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Abstract
‘Neolithization’ pathway refers to the development of adaptations that characterized subse-

quent Neolithic life, sedentary occupations, and agriculture. In the Levant, the origins of

these human behaviors are widely argued to have emerged during the Early Epipaleolithic

(ca. 23 ka cal BP). Consequently, there has been a pre-occupation with identifying and

modeling the dietary shift to cereal and grains during this period, which is considered to

have been a key development that facilitated increasing sedentism and, eventually, agricul-

ture. Yet, direct evidence of plant use in the form of macrobotanical remains is extremely

limited at Epipaleolithic sites and the expected ‘Neolithization’ pathway has not been

robustly demonstrated. However, new direct microbotanical phytolith evidence from the

large aggregation site of Kharaneh IV, in the Azraq Basin, suggests that increasingly settled

occupation was not the result of wild grass and cereal use, but rather the result of a typical

hunter-gatherer balance, based on the use of mostly reliable resources supplemented by

some risky resources. Moreover, and illustrating this balance, the direct botanical evidence

emphases the importance of the wetlands as an under-recognized reliable plant resource.

Significantly, the use of these reliable wetland plant resources at Kharaneh IV represents

an unexpected ‘Neolithization’ pathway.

Introduction

The complex dynamics of people-plant interactions intrinsic to hunter-gatherer adaptations
were central to the development of the ‘Neolithic’ lifestyle. Many researchers have character-
ized Epipaleolithic foragers as the link between hunter-gatherers and the first Neolithic farmers
(ca. 11,500–10,500 cal. BP). In particular, the Late Epipaleolithic (Natufian period) (ca.
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15,500–11,500 cal. BP) has been the subject of the most intense scrutiny [1–20]. However,
more recently, it has been argued that ‘Neolithization’—the transition frommobile foragers to
settled farmers, including many presumed associated social changes—began during the Early
Epipaleolithic period, perhaps as early as 23,000 cal. year BP [21–25]. The economic and social
transformations that marked the emergence of a ‘Neolithic’ way of life included sedentism and
agriculture [23]. Understanding the economic and social practices, particularly plant-use prac-
tices, that facilitated increasing sedentism at Early-Middle Epipaleolithic sites such as Khara-
neh IV (19,830–18,600 cal. year BP [26]), is of the utmost importance. Yet, direct evidence of
plant use in the form of well-preservedmacrobotanical remains is extremely limited during
this important period, with the exception of the remarkable assemblage at the 23 ka year old
site of Ohalo II [23, 27]. However, the analysis of this unique macrobotanical evidence has con-
centrated largely on those plant remains that later became the first domesticates (i.e. wild cere-
als and grasses) [28–30].

The focus on the first domesticated plants is symptomatic of a broader disciplinary preoccu-
pation with identifying and modeling the dietary shift to cereals and grasses, which is consid-
ered a key development in the economic transition from foraging to farming, as outlined in
Flannery’s [31, 32] Broad SpectrumRevolution. Consequently, there is a tendency for scholars
to view plant-use trends from the Late Epipaleolithic (Natufian) (ca.15,500–11,500 cal. year
BP) and more recently, the earlier Epipaleolithic periods (ca. 23,000–15,500 cal. year BP), as
part of a clear and successful continuum to agriculture [33, 34], or at least as being teleologi-
cally determined.As a result, researchers have not adequately considered the complexity of
gathering strategies and the choices that hunter-gatherers faced in the Late Pleistocene [11, 27].
Importantly, not contextualizing the use of these wild ancestors of domestic plants within the
broader pattern of wild plant collection potentially obscures alternative and unexpected ‘Neo-
lithization’ pathways. The concept, ‘Neolithization’ pathway, refers to the development of
adaptations that characterized subsequent Neolithic life, importantly sedentism and agricul-
ture. Yet, the advent of these developments during the earlier Epipaleolithic did not inevitably
lead to a Neolithic lifestyle. As Goring-Morris and Belfer-Cohen argue “developments appear
to have been directional only in retrospect” [22].

The earlier Epipaleolithic could be viewed as a period of ‘Neolithic’ fits and starts, whereby
some hunter-gatherers transitioned in and out of subsistence and settlement patterns, which
later became hallmarks of the Neolithic. This flexible approach is typical of hunter-gatherers
and the complex but contextually rational choices foragers’ make when balancing their ecologi-
cal and cultural environments. In this paper, new direct evidence of plant-use from phytolith
analysis conducted on on-site sediments from Kharaneh IV in the Azraq Basin, Jordan (Fig 1),
is analyzed to consider how the inhabitants used plant resources. Given there is little local off-
site sedimentary evidence to reconstruct the environment throughmost of the site’s occupation
[35], the on-site evidence of plant use is also employed towards reconstructing the local envi-
ronment. We argue that the evidence demonstrates these people employed a resilient plant use
strategy that focused on the selection of risky and reliable resources, which may have facilitated
their increasingly sedentary lifestyle and, therefore, represents the origins of an alternative and
unexpected ‘Neolithization’ pathway.

This study is the latest from a body of new phytolith evidence attesting to the varied and
local nature of Epipaleolithic plant use in the Southern Levant [12, 13, 36–39]. These works
join Asouti and Fuller [27] in questioning the idea that Epipaleolithic plant use practices
emerged “as ‘pre-adaptations’ en route to food production,” and instead view wild cereal and
grass use in a manner similar to Savard, Nesbitt and Jones [40], where they form as but one
component, within the many local systems of plant use adapted to the different and changing
micro-ecologies and historical trajectories’ in the Southern Levant.
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The plant use evidence suggests that increasing sedentism, a key component of later
‘Neolithic’ lifestyles, at Kharaneh IV was borne out of a rational balance typical of hunter-
gatherer adaptations [41–43], between the use of risky resources (i.e. wild cereals, grasses
and other seasonal resources) found in the surrounding steppe/parkland landscape and
the use of reliable resources (i.e. sedges and reeds) found in the wetland landscape, where
the site was established. This strategy was resilient because by ‘hedging their bets’ on the
year-round larder of the wetland, and foraging strategically beyond the safety it afforded,
the inhabitants at Kharaneh IV were able to aggregate in large groups and settle for longer
than ever before in one place, facilitating the development of a rich social and material
existence.

