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Abstract
The linear theory of thermoelastic damping (TED) has been extensively developed over the

past eight decades, but relatively little is known about the different types of nonlinearities

that are associated with this fundamental mechanism of material damping. Here, we initiate

the study of a dissipative nonlinearity (also called thermomechanical nonlinearity) whose

origins reside at the heart of the thermomechanical coupling that gives rise to TED. The

finite difference method is used to solve the nonlinear governing equation and estimate

nonlinear TED in Euler-Bernoulli beams. The maximum difference between the nonlinear

and linear estimates ranges from 0.06% for quartz and 0.3% for silicon to 7% for aluminum

and 28% for zinc.

Introduction

Thermoelastic damping (TED) refers to energy dissipation due to irreversible heat conduction
across thermoelastic temperature gradients in vibrating structures [1, 2]. The foundations of
the linear theory of TED were established in the 1930s, and developed extensively over the past
thirty years (see, for instance [3–5] for reviews). The linear analysis is now widely used to gain
insight into a fundamental mechanism of material damping, calibrate measurements of inter-
nal friction in thin films, and guide the design of miniaturized resonators used in microelectro-
mechanical systems (MEMS).
In stark contrast, nonlinear thermoelastic dissipation has received relatively little attention.

The literature is sparse and focusesmainly on the following three types of nonlinearities: (i)
geometric nonlinearities due to large deformations, (ii) material nonlinearity due to the tem-
perature dependence of mechanical properties, and (iii) transduction nonlinearities in oscilla-
tors caused by electrostatic actuation [6–15]. In this paper, we address a fourth type of
nonlinearity whose origins reside at the heart of the thermoelastic coupling that gives rise to
dissipation. For this reason, it may be termed a dissipative nonlinearity (or thermoelastic
nonlinearity).
To understand the source of the dissipative nonlinearity, let us consider the time-harmonic

oscillations of a thermoelastic structure that is initially at equilibrium at temperature T0. Due
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to thermoelastic coupling, the bending vibrations create a time-dependent temperature field T
within the structure. In turn, the temperature gradients lead to irreversible heat conduction,
entropy generation, and energy dissipation [1].
For diffusive heat conduction according to Fourier’s law, the temperature is governed by a

nonlinear partial differential equation (PDE) given by [16]

C
@y

@t
¼ kr2y �

E a T
ð1 � 2uÞ

@εnn

@t
; ð1Þ

where θ = T−T0 is the excess temperature, C is the specific heat per unit volume, t is time, k is
the thermal conductivity, E is Young’s modulus, α is the coefficient of thermal expansion, υ is
Poisson’s ratio, and ε is the total strain (that is, the sum of elastic strain and thermal strain).
The summation convention is implied for the index n; hence, εnn denotes the trace of the strain
tensor.
The second term on the right-hand side of Eq (1) gives rise to the dissipative nonlinearity.

Thus far, this effect has been largely ignored in the literature, and the governing equation is
usually linearized by replacing T with T0. The error caused by linearization is expected to be
small, but this important assumption has yet to be rigorously examined and quantified. In the
remaining sections of the paper, we present a detailed numerical analysis of nonlinear TED
and quantify the error incurred by ignoring the dissipative nonlinearity.

Methods

Consider an isotropic, homogeneous, Euler-Bernoulli beam of length L, thickness h, and width
b. A Cartesian coordinate system (x,y,z) is attached to the structure so that the beam occupies
the domain defined by 0� x� L, 0� y� b, and 0� z� h. The axial stress σxx = σ0 exp(iωt) is
the only nonzero component of the stress tensor; here, ω is the oscillation frequency (in units
of radians per second) and i ¼

ffiffiffiffiffiffiffi
� 1
p

. The oscillatory curvature of the beam under pure bend-
ing is κxx = z0 exp(iωt), where z0 is the amplitude of oscillation. The normal strains are given by
[16]
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sxx

E
þ ay ¼ � z �

h
2

� �

kxx

εyy ¼ εzz ¼
� u

E
sxx þ ay

ð2Þ

and z = h/2 is the position of the neutral axis.
Using the expressions for the stresses and strains, and for one-dimensional heat conduction

across the thickness of the beam, Eq (1) can be expressed as
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whereC = Eα2T0/C is the dimensionless Zenermodulus. The beam is initially at equilibrium at tem-
perature T0 and the boundaries along the z-direction are adiabatic; hence, the initial and boundary
conditions are given by

y ¼ 0 at t ¼ 0;
@y

@z
¼ 0 at z ¼ 0;

@y

@z
¼ 0 at z ¼ h ð4Þ

We employ the method of finite difference to solve the nonlinear partial differential equa-
tion, Eq (3), subject to the initial and boundary conditions expressed in Eq (4). The first step is
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to cast the PDE in dimensionless form by defining the following variables

�y ¼
y

yc
; yc ¼

Ea h z0T0

C
; �t ¼

t
tc
; tc ¼

Ch2

k
; O ¼ otc; �z ¼

z
h

ð5Þ

Here, �y is the normalized temperature,�t is the normalized time, �z is the normalized coordi-
nate, andO is the normalized frequency. Hence, Eq (3) can be expressed in dimensionless form as

