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Abstract
During motor adaptation the discrepancy between predicted and actually perceived sen-

sory feedback is thought to be minimized, but it can be difficult to measure predictions of

the sensory consequences of actions. Studies attempting to do so have found that self-

directed, unseen hand position is mislocalized in the direction of altered visual feedback.

However, our lab has shown that motor adaptation also leads to changes in perceptual esti-

mates of hand position, even when the target hand is passively displaced. We attribute

these changes to a recalibration of hand proprioception, since in the absence of a volitional

movement, efferent or predictive signals are likely not involved. The goal here is to quantify

the extent to which changes in hand localization reflect a change in the predicted sensory

(visual) consequences or a change in the perceived (proprioceptive) consequences. We

did this by comparing changes in localization produced when the hand movement was self-

generated (‘active localization’) versus robot-generated (‘passive localization’) to the same

locations following visuomotor adaptation to a rotated cursor. In this passive version, there

should be no predicted consequences of these robot-generated hand movements. We

found that although changes in localization were somewhat larger in active localization, the

passive localization task also elicited substantial changes. Our results suggest that the

change in hand localization following visuomotor adaptation may not be based entirely on

updating predicted sensory consequences, but may largely reflect changes in our proprio-

ceptive state estimate.

Introduction

When we initiate a movement, a copy of the motor command (efferent copy) is used to gener-
ate predictions about the motor outcome. Discrepancies between such predictions and the
actual sensory feedbackmight be used to improve future performance [1,2]. This type of error-
basedmotor learning is probably mediated by the cerebellum [3,4]. In order to fully under-
stand this learning process, one would ideally have access to the efference copy involved in pre-
dicting sensory consequences.

Studies by Synofzik et al. [5] and Izawa et al. [6] have attempted to assess changes in pre-
dicted sensory consequences following visuomotor adaptation in both healthy individuals and
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those with cerebellar damage. They had participants make volitional movements with their
unseen right hand to an arc spanning the first quadrant of the workspace. After returning the
right hand to the home position, the participant indicated the location where they believed
their hand crossed the arc either by controlling a cursor [5,7,8,9] or by moving the visible left
hand to this location (“localization task”; [6,10]). They interpreted the observed shifts in locali-
zation following visuomotor adaptation as reflectingmainly updated predictions of visual sen-
sory consequences.

Although visual feedback of the adapted hand was absent during localization in these stud-
ies, proprioceptive information was still available. Our lab has shown that visuomotor adapta-
tion leads to both changes in reaching movements, and changes in proprioceptive estimates of
current hand position.We call this change in felt hand position ‘proprioceptive recalibration’
[11,12,13,14,15,16,17], for a review, see: [18]. Changes in the proprioceptive state estimate
appear to be independent of weights assigned to vision and proprioception [19]. Similar
changes are observed following force-field adaptation [20] and gain modulation [21], or even
when there is no motor component during training but only a discrepancy between visual and
proprioceptive feedback of hand motion [22]. Finally, proprioceptive recalibration also lends
itself to be incorporated in models of motor learning [23,24]. All these studies support the
notion that proprioceptive recalibration is an integral part of visuomotor adaptation. However,
most research on motor learning still places the greater emphasis on the predictive contribution
and either gives perceptual changes minimal consideration or none at all. Hence our goal is to
quantify the extent to which changes in hand localization reflect recalibrated proprioception,
rather than updated predictions of sensory consequences.

To address this question, we replicated the paradigm used by Izawa et al. [6] where partici-
pants make a volitional hand movement with the adapted hand and then indicate the location
where their unseen hand crossed an arc by tapping on a touchscreen (‘active’ localization). In
order to disentangle the predicted from the actually perceived sensory consequences of a move-
ment, we introduce a variation of the task where the robot manipulandummoves the partici-
pants’ hands instead, so that no efferent signals are available for generating a sensory
prediction (‘passive’ localization), leaving only proprioception to generate a state estimate.