Fig 1. Location map of Kharaneh IV and the other sites mentioned.

doi:10.1371/journal.pone.0164081.g001
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Late Pleistocene Environment at Kharaneh IV

The Azraq wetland is fed by several springs, which are filled by surface runoff and groundwater
[44]. The springs have a low discharge-to-replenishment ratio, with a residence time of 20,000
years [45, 46]. In the past, prior to modernwater demands, the springs provided a secure sup-
ply of water, even under arid conditions [35, 44, 47]. At present, the much-diminishedmodern
wetland is located approximately 40 km northwest of the site. However, in the past Kharaneh
IV was situated on the periphery of the large Pleistocene wetland, surrounded by semi-arid
steppe and parkland [35, 44, 48–53]. The wetland would have been a reliable resource-rich
environment relative to the surrounding steppe and parkland [54], particularly during arid
periods. This characteristic of the Azraq Basin has attracted human groups to the region since
the Lower Paleolithic [55–58]. These dynamics are not unique to the Azraq Basin and can be
seen in other localizedwetland contexts in the Levant, including for example the wadi systems
in the northwestern Negev Desert dunefields containing Epipaleolithic sites [59]. Similar to the
Late Pleistocene water bodies in the Negev Desert dunefield, the high water table characteristic
of the Azraq wetland during the Early Epipaleolithic does not necessarily reflect a ‘humid’
phase (i.e. increased precipitation). In the case of the Negev, the development of ancient water
bodies was the result of accumulating aeolian sand deposits blocking the wadis, or dune-dam-
ming, not increased precipitation [59]. While in Azraq, the aquifers supplying the wetland are
fed mainly by groundwater discharge with a millenial scale recharge rate [35], meaning that
most of the water accumulating in the Late Pleistocene wetland was a result of increased pre-
ciptation thousands of years prior to the LGM.

Recent geoarchaeological analysis by Jones, Maher [35] demonstrates that the wetlands
adjacent to Kharaneh IV date to between 23 and 19 ka years ago. At the base of the Early Epipa-
leolithic occupation (Area B) the wetland deposits are interstratified with the earliest occupa-
tion layers. Therefore, it is clear that a rich wetland was located in direct proximity to the site
when it was first established. Jones, Maher [35] note that there is little sedimentary evidence
from which to reconstruct the environment during occupation of the site. However, they do
suggest that the sustained occupation of the site indicates the wetland continued to be a favor-
able locale for a further 1200 years. Subsequently, the deposition of windblown (loess) deposits
and the establishment of an erosional phase between 19 ka and 4 ka BP suggests there was a
substantial drying of the wetland and the surrounding landscape [35, 52, 53].

Faunal evidence demonstrates that the inhabitants at Kharaneh IV had available a wide vari-
ety of animal resources, including water dependent species such as equids and aurochs, and
smaller animals including tortoise and waterfowl [60]. However, they relied most heavily on
gazelle (80% NISP in the midden, pit, cache and hearth contexts of area B and 90% in area A)
[60, 61]. Based on the skeletal-part profile of the assemblage the authors suggest that hunting
occurred close to the site [60]. The consistent long-term hunting practices evident from the
faunal assemblage indicates that throughout the sites occupation, the wetland and surrounding
steppe and parkland environments were rich in game and provided a dependable supply of ani-
mal resources for both food and material manufacture.

Archaeology at Kharaneh IV

Kharaneh IV (19,830–18,600 cal. BP) [26] is one of the most important Late Pleistocene sites
in the Eastern Levant and is one of only two large earlier Epipaleolithic aggregation sites in the
Azraq Basin [26, 50, 62]. The other site, Jilat 6, is located 20 km south of Kharaneh IV and is
estimated by Garrard and colleagues [50] to be approximately 19,000 m2. Notable for its phe-
nomenal size, Kharaneh IV is 21,000 m2 with thick archaeological deposits [60, 63]. Radiocar-
bon evidence shows the site was occupied for 1,225 years [26]. The density of cultural material
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suggests the site was visited by large numbers of people, staying at the site for long periods of
time [26, 60], on a multi-seasonal or possibly year-round basis [64].

Kharaneh IV’s lithic assemblage is significantly different from the assemblage at Jilat 6,
while the smaller nearby site of Ayn Qasiyya located in the central Azraq Oasis, features paral-
lels with both lithic assemblages [35, 60, 65, 66]. These varied lithic assemblages suggest that
different groups of people from different regions of the Levant converged in the rich wetland
environment. These large aggregation settlements may have been established as part of a strat-
egy to claim distinct territories, legitimized through persistent occupation and the construction
of sociallymeaningful places. Supporting this idea, Kharaneh IV features the earliest docu-
mented hut structures (of which there are currently three identified) in Jordan [36, 60, 63], a
possible subfloor burial, a rich faunal assemblage, worked bone objects, a groundstone assem-
blage, red ochre and marine shell beads [26, 60, 61, 67]. These material remains provide evi-
dence for increasing sedentism, the use of complex trade networks, sophisticated food
processing, personal adornment practices and symbolic behaviors.

