identify desirable levels of heterosis. Once such pairs of lines are identified, large effort

can be focused on developing corresponding A/B pair and R lines.

Long-term random mating has been demonstrated as an effective approach for crop

improvement in both self-pollination and cross-pollination crops [24, 25]. Sorghum is an

essentially self-pollinated species with an outcross rate from 0 to 5% [26]. The ms8 mutant

may aid the development of long-term random mating population for sorghum improvement

and genomic selection. Recently, sorghum scientists have empaneled three diversity popula-

tions for genome wide association studies on key important agronomic, bioenergy, and nutri-

tion traits in sorghum [1, 27–29]. These diversity panels captured the majority of genomic

variations of sorghum and can serve as a powerful initial resource for sorghum improvement

through long-term random mating. For example, ms8 mutant plants can be planted within the

field of sorghum diversity panels. Plants homozygous at ms8 locus can be tagged at anthesis.

Because homozygous ms8 mutants cannot produce any pollen, all seeds on ms8 plants have to

be derived from random mating with pollens from the diversity panel. Only tagged panicles

will be harvested and then F2 seeds are produced through self-fertilization. The F2 seeds can

be planted into the diversity panel. Again, only the tagged open-pollinated panicles from the

F2 plants homozygous at the ms8 locus will be harvested. This cycle can continue for many

generations with or without selection pressure at early stages. Genomic selection or simply

breeding selection can be applied at advanced generations to develop sorghum inbred lines

that are superior in biotic/abiotic stress resilience, yield, and quality.

Our phenotypic analyses show that the defects in tapetum development result in male steril-

ity in the ms8 mutant. Tapetum consists of a monolayer or multilayers of cells, which surround

successive stages of microsporocytes, tetrads, microspores, and developing pollen as anther

development progresses [30–32]. Tapetum development comprises three stages: differentia-

tion, maturation, and programmed cell death (PCD). Early tapetal cells secrete enzymes

required for the release of haploid microspores from meiotic tetrads [33–37]. With

section image of a BTx623 anther lobe at late vacuolated stage showing epidermis, endothecium, tapetum,

and microspores. The middle layer (a cell layer between endothecium and tapetum) is degenerated at this

stage. (F) A semi-thin section image of an ms8 anther lobe at late vacuolated stage showing epidermis,

disordered endothecium and middle layer, early degenerated tapetal cells, and abnormal microspores. E,

epidermis; En, endothecium; ML, the middle layer; T, tapetum; M, microspore. Bars = 0.5 mm in A and B,

20 μm in C and D, and 10 μm in E and F.

doi:10.1371/journal.pone.0165195.g004
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endoreduplication, polynucleate tapetal cells, which are highly active in metabolism, provide

energy and materials (sugar, lipid, and protein) for pollen development. Lacking or abnormal

tapetum causes pollen defects and consequently male sterility [18, 19, 38–41]. Moreover,

stress-induced male sterility and yield loss are mainly ascribed to aberrant tapetum develop-

ment [42, 43]. Although some genes important for tapetum development have been identified,

so far, the molecular mechanisms underlying tapetal cell differentiation and function mainte-

nance are still not clear. Studies found that dicots (e.g. Arabidopsis) and monocots (e.g. maize

and rice) employ similar, but also many different genes to control tapetum development [32,

37]. The ms8 mutant was isolated from the mutant library derived from BTx623 that has been

used to generate the sorghum genome sequence [4]. In sorghum, it typically takes several years

to isolate a stable male sterile mutant caused by a single gene mutation. To the best of our

knowledge, so far, ms8 is the first nuclear male sterile mutant defective in tapetum develop-

ment in sorghum. Our future plan is to clone the MS8 gene via the whole genome sequencing.

Considering the moderate large genome and lack of available tools, it is still challenging to

identify the MS8 gene. Once we cloned the MS8 gene, we will be more aimed to perform

detailed morphological, genetic and molecular analyses to examine what cause the mutant

phenotype. The MS8 might be a novel gene in plants or MS8 orthologs have been studied in

other species. In any cases, we are anticipating to clone the first male sterile gene in sorghum,

which is potentially important for better understanding of tapetum development and sorghum

breeding.

Identification of the MS8 gene will help develop a two-line hybrid breeding system. For

example, an expression cassette of the wild-type MS8 gene driven by a dexamethasone (DEX)

-inducible promoter can be used to transform the ms8 mutant [44]. Homozygous ms8 plants

can be maintained via treating male sterile plants with DEX. During hybrid production, plants

homozygous for the ms8 mutation will be male sterile in the absence of chemical inducer. The

transgene together with the ms8 mutation can be easily introduced into other sorghum acces-

sions through marker-assisted selection as needed. The advantage of the inducible male fertile

system is that we can breed sorghum hybrid under the same condition without the need to

produce hybrid seeds and maintain the male sterile line under different conditions.

In summary, we presented a detail morphological characterization of a new and easily rec-

ognizable NMS mutant, which was isolated from a sorghum mutant library generated from

inbred line BTx623. A male sterile-isogenic line of BTx623 was created by backcrossing ms8 to

BTx623 for 6 generations. Given the easiness to identify the male plants in the field and its sta-

bility across different environments, the ms8 mutant has several important applications in sor-

ghum improvement. First, it can be used to backcross all mutants isolated from the sorghum

mutant library, eliminating the need for hand emasculation. Second, it can be a starting parent

for sorghum improvement through long-term random mating. Third, it can be introduced in

a selection of founder lines for testing heterosis. Fourth, it may eventually lead to the develop-

ment of an inducible two-line breeding system after the causal gene mutation is identified.
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