We also tested whether perceptual contribution to the changes in hand localizationwould
be stronger if the trained hand remained at the end of the reach during localization (‘online’
localization). Izawa et al. [6] used ‘delayed’ localization (hand returned home) as a way to
avoid this possibility. Thus, we included both an online and delayed version of the active and
passive localization conditions to test this directly. However, our main goal was to determine
the contributions of predicted versus perceived consequences in producing changes in hand
localization followingmotor learning.

Materials and Methods

Participants

Twenty-one healthy, right-handed participants with normal or corrected-to-normal vision
(mean age 24 years, range 18–38, 11 females) voluntarily took part in the experiment. All par-
ticipants provided written, informed consent. Procedures were approved by the York Human
Participants Review Sub-committee and were in accordance with the declaration of Helsinki.

Setup

With their right hand, participants held onto the vertical handle of a two-joint robot manipulan-
dum (Interactive Motion Technologies Inc., Cambridge,MA, USA) such that their thumb rested
on top of the handle. Visual stimuli were projected from a monitor (Samsung 510 N, 72 Hz)
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located 17 cm above the robotic arm. A reflective surface was mounted on a horizontal plane 8.5
cm above the two-joint robotic arm, midway between the manipulandum and the monitor, such
that images displayed on the monitor appeared to lie in the same horizontal plane as that of the
robotic arm (Fig 1A). A touch screenwas mounted underneath the reflective surface, ~3.5 cm
above the position of the thumb. Participants used their left hand–made visible with a small spot
light–to indicate the location of their unseen right-hand, specifically the thumb, that rested on
the handle of the manipulandum. For each task, the home position of the right hand was located
about 20 cm in front of the participants, along the participants’ bodymidline.

Procedure

All subjects completed a set of tasks in a specifiedorder in two sessions performed on separate
days, with the same order of tasks on each day (see Table 1). Each session started with a reach

Fig 1. Setup and experimental design. A: Participants moved their unseen right hand with visual feedback on hand position provided through a mirror

(middle surface) half-way between their hand and the monitor (top surface). A touchscreen located just above the hand was used to collect responses for the

localization tasks and calibration (bottom surface). B: Training task. The target, shown as a yellow disc, is located 10 cm away from the home position at 45˚.

In the rotated training tasks, the cursor (shown here in as a green circle) represents the hand position rotated 30˚ relative to the home position. C: Display of

the no-cursor reach task. Targets are located 10 cm away from the home position at 15˚, 25˚, 35˚, 45˚, 55˚, 65˚, and 75˚, shown by the yellow circles here

(only one was shown on each trial). While reaching to one of these targets, no visual feedback on hand position is provided. D: Localization task. The

participants’ unseen, right hands moved out, and subsequently participants indicated the direction of the hand movement by pointing with their visible left

hand at a location on a an arc on a touch screen.

doi:10.1371/journal.pone.0163556.g001
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training task, followed by several localization tasks, as detailed below. In between the localiza-
tion tasks there were blocks of additional training and no-cursor reaches. The experimentor
first explained all tasks to the participants. Participants were prompted to perform training-
and no-cursor reaches by a brief instruction on the screen. For training the instructionwas
“cursor”, for no-cursor it was “no cursor” and for all localization tasks the experimentor pro-
vided a verbal instruction.

Training

During training there was a single, visual target (a disc with a diameter of 1 cm), 10 cm away at
45° relative to the home position (Fig 1B). Participants were instructed to reach to the target as
quickly and as accurately as possible. The hand was represented by a green, circular cursor, 1
cm in diameter. After placing the hand at the home position for 300 ms, the target appeared.
Visual feedback of the hand position was continuously provided in the form of a cursor during
the outward movement. A reach trial was complete when the center of the hand cursor over-
lapped with the target (i.e. the hand was within 0.5 cm of the target’s centre). Upon completion
of the reach, both the cursor and target vanished and the participants moved their hand back
toward the home position, along a constrained, straight path. That is, if participants tried to
move outside of the path, a resistance force, a stiffness of 2 N/(mm/s) and a viscous damping of
5 N/(mm/s), was generated perpendicular to the path.

Aligned training consisted of 50 trials, with each top-up block containing 10 trials. During
rotated training, visual feedback was gradually rotated around the home position, in clockwise
steps of 0.75° per trial, until reaching 30°, where it remained for all subsequent trials and
blocks. The rotated session began with a block of 90 training trials, and each of the top-up
blocks contained 60 (see Table 1).