Garrard and Price first surveyed the site in the 1970s. Small test excavations were subse-
quently undertaken in 1981 and 1985 by Muheisen, who excavated three areas totaling ~15 m2

(Area A, Area B and a small trench to the north of Area B). Muheisen [68] documented four
occupational phases in total, labeled A-D. These phases included two later GeometricKebaran
phases (C and D) and two earlier Kebaran phases (A and B). In 2008 the Epipaleolithic Forag-
ers in Azraq Project (EFAP) renewed excavations at the site [69–72]. EFAP excavations focus
mainly, but not exclusively, on two areas of the site, an Early Epipaleolithic occupation (Area
B, equivalent to Muheisen’s Kebaran Phase A and B) and a Middle Epipaleolithic occupation
(Area A, equivalent to Muheisen’s GeometricKebaran Phases C and D). Excavation of these
occupations provided the samples for this study (Fig 2).

Modeling the Balance between Risky and Reliable Plant Resource Use

at Kharaneh IV

Models of hunter-gatherer adaptation tend to share one basic assumption—that humans are
rational decisionmakers [41–43]. Decision-making can be rooted in social as well as evolution-
ary ‘reason.’ Yet, in the case of economic decisions (subsistence and settlement), hunter-gath-
erer scholars have tended to favor one of two explanations for human rationale: either the
maximization of optimality, characteristic of optimal foraging theory, or the maximization of
fitness, characteristic of human behavioral ecology (HBE) more generally [73]. However, there
is growing sentiment supporting the idea that hunter-gatherer decisions were not always driven
by maximization goals. Rather, they had only to be good enough to satisfy the range of overlap-
ping interests and needs within the community [73], to ‘satisfice’ rather than to ‘optimize’ [74].

The decision to exploit certain resources is made relative to the other available options.
Accordingly, resource selection and ranking decisions were determined at the local level in
relation to the unique ecologicalmosaic (resource aggregation, productivity and predictability)
of a region, as well as technological and social factors [75]. Changing climate in the Late Pleis-
tocene would also have greatly impacted the availability of local resources. As such, Rosen and
Rivera-Collazo [76] have suggested that Epipaleolithic foragers used an adaptive strategy that
cycled in predictable ways from warm/wet phase focus on forest resources to dry/cold phase
adaptations which targeted steppic resources–shifting easily back and forth in a cyclical man-
ner from one to another. Recent phytolith work at Ohalo II builds on this model and suggests
that wetland resources may also have been particularly important during dry/cold phases [37].
This cyclical adaptation suggests a great resilience, but also important variability in Epipaleo-
lithic responses to these major climatic changes.

Phytolith Evidence for Alternative ’Neolithization’ Pathways at Kharaneh IV
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Fig 2. Plan view of key excavation units and profiles at Kharaneh IV. Sampled loci highlighted in red.

doi:10.1371/journal.pone.0164081.g002
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In the Southern Levant, phytolith evidence attests to the local nature of hunter-gatherer
plant-use practices [38]. Habitats were targeted and the resources selected based on their
appeal relative to the other options. Consequently, hunter-gatherer lifestyles and the exploita-
tion of specific resources or environments (i.e. wetlands) varied according to the local resource
and environment options (wetlands, parkland and steppe). Some earlier Epipaleolithic hunter-
gatherer sites provide evidence for a burgeoning Neolithic lifestyle [23]. The unique local eco-
logical factors and historical trajectories of these sites facilitated this transition. The Azraq wet-
land was an essential part of the ecological setting for Late Pleistocene hunter-gatherers and,
therefore, should be a serious consideration whenmodeling regional plant-use (but see [77]).
Indeed, Savard, Nesbitt and Jones’ [40] have suggested that reliable valley bottom plant
resources were central to ‘Neolithization’.

Wetlands can provide reliable and perennially available plant resources, specifically aquatic
roots, which actually increase in nutrient quality during dry, low-growth periods [78]. How-
ever, wetlands should not be construed as lush plant food producing oases or ‘Edens’ [79].
Indeed, swamps, marshes, bogs, fens, wet meadows and shallow water are all defined broadly
as ‘wetlands’, although each have their own unique characteristics determinedmainly by the
transition between terrestrial and aquatic habitats [80]. The phytolittoral zone, the vegetated
littoral typical of marshes and the edges of some shallow water environments, are identified as
the most productive part of the wetlands [80, 81].

As noted by Ramsey and Rosen [38], plants that thrive in this phytolittoral zone include
some sedge varieties (Cyperaceae), cattails (Typha sp.) and reeds (Phragmites sp.). All of these
plants are of great economic and subsistence value to humans, for the fauna they attract, as
well as their own nutritional and favorable ecological qualities [81]. However, compared to
other plant resource types, the roots of these aquatic species provide the lowest return rate at
ca. 182 kcal/h, compared to terrestrial roots (ca. 2,267 kcal/h), nuts and acorns (ca. 832 kcal/h),
and small seeds (ca. 364 kcal/h) ([82], and references therein). Consequently, wetland plant
foodsmight be shown to provide what people need (reliable, but low calories and water), rather
than what people want (high calories, variability and flavor) [38].

Steppe environments in the Near East include a variety of economically important wild
cereals and grasses, and can be seen to exist between two extremes, forest steppe (parkland)
and desert steppe, canopy cover to sparse grass cover [83]. Situated on a transition controlled
by precipitation levels, steppe environments can fluctuate greatly in terms of primary produc-
tivity. With increased precipitation, forest steppe (parkland) will support fruit, nut and mast
‘orchards’. Importantly, reduced aridity will increase the reliability and length of harvest for
these favored resources. Arid steppe environments have a very low primary productivity. In
contrast, less arid steppe environments can have relatively high primary productivity [83].