ð1þ bÞ
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Eq (6) was solved using the implicit Crank-Nicholson finite-difference scheme with discreti-
zation grids that are uniform in space (�z) and time (�t) [17]. All the derivatives are replaced by
the corresponding finite difference approximation to get
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whereN ¼ 0:5D�t=D�z2 andM ¼ i OD�tð�z � 0:5ÞexpðiO�tÞ. The superscripts n + 1 and n denote
the temperature at the current and previous iteration, respectively, and the subscripts refer to
the nodes of the finite-differencemesh. This equation was expressed in matrix form and solved
iteratively using the tri-diagonalmatrix algorithm to obtain the temperature field. Finally, by
definition, the nonlinear thermoelastic damping is given by [3, 18]
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Here, V is the volume of the beam,
H
denotes the integral over one cycle of oscillation, εth =

αθ is the thermal strain, and the peak elastic energy in the beam isW ¼ Ez2
0
h3b=24. Taken

together, the aforementioned equations constitute a framework for computing nonlinear ther-
moelastic dissipation in Euler-Bernoulli beam resonators. The framework was implemented
usingMATLAB to analyze nonlinear TED and the results are presented in the next section.

Results

Nonlinear TED was analyzed in Euler-Bernoulli beamsmade of five different materials: quartz,
silicon, diamond-like carbon (DLC), aluminum, and zinc. The materials were chosen to span
the range of thermomechanical properties pertinent to TED. Table 1 lists the effective isotropic
material properties at room temperature.
In all cases, the nonlinear estimates were compared with the prediction of the linear theory

of TED in Euler-Bernoulli beams given by [20]
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The main results are presented in Fig 1 on a graph of TED as a function of the normalized
frequency (O = ωCh2 / k). The symbols denote the results from the numerical analysis of non-
linear TED, and the lines are the predictions of the linear model given by Eq (10).
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The dissipative nonlinearity does not introduce any new spectral features. In common with
the linear model, nonlinear TED also predicts a single dissipation peak with a maximum value
of 0.5C at a critical normalized frequency ofO

�

= π2. For both linear and nonlinear analysis,
the magnitude of the dissipative nonlinearity is independent of the oscillation amplitude. Both
models are in excellent quantitative agreement below the critical frequency (O< O

�

). However,
for O> O

�

, the nonlinear analysis predicts a higher value for TED. The maximum difference
between the nonlinear and linear estimates is 0.06% for quartz, 0.3% for both silicon and dia-
mond-like carbon, 7% for aluminum, and 28% for zinc. Taken together, the results indicate
that the error caused by ignoring the dissipative nonlinearity scales with the Zenermodulus of
the material.

Table 1. Thermomechanical material properties at 300 K [19].

Material E (GPa) k (W/m/K) α (K-1) C (J/m3/K) Ψ = Eα2T0 / C

Quartz 70 1.2 5×10−7 1.5×106 3.5×10−6

Silicon 160 150 2.6×10−6 1.6×106 2.0×10−4

Diamond-like carbon (DLC) 800 800 1.5×10−6 2.4×106 2.2×10−4

Aluminum 70 220 2.4×10−5 2.4×106 5.0×10−3

Zinc 100 110 4.0×10−5 2.7×106 1.8×10−2

doi:10.1371/journal.pone.0164669.t001

Fig 1. Frequency dependence of thermoelastic damping for Euler-Bernoulli beams of quartz, silicon,

diamond-like carbon (DLC), aluminum, and zinc. The symbols are the results of the numerical analysis of

nonlinear TED, and the lines are the predictions of the linear model given by Eq (10). The numbers in parentheses

denote the maximum difference between the nonlinear and linear estimates for TED.

doi:10.1371/journal.pone.0164669.g001
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Discussion

Thermoelastic damping arises as a consequence of the nonlinear coupling between thermal
and elastic fields in vibrating solids. In this paper, we presented the first detailed numerical
analysis of the effects of the dissipative nonlinearity on thermoelastic damping in Euler-Ber-
noulli beams. All other types of nonlinearities (geometric,material, and transduction) were
eliminated from the analysis, and the effects of the dissipative nonlinearity were quantified by
comparison with a linear model for thermoelastic damping.
Results were presented for five representative materials that span the full range of the Zener

modulus encountered in metals, alloys, glasses, and ceramics. The dissipative nonlinearity does
not introduce any new spectral features, and the dissipation spectra display a single peak. The
error caused by ignoring the dissipative nonlinearity is negligible at below the peak frequency
for all materials. Thus, the linear approximation can be used with confidence for design and
analysis in this regime. However, beyond the peak frequency, the error is proportional to the
Zenermodulus of the material. The maximum error can be as high as 7% for aluminum and
28% for zinc.
To our knowledge, the present study is the first to quantify the effects of the dissipative non-

linearity on thermoelastic damping. The analysis focused on isotropic and homogeneous
Euler-Bernoulli beams, and ignored the effects of material and geometric nonlinearities. Our
results suggest several fruitful and intriguing topics for future investigations including the
study of nonlinear thermoelastic dissipation in other structures (plates, hollow tubes, rings,
shells, and layered composites) and anisotropic materials, and exploring the interactions
betweenmaterial, geometric, and dissipative nonlinearities. A useful starting point for such
studies is to replace Eq (1) with a fully nonlinear equation for thermoelastic heat conduction in
anisotropic materials [21].
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