Table 1. Block order.

aligned rotated

task № trials

training 50 90

no-cursor reaches - 21

training - 60

active delayed 25 25

no-cursor reaches 21 21

training 10 60

21passive delayed 25 25

training21no-cursor reaches 10 60

active online 25 25

no-cursor reaches 21 21

training 10 60

passive online 25 25

no-cursor reaches 21 21

Blocks were performed from top to bottom, with two extra blocks in the rotated session. Trial numbers during

training are larger in the rotated as compared to the aligned sessions. Passive localization tasks always

follow the active localization tasks, since the robot moved the hand to the same arc-location in the passive

condition as that produced by the participant in the active version. Before every localization task, training

was reinforced, to minimize any decay in learning.

doi:10.1371/journal.pone.0163556.t001
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No-cursor reaches. Reach aftereffects were measured by having participants reach to tar-
gets in the absence of visual feedback. There were four blocks of no-cursor reaches in the
aligned session and five in the rotated session, with the additional block being completed
immediately after the initial reach training block. In each no-cursor block, participants reached
to each of 7 targets: 15°, 25°, 35°, 45°, 55°, 65°, and 75° three times each, in random order, for a
total of 21 reaches (Fig 1C). After the hand had moved out and been held in the same position
for 500 ms, the target disappeared indicating that the trial was over. Participants then returned
their hand to the home position along a constrained pathway, as in training.

Localization. In the localization tasks (Fig 1D), participants’ right hands moved out from
the home position in a direction roughly between 0° and 90° up to an arc, 10 cm away from the
home position. The right hand was then stopped by the robot, so that all reaches ended at 10
cm distance from the home position. Participants could see their left hand during the localiza-
tion task, and used it to indicate, on the touch screenmounted above the manipulandum, the
location where the movement of their unseen right hand had ended beneath the arc (cf. Izawa
et al., 2012 [6]; participants were to point with the left hand to “where they believed their right
hand crossed the circle”). In between localizations, the left hand was removed from the work-
space and rested left of the touch screen. Crucially, there were four variations of this task. First,
participants couldmove their own hand or the robot could move their hand to such a position.
These are called the ‘active’ (spontaneous, self-initiatedmovement) and ‘passive’ (robot-gener-
ated movement) localization tasks. In the ‘passive’ localization tasks, the robot-generated
movements were to the same endpoint angles that were recorded in the preceding ‘active’ task,
but in a shuffled order. Second, either the participants could localize where the movement
intersected with the arc around the home position while their hand was still at the endpoint of
the movement (‘online’ localization) or after the hand had returned to the home position
(‘delayed’ localization). Active and passive localizationwere each combined with online and
delayed localization, yielding four different localization tasks. The active versions were per-
formed first since the same movements were used to control the robot in the respective passive
tasks. Each of these four localization tasks was done once after training with aligned visual feed-
back and once after training with rotated visual feedback.

Analyses

Training reaches and no-cursor reaches were manually inspected for obvious movement
errors, i.e. failure to perform the reach trial. Reach paths that could not be used for analyses
were removed. Of the training trials, 4.7% were removed in aligned and 2.2% in rotated, for
the no-cursor reaches, 7.7% of aligned and 0.5% of rotated reaches were removed. Of those
retained, the endpoint angle was used for further analyses of the no-cursor-reaches, and the
angle at the point of maximum velocity was inspected for the training reaches. For these points,
the signed, angular difference between the actual hand position and the target was calculated.
Aftereffects were calculated by subtracting the average angular differences between responses
after aligned training from those after rotated training, within each combination of participant,
task and target.