The contrasting opportunities found in the wetland versus the steppe/parkland in the Azraq
Basin offered hunter-gatherers clear resource options, which forced them to prioritize
resources and the levels of risk they were willing to tolerate. While the resource potential of the
favored steppe/parkland would have varied, given a sensitivity to changes in climate, the less-
favored resources in the wetlands would have provided a reliable fallback (Fig 3). Lee [84]
found that the! Kung would eat as much vegetal food as they needed (meeting nutritional
needs), but ate as much meat as possible. This pattern is expected according to Lee wherever
two or more foods are available. Humans are apt to focus on the more reliable resource (i.e.
wetland resources), but still prize the less reliable alternative (i.e. steppe/parkland resources).
The push and pull betweenwhat people need (predictable foods) and want in their diet (prefer-
able foods) is central to questions about plant-use in the past. This tension means hunter-gath-
erers do not necessarily choose to remain in the wetland until forced to do otherwise (through
exhaustion of resources, social and/or climatic factors).

Phytolith Evidence for Alternative ’Neolithization’ Pathways at Kharaneh IV
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In regards to climatic factors, it is critical to acknowledge that such trends would have mani-
fest differently in different regions. The southern Levant is characterized by a plethora of
micro-habitats. However, archaeologically, we have tended to lump these variedmicro-habitats
together when considering human adaptation. Indeed, the ‘risky’ environment of theWestern
Levant during the Last Glacial Maximummay not have been so ‘risky’ in Azraq. Hunter-gath-
erer decisions are determined at the local level, and accordingly, the way in which climate
trends impacted local micro-habitats should be considered.

The human preference for preferred foods, a varied diet and, importantly, satisfaction [42,
85], means that during periods of climatic amelioration and increased reliability of the local
landscape (warm/wet phases), people should have beenmore willing to take calculated risks,
choosing to exploit plant resources outside of the wetland to a greater degree as the region of
lower risk foraging expanded (Fig 4). Therefore, during periods of increased aridity and
decreased reliability of the surrounding Azraq landscape (cold/dry phases), hunter-gatherers
should have relied to a greater extent on the relative productivity and reliability of the wetlands
(Fig 4). To paraphrase Bettinger [41]–don’t take chances unless you have to. Wait until the
odds are in your favor. This understanding of hunter-gatherer adaptation in combination with
direct botanical evidence suggests an alternative ‘Neolithization’ pathway at Kharaneh IV.

Methods

All necessary permits were obtained for the described study from the Director General, Depart-
ment of Antiquities of Jordan (Dates: 2008 Ref No. 12-5-2852, 2009 Ref No. 12-5-2404, 2010
Ref No. 12-5-3258), which complied with all relevant regulations. All archaeological phytolith
slides produced as part of this study are stored at the University of Toronto, Toronto, Canada,
freely accessible upon request from the corresponding author. The modern comparative collec-
tion phytolith slides are freely accessible upon request from A. Rosen and are housed in the
University of Texas at Austin’s Environmental Archaeology Laboratory. Lastly, the data that
informs this paper is available in S1 Table.

Fig 3. Schematic illustrating the effect of precipitation on a) steppe and b) wetland environments.

doi:10.1371/journal.pone.0164081.g003
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Fig 4. Schematic model illustrating the effect of precipitation on lower risk foraging and higher risk

foraging potentials in wetland versus the steppe/parkland zones.

doi:10.1371/journal.pone.0164081.g004
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Sediment Sampling

In order to investigate some of the principles outlined above, the senior author analyzed
phytolith data from the Epipaleolithic site of Kharaneh IV (Geographical coordinates: 31°
43’ 24 N, 36° 27' 15 E). A total of 31 sediment samples were analyzed for this study (Fig 2,
Table 1). The samples were taken from a variety of on-site contexts, including occupation

Table 1. Sample list with loci descriptions, contexts and lab numbers.

Area B Loci Description Sample

Context

Lab

Number

Occupation

Surfaces

033 Base of occupation. Light brown lacustrine clay sediments, indicating significantly moister

conditions during the initial human occupation. Lithic, faunal and charcoal remains in deposit.

R/S2/60.

P1.52

1B.14.1

032 Part of a series of alternating ‘occupation surfaces’ and refuse. Thin 1–2 cm clay deposit. Dark

yellowish brown sediments with a chalky appearance.

R/S2/60.

P1.51

1B.13.1

R/S2/60.

P1.51

1B.12.1

030 Part of a series of alternating ‘occupation surfaces’ and refuse. Yellowish brown silty clay. High

number of finds and their jumbled up nature suggests a refuse area.

R/S2/60.

P1.46

1B.11.1

227 Compact yellow/brown layer AX74.24 1B.18.1

217 Occupational surface, grayish brown, compact clay. AX73.21 1B.17.1

Feature (dumps) 165 Loosely compacted bone-dump deposit. Brown, silty sand. AT71.6 1B.15.1

179 A mottled deposit with bits of lighter clay and spots of orange-brown material. Artifacts were not

very frequent except for seven large, special finds (stone, flint and five large bones including a

horn core).

AT73.13 1B.2.1

206 Dark loose, silty deposit. Few pieces of burnt bone, charcoal, noticeably darker spot isolated

within 043. Possibly a dump.

AZ72.11 1B.5.1

211/

214

Dark brown organic rich sediment. Loamy clay. Loose compaction (large hearth or dump). AX72.23 1B.6.1

193 Sandy loosely compacted pit fill. AY75.2 1B.4.1

Feature (pit fill) 176 Compact grey pit fill. AV71.15 1B.16.1

187 Sediment associated with fox skull. Light brown soil with clay inclusions. AU72.16 1B.3.1

Area A Loci Description Sample

Context

Lab

Number

Occupation

Surfaces

004 Compact brown sediments. AP42.9C 1A.9.2

AQ42.14A 1A.26.1

AQ42.14B 1A.27.1

008 Compact light brown sediments. AT40.110 1A.10.1

AR40.12A 1A.29.1

AR40.12C 1A.30.1

AP42.12A 1A.31.1

AP42.12C 1A.32.1

100 Compact mottled undulating deposit with high concentrations of charcoal (same as 008, under

034).

