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Abstract
Both familial and sporadic porphyria cutanea tarda (PCT) are iron dependent diseases.

Symptoms of PCT resolve when iron stores are depleted by phlebotomy, and a sequence

variant of HFE (C282Y, c.843G>A, rs1800562) that enhances iron aborption by reducing

hepcidin expression is a risk factor for PCT. Recently, a polymorphic variant (D519G,

c.1556A>G, rs11558492) of glyceronephosphate O-acyltransferase (GNPAT) was shown

to be enriched in male patients with type I hereditary hemochromatosis (HFE C282Y homo-

zygotes) who presented with a high iron phenotype, suggesting that GNPAT D519G, like

HFE C282Y, is a modifier of iron homeostasis that favors iron absorption. To challenge this

hypothesis, we investigated the frequency of GNPAT D519G in patients with both familial

and sporadic PCT. Patients were screened for GNPAT D519G and allelic variants of HFE

(both C282Y and H63D). Nucleotide sequencing of uroporphyrinogen decarboxylase

(URO-D) identified mutant alleles. Patients with low erythrocyte URO-D activity or a damag-

ing URO-D variant were classified as familial PCT (fPCT) and those with wild-type URO-D

were classified as sporadic PCT (sPCT). GNPAT D519G was significantly enriched in the

fPCT patient population (p = 0.0014) but not in the sPCT population (p = 0.4477). Both HFE

C282Y and H63D (c.187C>G, rs1799945) were enriched in both PCT patient populations

(p<0.0001) but showed no greater association with fPCT than with sPCT. Conclusion:

GNPAT D519G is a risk factor for fPCT, but not for sPCT.
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Introduction

The cutaneous photosensitivity of PCT results from abnormally low hepatic URO-D activity.
[1] Viewed stepwise, URO-D is the fifth of eight enzymes that participate in the heme biosyn-
thetic pathway, and its function is to catalyze the conversion of uroporphyrinogen III to copro-
porphyrinogen III by the sequential removal from the tetrapyrrole of four carboxyl groups.
The block in hepatic metabolism caused by URO-D deficiency leads to accumulation within
the liver of byproducts of heme synthesis (porphyrins) that subsequently enter the plasma. Por-
phyrins are photosensitive molecules that upon exposure to certain wavelengths of light, pres-
ent in sunlight, release energy through photon emission and formation of reactive oxygen
species that can damage tissues.[2] Consequently, the clinical manifestations of PCT (skin fra-
gility and painful blisters) affect sun-exposed areas.[1]
Among the porphyrias, PCT is unique because the majority of cases are not the result of

inheritedmutations of the defective enzyme. Rather PCT is primarily an acquired disease that
arises as a consequence of formation of an inhibitor of URO-D (sPCT). Further, in cases in
which there is a heterozygous mutation of URO-D (fPCT), the disease phenotype is observed
only if the functional activity of the wild-type enzyme is inhibited. (In the homozygous or com-
pound heterozygous state, mutant URO-D causes hepatoerythropoieticporphyria, a rare, clini-
cally severe, congenital, cutaneous porphyria.)We have identified a porphomethene as the
inhibitor of URO-D, and formation of the inhibitor is an iron dependent process.[3] Although,
other unidentified physiologically relevant URO-D inhibitors may exist. Other factors includ-
ing hepatitis C (HCV) infection, excess alcohol consumption, and therapeutic estrogens, in
women,[4] increase the risk of developing PCT, but the importance of iron in the pathophysi-
ology of the disease is underscored by the observation that symptoms resolve and plasma por-
phyrin levels return to normal when iron stores are depleted by therapeutic phlebotomy.[5, 6]
Thus PCT is an iron-dependent disease and genetic variations ofHFE (C282Y and H63D) that
increase iron absorption by reducing expression of hepcidin are risk factors for developing
PCT.[7–9]
A recent study by McLaren et al. identified a sequence variant, D519G (rs11558492), of

GNPAT that was associated with a high iron phenotype at presentation in men with hereditary
hemochromatosis who were homozygous forHFE C282Y.[10] Further investigations suggested
that GNPAT, like HFE, participates in the regulation of hepcidin expression.[10] These obser-
vations led us to the hypothesis that, analogous toHFE C282Y and H63D, GNPAT D519G is a
risk factor for PCT. The studies reported herein support this hypothesis and substantiate the
concept of GNPAT D519D as genetic modifier of diseases of iron metabolism.

Materials and Methods

Patient samples were contributed by investigators participating in the Porphyria Consortium
of the Rare Diseases Clinical Research Network (www.rarediseasesnetwork.org/porphyrias).
All enrolled patients had clinical and biochemical evidence of PCT including typical skin
lesions and elevated concentrations of urine uroporphyrin. Following informed consent, DNA
samples were prepared from peripheral blood of patients according to the guidelines of a proto-
col approved by the Institutional ReviewBoard (IRB) of the University of Utah School of Medi-
cine and Mt. Sinai School of Medicine. All participants were provided with a copy of the IRB
approved Informed Consent Document explaining the research study and only subjects pro-
viding written consent were studied further. All research was conducted under principles of the
Declaration of Helsinki. Information on risk factors was obtained either from the results of a
questionnaire completed by PCT patients enrolled in the Porphyria Consortium sponsored
longitudinal study of the natural history of the porphyrias or by reviewing the medical record
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of patients enrolled in a University of Utah sponsored Longitudinal Study of the Porphyrias,
7201.