Before further processing, generic biases in localizationwere accounted for. For each partici-
pant, angular localization errors across the workspace and for all four aligned localization tasks
(minus outliers defined as beyond ±3 standard deviations from the mean) were used to fit a
second-degreepolynomial. The remaining errors were fit with linear regression for online and
delayed responses separately. The localization errors predicted by this simple model given a
localization response, were subtracted from touch screen response angles in both the aligned
and rotated localization tasks. The data in each localization task was then binned according to
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the angle of the endpoint of the unseen hand movement relative to the home position. Bins
were 10° wide and centred on the 7 targets used in the no-cursor reach task (15°, 25°, 35°, 45°,
55°, 65°, and 75°). Within each bin the average deviation of the localization of the right hand
with the touch screen from the actual endpoint of the hand was calculated in degrees. This was
done separately within each participant, for each of the eight localization tasks; aligned vs.
rotated training, active vs. passive and delayed vs. online. Some participants did not make any
reaches in some bins, though this is mostly restricted to the 15° and 25° bin. Similarly to the
no-cursor reaches, we subtracted the localization angles after aligned training from those after
rotated training, to obtain an estimate of the effect of training on localization of the hand.

Data analysis. For all ANOVAs we used a linear mixed effectmodel, (instead of a general
linear model) as it is robust against empty cells, which occur in the localization data. Most of
these models included participant (1–21) and either target (for reach aftereffects) or bin (for
localization; 15°, 25°, 35°, 45°, 55°, 65°, and 75°) as random effects. There were two exceptions:
the ANOVAs testing aftereffects as well as the localization changes across the workspace
included target and bin, respectively, as a fixed effect. For both the no-cursor reach endpoint
angles as well as the localization angles, we first tested if there was an effect of training on these
angles to beginwith, by comparing the responses after aligned training with those after rotated
training. For further analyses we subtract the responses after aligned training from those after
rotated training as a measure of training-induced change and compare the different conditions
on this measure.

To test whether training with a rotated cursor led to changes in no-cursor reaches (i.e. if
there were reach aftereffects), we ran a two-way ANOVA using a linear mixed effectsmodel on
the angular deviation of the reach endpoint from target across all iterations of the no-cursor
reach tasks with training (aligned or rotated) and target as fixed effect. To see if reach afteref-
fects measured after localization changed over time in the rotated session, we took the angular
deviations in each iteration of the no-cursor block, and subtracted from this the average angu-
lar deviation across all blocks in the rotated session, separately for each participant and target.
This way, we obtained an estimate of the training-induced change on no-cursor reach endpoint
angle for the five iterations of no-cursor reach blocks in the rotated session.We then did an
ANOVA on a linear mixed effectmodel of the shift in the angular bias, using iteration (1–5)
and target as fixed effects. Furthermore, we inspected decay of reach aftereffects by first calcu-
lating the average response for each trial number within a block on the central three targets
(35°, 45° and 55°). We then bootstrapped the 95% confidence interval across participants on
the average effect on the central three targets with 100,000 iterations in the 4 blocks of no-cur-
sor reaches following a localization task in the rotated session.We then compared this with the
decay of the effect in the no-cursor reach block immediately following training.

To see if rotated-cursor training had any effect in any of the four localization tasks, we ran a
one-way ANOVA on the average difference between the hand angle and the localized angle in
every bin, for each of the tasks separately, with the fixed effect training (aligned or rotated). To
test if delayed or online localization either combined with active or passive movements
responded differently to training, we ran a three-way ANOVA on a model with training,
moment of localization and movement type as fixed effects. Finally, to see if the effects of move-
ment type and moment of localization on localizationwere different across the workspace, we
ran a three-way ANOVA on the difference between localization responses after rotated and
after aligned training (i.e., the training-induced shift in localization), with bin, movement type
and moment of localization as fixed effects.

So far, we assumed that the effects of training on proprioception and predicted sensory con-
sequences were added in the active conditions. However, if proprioception and predicted sen-
sory consequences were integrated in a Bayesian manner, then the contribution of
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proprioception to the overall state estimate depended on it’s accuracy relative to the accuracy
of predicted sensory consequences. This accuracy can be expressed as the inverse of the vari-
ance [25], and such an approach has been used to model the integration of proprioception with
actual visual consequences [26, 27, 28]. If efference-basedpredictions of hand location were
much more accurate than proprioception-based localization and the two signals were inte-
grated in a Bayesian manner, then the variance in the active localization conditions should be
lower than the variance in the passive localization conditions for all participants.We tested this
possibility using a binomial exact test on all data, as well as separately for all four combinations
of online and delayed localization on the one hand and aligned and rotated training on the
other hand. We also tested if the same participants show this hallmark of Bayesian integration
in the aligned and rotated subsets separately for the delayed as well as the online localization
using two Fisher exact tests.