AT36.9 1A.15.2

132 Dark brown sediments AP36.54 1A.18.1

003 Dark brown sediment with lots of charcoal AQ42.10 1A.25.1

080 Compact sediment with lots of charcoal, flat lying artifacts, bone and shell beads (beneath 100). AQ36.47 1A.13.1

Feature (hearth) 034 Loamy sand, compact soil, with bones and bits of charcoal. Large ashy feature (beneath 003). AT38.10 1A.11.1

065 Dark brown stain, overlapping hearth deposit (067). AP35.20 1A.12.1

101 Loose brown sediment patch near hearth (065). AQ36.17 1A.16.1

Feature (post-

hole)

097 Dark brown sediment patch. AP35.13 1A.14.1

105 Dark brown sediment patch. AQ36.16 1A.17.1

doi:10.1371/journal.pone.0164081.t001
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surfaces and features (hearths, dumps and post-holes). Excavations were conducted on a 1 x
1 m grid. However, these squares were further divided into 50 x 50 cm quads or 25 x 25 cm
subquads when finer control was needed. The site was excavated following natural and cul-
tural layers, which were further subdivided into 5–10 cm arbitrary levels. All of the exca-
vated sediment was subject to flotation with additional samples collected for micro-artifacts,
micro-fauna, micromorphology, and sediment analysis [71]. The phytolith samples for this
analysis were collected from the sediment samples taken during the 2008, 2009 and 2010
excavation seasons.

Laboratory Methods

Phytoliths were extracted from the sediments following Rosen’s [86, 87] protocol, which
employs a series of techniques to remove carbonates, clays and organics, before extracting the
phytoliths. First, the sediment was sieved though a 0.25 mmmesh to remove the coarse sedi-
ment fraction. A sub-sample of approximately 800 mg was weighed and taken for analysis. The
sample was treated with 30 ml of 10% HCI to remove the carbonates. To disperse the clays, a
solution of sodium hexametaphosphate (lab grade Calgon and distilledwater) was added to the
sample. The clays were removed from the sample by decanting, after settling the fine sands and
silts in an eight cm column of water for one hour. This process was repeated until the suspense
was clear. Organic matter was removed by dry ashing the samples in a muffle furnace for 2
hours at 500°C. The phytoliths were then extracted from the remaining fraction using heavy
density separation. A sodium polytungstate (SPT) solution (with distilledwater) calibrated to
2.3 specific gravity was used to separate the phytoliths from the heavier minerals. The phyto-
liths were then poured off into a clean centrifuge tube, washed in distilledwater, dried, weighed
and then mounted on microscope slides in Entellan. The phytolith slides were counted at 400x
magnification using a transmitted-light microscope (Nikon Eclipse E200). A minimum of 300
single-cells and 50 multi-cells (whenever possible) were counted on each slide. The results are
expressed as number per gram of sediment. The absolute counts (number per gm sediment)
for each phytolith type were calculated using a modifiedmethod outlined by Albert, Lavi [88];
Albert,Weiner [89] see Power, Rosen [90] for details.

Phytolith Analysis

Phytoliths are microscopic silt-sized particles of opaline silica. They form when plants take up
soluble silica from the ground water. The silica is then deposited in and around the intracellular
and extracellular spaces, creating durable inorganic silica ‘casts’ of the plants’ cells. This process
is genetically and environmentally determined [91, 92]. Grasses, sedges and palms (monocoty-
ledons) readily produce phytoliths, often distinctive to plant family, genus and more rarely,
species.Woody trees and other herbaceous dicots also produce phytoliths, although far fewer
and with more irregular forms [93]. Indeed, grasses produce 20 times more phytoliths than
dicot wood and 16 times more than dicot leaves [94].

In grasses and other monocots, silica is deposited passively and actively in the cells of the
plant. Therefore, phytoliths can form in individual cells, producing single-cell phytoliths, or as
a suite of attached adjacent cells producing multi-cell forms, known also as silica skeletons. By
studying the anatomical morphology of these fossilized sections of plant tissue it is possible to
make identifications down to the plant genus or species level. Single-cell monocotyledon phy-
toliths are identified according to the ICPN classification system where possible [95]. Key phy-
tolith microfossils employed in this study were identified by the criteria described in Table 2.
Modern comparative examples are pictured in Fig 5.
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Results and Discussion

The phytoliths throughout the site appear to be well preservedwith the presence of delicate
morphotypes such as hairs and some large multi-cells, suggesting favorable preservation condi-
tions. Two commonmonocot phytolith types, ‘psilate long cells’ and ‘rondel’-shaped short
cells, dominate all of the samples. Psilate long cells are found in all grasses and sedges and they
have limited diagnostic utility, except as indicators of stems (also described as culms) rather
than inflorescences,which, are indicated by dendritic long cells (primarily in pooid grasses).

Table 2. Phytolith microfossil identification criteria and reference.

Phytolith Morphologies (single-cell

unless described as multi-cell)

ICPN alternative References to identification criteria/comments

Psilate long-cellG~ Elongate psilate

margin

Most frequently found in grass stems [96, 97].

Echinate long-cellM Elongate echinate General of monocots. Of particular importance as a morphology that is found in

Phragmites (reed) culms (Fig 5F)

Dendritic long-cellG Elongate dendritic Found primarily in pooid grass husks and are characterized by finely branched

processes [98, 99]. See the ICPN schematic drawings [95]. (Fig 5H).