Data preprocessing was implemented in Python 2.7 (using numpy, scipy, pandas and vari-
ous other modules) and statistical analysis in R 3.0.2 [29] (using nlme and other packages).

Results

We set out to quantify to what extent people rely on predictions of sensory consequences or on
proprioception when they locate where their unseen hand moved. Our participants did several
localization tasks as well as no-cursor reaches after training with both aligned and rotated
visual feedback.

Reach Aftereffects

As can be seen in Fig 2A, participants adjust their reach directions (shown in purple) when
faced with a gradually introduced visuomotor rotation, suggesting that they adapt to the
visuomotor rotation. This also leads to significant changes in no-cursor reaches, as illustrated
by the “generalization” curves in Fig 2B (main effect of training (F(1,260) = 24.17, p< .001).
Although the size of the aftereffects appears to decrease for novel directions further from
the trained direction, the effect of training does not significantly interact with target direction
(F(6,260) = 2.020, p = .063). So although aftereffects appear strongest around the trained direc-
tion (45°), generalization is broad enough to elicit aftereffects across most of the 0°–90°
workspace.

Additionally, we wanted to test if reach aftereffects changed over the course of the rotated
session, as this may impact the results in the localization tasks. This was not the case: there
is no effect of iteration (F(4,680) = 1.68, p = .153), nor any interaction of target and iteration
(F(24,680) = 0.609, p = .930). Therefore, the pattern and magnitude of visuomotor adaptation
is comparable for all localization tasks. To see if there was any decay of effects within the no-
cursor reach blocks, we averaged the effects for the central three targets, for each trial and par-
ticipant, across the four no-cursor reach blocks that followed a localization task (Fig 2C, right)
as well as the one that immediately followed training (Fig 2C, left).When the no-cursor reaches
succeeded a localization task, participants apparently needed to re-acquaint themselves with
the task in the first few trials and then proceeded to produce constant responses. In the no-cur-
sor reach block that immediately followed training, the effect is larger at first but stayed within
the 95% confidence interval after 8 trials (about one third of the block). Hence, decay seems to
play only a minor role in our data.

Localization

As can be seen in Fig 3A–3E, adapting to a visuomotor rotation leads to a change in hand local-
ization for each of the four localization tasks, as verified by four one-way ANOVAs that show
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an effect of rotated versus aligned training (all p< .0001). This main effect of training persists
when we run a three-way ANOVA also including movement type and moment of localization

Fig 2. Time course, and reaching results, of the experiment. A, top: task/block order. Each session started with a longer training block. The four

localization tasks were performed after a block of training and before a no-cursor reach block. The order was similar for the aligned and rotated sessions, but

the rotated sessions had an extra no-cursor reach block and training block after the initial training block. A, bottom: Hand movement direction while

reaching during the rotated session. The average angle at the point of peak velocity over trials (purple area in the training blocks denotes the average across

participants ± SEM) shows that participants adapted their reaching movements to rotated visual feedback in step with the gradually introduced rotation of

visual feedback. Reach aftereffects are shown in the no-cursor reach blocks. The curves go from the target at 15˚ (at the left side of the curve) to the target at

75˚ in order, and the circles denote the aftereffects at the 45˚ target, the only target used during training. B: Generalization of reach aftereffects. The

difference between the average reach endpoint angles in each of the no-cursor blocks done after rotated training, corrected for the average reach endpoint

angles across all the no-cursor blocks done after aligned training. Gray areas represent the standard error of the mean. Note that the effect is strongest at

the trained target, and decreased for targets further away. Also, the reach aftereffects measured immediately after training are slightly larger than those in

the other blocks. C: Time course of reach aftereffects. Left: On the very first trial following training, reach aftereffects are about twice as large as at the end of

that block. Right: Except for some initial errors, the reach aftereffects measured on the central three targets seems stable in the no-cursor reach blocks

following localization. Gray areas indicate standard error of the mean, dashed lines indicate the 95% confidence interval for responses in the blocks after

localization.