Bilobe short-cellG Generally panicoid grasses [100] (Fig 5B).

Polylobate short-cellG Generally panicoid grasses [100] (Fig 6B).

Cross short-cellG Quadralobate Generally panicoid grasses [100] (Fig 5A).

Saddle short-cellG Generally chloridoid grasses [100], but also appears in Phragmites.

Rondel short-cellG Generally pooid grasses [100] (Fig 5H).

Wild grass husk G (multi-cell) Generally pooid grass. Dendritic long cells, with papillae and short cells (mainly rondel).

Cork cells are sometimes silicified (for a more detailed discussion of husk identification

methods please refer to [99]) (Fig 5H; Fig 6A).

BulliformG Found in the leaves of grasses, also known as motor-cells [96]. (Fig 5B).

Stacked BulliformsG (multi-cell) Found in the leaves of grasses. Higher silicification may indicate a wet or submerged

growing environment [101–103]. (Fig 5B).

Keystone Bulliform (‘Fan-shaped’) (cf.

reeds)G
Cuneiform

bulliform cell

Commonly occur in reed-grass species that favor watery habitats [103]. Cf. to fan-

shaped reed [92]. With higher silicification may also become a ‘stacked’ multi-cell form

(Fig 5C).

Phragmites (reed) culmG (multi-cell) Echiniate long cells connected by narrow ‘pinched’ short-cells (mainly rondel to saddle).

The short-cells are narrower than the echinate long-cells that connect them [104, 105]

(Fig 5F; Fig 6D).

Phragmites (reed) leafG (multi-cell) Characterized by small frequent stomata [104, 105], with a central lacuna that pinches

out beyond the more silicified top and bottom (‘hamburger’ shape) [106] (Fig 5G).

Sedge conesM See [107–110] (Fig 5E; Fig 6E). Single and multi-cell forms.

Juncus-typeM See (Fig 108 and 114A in [106]). Characterized by small, linear stacks of uniform oval

to cube shaped cells.

Platelets (sheet)DM See [111]. Found in dicot leaves and wood, cf. to platelet [89].

PolyhedronD Found mainly in dicot leaves, single and multi-cell forms [89, 112] (Fig 5D).

ScallopedDM Found mainly in dicot leaves [112] (Fig 6C).

HoneycombDM Favose Found mainly in dicot leaves [89, 111].

TracheidsDM Found mainly in dicot leaves, cf. to tracheary [89].

Smooth spheroid D Found mainly in dicot wood, cf. to spheroid psilate [89].

BlocksDM Found mainly in dicot wood, cf. to parallelepiped block forms [89].

Key
G grasses
G~ mainly grasses
M monocot
D dicot.

doi:10.1371/journal.pone.0164081.t002
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However, the dominance of ‘rondel’ short cells is important for the reconstruction of local
environmental conditions (Fig 6).

Vegetation Trends

The grass sub-families of pooids (with ‘rondel’ morphotypes) are formed in C3 grasses and
their prevalence indicates a prevailing cool or temperate climate. Chloridoids (indicated by
‘saddle’ short cells) generally form in C4 grasses, and panicoids (indicated by ‘cross,’ ‘biolobe’
and ‘polylobe’ short cells) generally form in C4 grasses. Relative ratios of these sub-families are
employed as a general proxy for temperature and level of aridity (Fig 7). High ratios of pooid to
total pooid, chloridoid and panicoid grasses support the interpretation that inhabitants of
Early Epipaleolithic Kharaneh IV were exploiting plants from the coolermore temperate
micro-habitats that we expect were more prevalent around the site during the LGM. Given
chloridoid grasses tolerate arid conditions better than panicoid grasses, the ratio of chloridoid
to chloridoid and panicoid grasses is employed as a proxy for aridity, with higher ratios indicat-
ing plants frommicro-habitats which were more arid, and lower ratios indicating plants from
less arid zones [97, 113]. At Kharaneh IV, there is a clear shift from a higher chloridoid ratio to

Fig 5. Modern phytolith microfossil comparative examples (scale 50 μm). a. Arundo donax (leaf), cross short cell (circled); b. A. donax (leaf),

bulliform (arrow), bilobe short cell (circled); c. Phragmites australis (leaf), stacked keystone bulliforms (inset, single cell in plan view); d. Quercus

pubesence (leaf), Polyhedrons (multi-cell); e. Cyperus rotundus (leaf), sedge cones; f. P. australis (culm), narrow ‘pinched’ short cell (circled), echinate

long cell (arrow); g. P. australis (leaf), ‘hamburger’ stoma (circled); h. Hordeum spontaneum (husk), rondel short cell (circled), dendritic long cell (arrow

a), papillae (arrow b).

doi:10.1371/journal.pone.0164081.g005
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a lower chloridoid ratio from the Early to Middle Epipaleolithic (Fig 7). The evidence suggests
that inhabitants of Kharaneh IV were exploiting plants from less arid zones in the steppe and
parkland surrounding Kharaneh IV during the Middle Epipaleolithic occupation. This is in
keeping with warming and wetting trends, which prevailed in the Southern Levant after the
LGM. The finding is important because the primary productivity of steppe environments can
fluctuate greatly based on the level of precipitation (Fig 3).

It is possible this shift in vegetation reflects the increase in rainfall during the Middle Epipa-
leolithic, which resulted in the development of a more productive steppe/parkland in Azraq.
This increase in the productive potential of the steppe/parkland should result in the expansion
of lower-risk foraging into the wider steppe. A shift in foraging strategy should be evident in
the phytolith assemblage through increasing use of steppe/parkland and woodland plant
resources during the more humid Middle Epipaleolithic (warm/wet phase) when compared to
the comparatively arid Early Epipaleolithic (cold/dry phase).