doi:10.1371/journal.pone.0163556.g002
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as fixed effects (F(1,943) = 272.25, p< .0001). The effect of training varies with movement type
(F(1,943) = 5.87, p = .016) and with moment of localization (F(1,943) = 7.08, p = .008), but
there is no interaction betweenmovement type and moment of localization (F(1,943) = 1.14,
p = .285) and no three-way interaction (F(1,943) = 1.38, p = .240). Specifically, changes in
active localization (online: 5.8°; delayed: 8.2°) are close to 30% larger than those in passive

Fig 3. Localization results. The change in the touchscreen responses in the four variations of the localization task, using 10˚ bins centered on the reach

targets (circles) in the no-cursor reach block. Active localization is shown in purple, passive localization in gray. The eye-icons illustrate the direction of the

target during training, and the hand icons illustrate the direction of movements required to hit the target with 30˚ rotated visual feedback. A,C: Delayed

localization, B,D: Online localization. A,B: The beginning and end of the arrows show the average deviation from the true reach angle in that bin before and

after visuomotor adaptation, respectively. The open arrow illustrates the visuomotor rotation. E: The average change in the direction of hand localization

across bins and participants.

doi:10.1371/journal.pone.0163556.g003
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localization (online: 4.8°; delayed: 5.8°), as illustrated in Fig 3E. This pattern of results suggests
that changes in indicating unseen hand location following visuomotor adaptation likely reflects
mostly plasticity in the proprioceptive estimates (over 75%) rather than updated predictions of
hand position.While changes in perceived hand position are likely responsible for most of the
change in indicating hand direction, we find no evidence for a larger contribution of proprio-
ceptive recalibration to localizationwhen the hand remains at the reach endpoint as compared
to when it moved back to the home position first (see also Fig 3E).

The differently sized effects across the workspace as seen in Fig 3C and Fig 3D suggest differ-
ent generalization patterns for online and delayed localization.When we test the difference
between localization following rotated and aligned training, and include bin as a fixed effect
along with movement type and moment of localization, we find that bin interacts with moment of
localization (F(6,473) = 2.91, p = .009). As might be expected, there is a main effect of movement
type (F(1,473) = 11.36, p = .0008) and of moment of localization (F(1,473) = 9.50, p = .002), but
there’s no main effect of bin (F(6,473) = 1.59, p = .149) and no other effects (all p>.335). Hence,
the shape of the pattern of change across the workspace is different between online and delayed
localization, but this pattern is not different for active and passive movements.

To see if Bayesian integration of perceived and predicted hand positionmakes more sense
than a simple addition of the shifts, we compare the variance of the errors in active and passive
localization in all four conditions, using all reaches where the actual hand was between 10° and
80°. If efference-basedpredictions are integrated with proprioceptive feedback, there should be a
lower variance in the active conditions as compared to the passive conditions. Across every par-
ticipant, for aligned/online, rotated/online, aligned/delayed and rotated/delayed this is the case
for 47 out of 84 datasets, which is not different from chance according to a binomial exact test
(p = .326). If we test whether the number of participants with lower error variance in active,
as compared to passive movements deviates from chance (50%) in online/aligned (12/21, p =
.6636), online/rotated (12/21, p = .6636), delayed/aligned (10/21, p = 1.) and delayed/rotated
(13/21, p = .3833; no correction for multiple comparisons) this doesn’t change. It may still be the
case that a subset of participants is able to use Bayesian integration, whereas others are not. We
test this with two Fisher exact tests. These are performedon a contingency table that counts how
many participants have a lower variance in the active localization as compared to passive localiza-
tion in rotated localization only, delayed localization only, both or neither. For both the online
datasets (odds ratio: 0.517, p = .661) as well as the delayed datasets (odds ratio: 0.863, p = 1.) this
is not the case. These results imply that the variance in active and passive conditions are about
equal and that their relative amplitude doesn’t vary systematically with participant or with condi-
tion.While these results seem to contradict a Bayesian integration of proprioception with effer-
ence-basedpredictions, we can’t exclude the possibility. However, if the two cues are integrated
in a Bayesian fashion, the absence of a detectable decrease in variance in our dataset suggests that
the variance of efference-basedpredictions of sensory consequences is at least as large as the vari-
ance of proprioception. Thus, the weight of proprioception in the integrated signals should be as
large as or larger than the weight of efference-basedpredictions in the integrated state estimate.
Regardless of whether proprioceptive signals and predictions are integrated in a Bayesian manner
to arrive at an estimate of hand position or whether they are simply added, the data show that the
role of proprioception in visuomotor rotation adaptation is clearly non-neglible.