While human adaptation and plant use is constrained by plant availability, and therefore
reflects environmental opportunities, given the assemblages are from on-site contexts, their
composition is determined by human behavior. Yet, other on-site botanical assemblages,

Fig 6. Phytoliths from Kharaneh IV. a. wild grass husk; b. panicoid grass; c. scalloped dicot leaf; d. Phragmites sp. culm; e. sedge cones.

doi:10.1371/journal.pone.0164081.g006
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including the wood charcoal assemblage at El-Wad Terrace in Israel [114] have been employed
effectively to reconstruct off-site vegetation. Moreover, as previously noted, at Kharaneh IV
contemporaneous off-site sediments are rare and, so far, the on-site contexts provide our only
avenue for reconstructing the local vegetation.

The Balance Between Risky and Reliable Plant Resource Use at

Kharaneh IV

To develop a broad understanding of the foraging strategy employed at Kharaneh IV, the phy-
toliths are grouped to identify wetland, steppe/parkland grasses and woodland ecozone-types
(Table 3, Fig 8). These categories do not necessarily conform to traditional vegetation zones,
but rather provide a general picture of plant-use categories. See Ramsey and Rosen [38] and
Ramsey, Rosen [37] for a full discussion concerning the use of these categories.

From the distribution of ecozone-type phytoliths it is clear that wetland-type resources pre-
dominate. However, while phytolith evidence shows that wetland plant resources (reeds and
sedges) were employed extensively, without starch evidence from the edible plant parts (seeds
or roots) or evidence from contexts that point to consumption, such as groundstone residues,
it is not possible at this time to identify how Early and Middle Epipaleolithic peoples at

Fig 7. Histogram of Grass Short-cell Comparison Ratios. Pooid to pooid, panicoid and chloridoid grass ratio is a proxy for temperature (higher ratio

indicates cooler conditions). Chloridoid to chloridoid and panicoid grass ratio is a proxy for precipitation (higher ratio indicates drier conditions).

doi:10.1371/journal.pone.0164081.g007

Table 3. Phytolith microfossils categorized according to ecozone-type.

Ecozone-type Phytolith Microfossils

Wetland Cyperaceae ‘cones’, ‘fan-shaped bulliforms’ (cf. reeds), Phragmites sp. culm and

leaf, Juncas-type

Woodland Platelets, honeycomb, scalloped, polyhedron, tracheids, smooth spheroid, blocks,

all indet dicots

Steppe/Parkland

Grasses

Dendritic long-cells, papillae, all husk multi-cells

doi:10.1371/journal.pone.0164081.t003
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Kharaneh IV employed these resources in their diet. To rectify this research gap more refined
context-specificmicrobotanical analysis and starch analysis of ground stone samples from
Kharaneh IV is on-going. In spite of a lack of direct evidence, indirect evidence including eth-
nographic data from hunter-gatherers subsisting in analogous environments [115–123] and
experimental evidence demonstrating the nutritional potential of processed sea club-rush roots
(Bolboschoenus maritiumus (L.) Palla.) [124–127], a wetland sedge that has been recovered
from ancient sites in the Levant and Anatolia [54], points to the importance and reliability of
wetland plant-use in the region. Consequently, the prevalence of low-risk wetland-type
resources throughout the site’s use demonstrates that the inhabitants of Kharaneh IV employed
a risk adverse wetland-oriented adaptation. This is not unexpected [38] and fits with the model
of risky and reliable hunter-gatherer resource use described above.

During the Early and Middle Epipaleolithic occupations, steppe/parkland grasses-type
resources were also regularly exploited. This suggests that the inhabitants of Kharaneh IV were
willing to tolerate higher risk foraging when supported by the reliable resources from the wet-
land. Based on the presence of dendritic long-cells (grass husks) (Fig 9) it appears that husks
were prevalent on some occupational surfaces (loci 030 and 080), but were concentrated partic-
ularly in the feature contexts. In the Early Epipaleolithic contexts the features include dumps
and pit fills and in the Middle Epipaleolithic contexts the features of interest are hearths (loci
080, 034, 065). The specializednature of these contexts suggests that the husk remains are the
result of wild grass and cereal processing refuse and/or disposal practices.

Fig 8. Histogram of ecozone-type phytoliths.

doi:10.1371/journal.pone.0164081.g008
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Comparing psilate long-cells to dendritic long-cells provides an indication of the level of
grass and cereal use at the site (Fig 9). It appears that wild grasses and cereals were employed to
a lesser degree at Kharaneh IV (5%) than at Ohalo II (14%). This trend noted by Ramsey and
Rosen [38] is attributed to the lower levels of risk associated with foraging in the mosaic park-
land landscape surrounding Ohalo II. Yet, at Kharaneh IV when increasing productivity in the
steppe/parklandmay have expanded the lower risk foraging options during the Middle Epipa-
leolithic occupation, the hunter-gatherers choose not to increase their exploitation of steppe/
parkland-type grasses. Rather, steppe/parkland grasses-type resource exploitation remained
largely unchanged, while the level of woodland-type resource exploitation increased (Fig 8).
This trend towards woodland resource use with the expansion of lower risk foraging, the results
of a more humid Middle Epipaleolithic climate, is in keeping with the Epipaleolithic adaptive
cycles proposed by Rosen and Rivera-Collazo [76].