Discussion

The aim of this study is to quantify to what extent the changes in hand localization following
visuomotor adaptation may actually depend on (recalibrated) proprioception, rather than pre-
dicted sensory consequences. To this end, we replicate a task intended to measure changes in
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predicted sensory consequences [6,10], that is similar to a task used in other studies [5,7,8,9].
In brief, before and after adapting reaches to a visuomotor rotation, participants indicate the
location of their unseen right hand–with their visible, non-adapted, left hand–when a right-
hand movement is planned and executed by the participant themselves (i.e. with predicted sen-
sory consequences) or when the right hand is moved by the robot toward the same location (in
the absence of predicted sensory consequences).We find that changes in localization following
passive movements are significant, and amount to over two-thirds of those in active move-
ments. Given that the variance in localization response errors doesn’t decrease with the avail-
ability of an additional source of information in the active localization tasks, alternative
explanations relying on a Bayesian integration account of the data seem unlikely. In other
words, the changes in localization followingmotor learning are substantially influenced by a
change in perceived hand position. Thus, while motor learning does likely lead to updating of
forwardmodels, our results illustrate the inherent difficulty in disentangling changes in pre-
dicted sensory consequences from changes in proprioceptive state estimates.

We also test the assumption that online localizationwould be more strongly influenced by
proprioception as the hand is still at the target site (online), which is not the case when it is
removed from the reach endpoint prior to localization (delayed) as was done by Izawa et al. [6]
and Synofzik et al. [5]. However, while the pattern of generalization was different for online
and delayed localization, we found that the moment of localization is not as relevant as previ-
ously thought for the overall amplitude of the effect. This is consistent with our previous find-
ings that a short delay before localizing the position of a robot guided hand only leads to a
decrease in precision, but not in accuracy [30]. Furthermore, the magnitude of proprioceptive
recalibration is not modulated by the precision of proprioception, such as in older compared to
younger adults [12]. Similarly, Block and Bastian [19] found no relationship betweenweights
assigned to vision and proprioception and the resulting changes in hand proprioception fol-
lowing visuomotor adaptation. Given that the current results suggest that visuomotor adapta-
tion affects both the perceived as well as the predicted estimates of hand motion, it may be that
removing the target-hand from the final position (where current proprioceptive information
would be available) may simply not provide any immunity to the effect that visuomotor adap-
tation seems to have on perceived estimates of hand position.