Reviewing the dicot leaf and wood trends (Fig 10), it appears that the inhabitants at Khara-
neh IV adjusted their foraging strategy in the Middle Epipaleolithic to include more dicot

Fig 9. Histogram of psilate (stem) and dendritic (husk) single-cell phytoliths. Percentage scale is 75–100%.

doi:10.1371/journal.pone.0164081.g009
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resources. Considering there is no evidence for a change in wetland-type plant use trends (Fig
8) (i.e. shift from wetland to steppe resources–push factors), it is possible that this shift was
facilitated by the increasing productivity of the surrounding parkland (pull factors), but it is
unclear if this trend reflects increasing use of dicot resources for fuel, food or material purposes.
The use of dicot resources as fuel is supported by the increase of dicot wood. Yet, this increase
may also reflect a more general increase in dicot resources for fuel, materials and food. On-
going starch analysis and continued investigation of on-site phytolith remains in conjunction
with an expanded dicot reference collectionwill help clarify this trend.

It is important to understand why dicot resources and not wild grass and cereal resources,
were prioritizedwith the possible expansion of lower risk foraging opportunities during the
Middle Epipaleolithic occupation of the site. Like Kharaneh IV, Ohalo II also features a wet-
land-oriented lifestyle [37]. However, it is clear from both the microbotanical (phytolith and
starch) [37, 128, 129] and macrobotanical (for example see [130–132]) assemblages at Ohalo II
that wild cereals and grasses were an important component of the diet. One explanation for the
more muted use of grass resources at Kharaneh IV might be related to the types of grass
resources available. It is possible that the rich mosaic environment near Ohalo II on the Sea of
Galilee hosted a more preferable variety of grasses, including wild cereals, than the expansive
steppe and parkland in the Azraq Basin. Starch and macrobotanical analysis may provide clar-
ification. Even with the expansion of lower risk forging opportunities, the inhabitants at Khara-
neh IVmay have had no interest in gathering more grass resources.

If hunter-gatherer decisions had only to be good enough to satisfy the range of overlapping
interests and needs within the community [73], it is possible that the reliable supply of plant
resources in the wetland and the rich assortment of game, meant the inhabitants at Kharaneh
IV achieved a sustainable balance between the use of risky and reliable resources, which suited
their needs.While the changing landscapemay have expanded the lower risk foraging opportu-
nities and potentially facilitated an increase in the use of dicot resources, plant-use strategies
remained largely unchanged. Indeed, the contrasting opportunities found in the wetland versus
the steppe/parkland in the Azraq Basin offered hunter-gatherers clear options about what

Fig 10. Histogram of dicot leaves and dicot wood phytoliths.

doi:10.1371/journal.pone.0164081.g010
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plant resources they wanted to prioritize and what levels of risk they were willing to tolerate,
and they appear to have chosen to limit their risk by consistently focusing on lower risk forag-
ing opportunities.

Conclusions: Alternative ‘Neolithization’ Pathways

‘Neolithization’ pathway refers to the development of adaptations that characterized subse-
quent Neolithic life, sedentary occupations and agriculture. However, the appearance of these
incipient behaviors during the earlier Epipaleolithic did not inevitably lead towards a Neolithic
lifestyle. Rather, the earlier Epipaleolithic could be viewed as a period of ‘Neolithic’ fits and
starts. In this paper, we have presented new direct botanical evidence of one such fit and start.
The evidence from Kharaneh IV has been employed to consider how the inhabitants used
plant resources and how their selection of risky and reliable resources resulted in a resilient
plant-use strategy that may have facilitated their increasingly sedentary lifestyle, and for that
reason, represents the origins of an alternative and unexpected ‘Neolithization’ pathway.

At Kharaneh IV, their increasingly settled lifestyle, a key component of later ‘Neolithic’ life-
styles, is shown in this paper, based on plant use evidence, to have been born out of a rational
balance, typical of hunter-gatherer adaptations [41–43], between the use of risky resources (i.e.
wild cereals, grasses and other seasonal resources) found in the surrounding steppe/parkland
landscape, and the use of reliable resources (i.e. sedges and reeds) found in the wetland land-
scape beside which the site itself was established. This strategy was resilient because by ‘hedging
their bets’ on the year-round larder of the wetland and foraging strategically beyond the safety
that afforded, the inhabitants at Kharaneh IV were able to aggregate in large groups and settle
for longer than ever before in one place.

These new findings support Asouti and Fuller [27] in questioning the idea that Epipaleolithic
plant-use practices emerged as ‘pre-adaptations’ to food production and, importantly, lends sup-
port to earlier works that have questioned the importance of grasses and wild cereal resources in
the development of sedentism [40, 133]. Indeed, the increasingly intensive settlement seen at
Kharaneh IV, based on the phytolith evidence, was not the result of increasing grass and wild
cereal use at all, but rather the result of a typical hunter-gatherer balance, based on the use of
mostly reliable resources supplemented by some risky resources. In providing direct botanical
evidence illustrating this balance, we have also brought to light an under-recognized reliable
plant source, the wetland. For this reason, the use of reliable wetland plant resources at Kharaneh
IV represents an unexpected ‘Neolithization’ pathway. Importantly, this reinforces Savard, Nes-
bitt and Jones’ [40] contention that reliable resources were central to ‘Neolithization’.

While, in hindsight, the lifestyle exhibited at Kharaneh IV may represent an incipient step
towards ‘Neolithization’, ultimately it was a result of the resilient wetland-oriented hunter-
gatherer lifestyle employed by Early and Middle Epipaleolithic peoples. More on-site phytolith
analysis and starch analysis in appropriate contexts (focused on features and ground stone
tools) is currently underway to further refine how wetland and steppe/parkland starchy
resources may have been employed in the diet. These types of analyses should be extended to
later-period sites in the Azraq Basin, as we expect the use of reliable wetland plant resources
continued to be central to the development of Neolithic life ways and perhaps even facilitated
the adoption of cereal cultivation, and eventually agriculture.
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