Predicted and perceived hand location

Our findings suggest that people–perhaps unintentionally–use the perception of their com-
pleted movement when reporting the planned movement, as has been suggested earlier [5,6],
although without accounting for it. Proprioception is still available in the localization task, and
we have shown that proprioceptive estimates of hand position are recalibrated during visuomo-
tor adaptation under various conditions [11,13,14,15,16,17,22,31,32,33]. Proprioceptive recali-
bration has also been demonstrated in force-field adaptation [20] and in gain modulation [21].
The use of robot-guidedmovements in our experiments is meant to avoid the efferent signals
that could lead to the predictive component that Izawa et al. [6] and Synofzik et al. [5] were try-
ing to capture in their related studies. Cameron et al., [20] have used EMG recordings to show
this to be an effectivemethod to prevent participants from generating goal-directedmove-
ments, and hence efferent signals necessary for prediction. Here we use both active movements
to assess changes in predicted sensory consequences, as well as passive movements to isolate
the purely perceptual component of “predictive” responses. As far as we know, one previous
study has found comparable results, albeit using a one-dimensionalmovement and gain modu-
lation of visual feedback [21]. The contribution of proprioceptive recalibration they find
(between¼ and ⅓) is smaller than what we find here, but nevertheless far from negligible.
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Interestingly, this study also investigates passive “exposure” training [22,33,34]. Hand move-
ments in exposure training generate the same visual feedback relative to the actual hand posi-
tion as in regular training, so that discrepancies between vision and proprioception are
preserved.However, since the robot moves the hand such that the cursor reaches the target
without error, expected sensory consequences can’t be updated in exposure training. The
results with exposure training confirm their findings with ‘regular’ training, as well as earlier
findings from our lab. That is, in both the active and passive exposure session, they find train-
ing induced changes on all dependent variables. There are no appreciable differences between
the changes in variables assessing proprioception alone, depending on the type of training. On
the other hand, 24% of the adaptation score for active perception trials and 35% of the adapta-
tion score for active target trials can be explained by proprioceptive recalibration. However,
despite the thorough work by Cameron et al. [21], vision-only models and explanations of
motor learning remain dominant.

Both papers we based our experiment on [5,6] explicitly state their conclusions in terms of
predicted visual consequences only. There are some differences between those paradigms and
ours, such as the type of reaching movement, of which it is known they make no difference [3].
The absence of training targets in one paradigm [5] could differentiate it frommotor learning
tasks, but the same target-less task is still explicitly used as a motor learning paradigm else-
where [9]. Despite the differences, we find very similar patterns of results in our active condi-
tion, marking all three studies as highly comparable, visuomotor rotation paradigms. Hence,
the results in our passive condition should highlight the relevance of proprioceptive recalibra-
tion to studies on motor learning. One might even wonder if there is a proprioceptive compo-
nent in the changes in predicted sensory consequences due to motor learning. To what extent
changes in predicted proprioceptive consequences play a role in the forwardmodel is largely
unknown. Yet, most recent studies on motor learning seem to implicitly assume that vision is
the only relevant modality. In contrast, our results here clearly indicate that the contribution of
proprioceptive recalibration to changed state estimates after visuomotor rotation adaptation
are non-negligible and distinct from both the contributions of vision or efference-basedpredic-
tions of sensory consequences to motor learning.

The role of the cerebellum

A combination of changes in perceptual and prediction-based contributions to estimates of
hand position can explain the reduced, yet still significantmislocalization of hand position fol-
lowing visuomotor adaptation in cerebellar patients in the studies by Synofzik et al. [5] and
Izawa et al. [6]. The localization shifts for patients in those studies were about half of those for
healthy controls, but were still significant.When we substitute the usual visuomotor rotation
training with mere exposure to a discrepancy between visual and proprioceptive feedback
on hand position, the resulting proprioceptive recalibration is comparable [21,22,33,34].
This process seems to be intact in cerebellar patients [34,35]. Hence the remaining changes in
localization found by Synofzik et al. [5] and Izawa et al. [5] may reflect normal proprioceptive
recalibration (occurringoutside the cerebellum, perhaps in the posterior parietal cortex, e.g.,
Shadmehr et al. [4]). The reduction in the shift, however, may reflect the loss of the predictive
contribution to estimating hand position, or perhaps even deficits in combining predictive and
perceived contributions. This difficulty in distinguishing between these two possibilities also
arises in studies investigating the role of cerebellummore specifically on state estimation
[36,37]. Interestingly, Synofzik et al. [5] found no visuomotor learning (i.e., reach aftereffects)
in their patient group, whereas Izawa et al. [6] did, but both studies still found comparable
effects in their respective versions of the localization task. This can be explained if the
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mechanism for proprioceptive recalibration is distinct from the mechanism for visuomotor
learning [34,35] and both contribute separately to the measurements in localization.

Conclusion

We found that changes in limb localization following visuomotor adaptation are not mostly
due to updated predictions of sensory consequences, but also substantially reflect changes in
sensory-basedstate estimates. These results are consistent with our theory that recognizes that
sensory plasticity likely plays a much larger role in motor learning than usually assumed.
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