HFE sequence variants C282Y (c.845G>A) and H63D (c.187C>G) were identified using
high resolution DNA melting analysis.[11, 12] PCR cycling was performed using a Realplex2

(Eppendorf),melting analysis was performed on a LightScanner (Idaho Technologies, Salt
Lake City, UT), and melting curveswere analyzed by using uAnalyze.[13] Buffer for PCR
amplifications used 5X-PCRMaster Mix consisting of 250 mmol/L Tris (pH 8.3), 2500 μg/mL
bovine serum albumin, 15 mmol/LMgCl2, 250 nmol/L of each deoxynucleotide triphosphate,
2.0 units KlenTaq polymerase (AB Peptides, St. Louis, MO), 440 ngTaqStart antibody (Clon-
tech, Mountain View, CA), 0.5x LCGreen Plus (Idaho Technologies, Salt Lake City, UT).
Conditions for PCR of HFE were 94° C, 15 seconds, one cycle; denaturation at 94° C for five
seconds, annealing at 60° C for five seconds, extension at 72° C for five seconds, 40 cycles.
Melting conditions for identification of SNP’s was performed on completion of the PCR ampli-
fication by melting the product using the following conditions; 45° C 15 seconds followed by
45° C to 90° C at a rate of 1° C/minute. PCR primers for HFE H63D: Forward (CTTGTTTGA
AGCTTTGGGCTAC,(0.1 μM final)), reverse (GAAACCCATGGAGTTCGGG (0.5 μM final)),
with a melting probe of (GTTCGTGTTCTATGATGATGAGAGTCA� PO32− (0.4 μM final)).
PCR primers for HFE C282Y forward (TGGGGAAGAGCAGAGATATAC (0.5 μM final)), re-
verse (TGGGTGCTCCACCTG (0.5 μM final)). The variant associatedwith the C282Y is detected
without the need for a melting analysis probe.

GNPAT D519G (c.1556A>G) was identified using a validated TaqMan SNP assay (assay
number C__25761550_10).[14] Nucleotide sequencing of URO-D included all exons, all
intron-exon boundaries, and the 5’ non-coding region was performed in a CLIA certified lab at
Mt. Sinai Medical Center as part of the Porpyhria Consortium’s longitudinal natural history
study of the porphyrias.[15] A variant call file (VCF) was generated using the NHLBI Exome
Sequencing Project exome variant server and appended to include rare clinical variants.[16]
The VCF file was annotated using ANNOVAR.[17] Patients were classified as having fPCT if
they were found to have low erythrocyteURO-D activity, a mutation in theURO-D gene pre-
dicted to be deletorious by FATHMM, or both.[18]

Statistical Analysis

Demographic and risk factor data are displayed as mean (± standard deviation) for continuous
variables and as proportions for categorical variables. Enrichment of specific genotypes was
assesed by comparing the observed sample allele frequency to the frequency of the European
(non-Finnish) Exome Aggregation Consortium (EXAC), a database composed of an aggrega-
tion of more than 60,000 exomes, using chi-square goodness of fit tests.[19] Allele frequency
information from the EXAC database for the sub-population (non-Finnish) Europeans was
used for statistical comparision as it most closly matches the demographic makeup of the study
population. Associations of GNPAT, HFE C282Y and H63D genotypes with PCT type (spo-
radic/familial)were assessed using Chi-square and Fisher’s exact tests as appropriate. All analy-
ses were conducted using SAS version 9.4 (SAS, Cary, NC).

Results

Two hundred and forty patients met criteria for inclusion in the study. Of these, 153 (64%) had
sPCT and 87 (36%) had fPCT (Table 1). The PCT population in this study is composed pri-
marily of European Caucasians (94.6%) and consists of slightly more males (53.8%) than
females (46.2%). (Table 1) The average age of diagnosis was 53.4 (±10.6). Excess ethanol con-
sumption was significanlty associatated with cases of sPCT (83.7%) compared to fPCT (52.3%)
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(p<0.0001) as was HCV infection status [sPCT (63.3%) compared to fPCT (16.2%)
(p<0.0001)]. (Table 1).

HFE sequence variants (C282Y and H63D) were significantly enriched among patients with
both sPCT and fPCT (Table 2). Compared to the European (non-Finnish) EXAC population,
GNPAT D519G was significantly enriched in patients with fPCT (p = 0.0014) but not in
patients with sPCT (p = 0.4477) (Table 2) Within the two PCT populations, GNPAT D519G
was significantlymore frequent in fPCT (29.3%) compared to sPCT (18.0%) (p = 0.004). This
enrichment in fPCT compared to sPCT was not observed for either HFE variant.

Discussion

PCT is an iron dependent disease, and a genetic variant of HFE (C282Y) that enhances iron
absorption and recycling by reducing hepcidin expression is a risk factor for PCT. The purpose
of these studies was to investigate the hypothesis that GNPAT D519G is a risk factor for PCT.
This hypothesis was based on observations by others that this polymorphism of GNPAT is
enriched in male patients with type I hereditary hemochromatosis (HFE C282Y homozygotes)
who present with a high iron phenotype, suggesting that like HFE, GNPAT is involved in regu-
lation iron homeostasis. Our studies have shown that GNPAT D519G is enriched in patients

Table 1. Patient Demographics and Risk Factors for PCT.

All PCT (n = 240) Familial PCT (n = 87) Sporadic PCT (n = 153)

mean ± sd (no. observed) mean ± sd (no. observed) mean ± sd (no. observed)

Age at screening 53.4 ±10.6 (89) 50.4 ± 14.3 (25) 54.6 ± 8.6 (64)

n/ no. observed (%) n/ no. observed (%) n/ no. observed (%)

Race/Ethnicity

Caucasian 175/185 (94.6) 53/60 (88.3) 122/125 (97.6)

Native American 1/185 (0.5) 0 1/125 (0.8)

African American 2/185 (1.1) 1/60 (1.7) 1/125 (0.8)

Asian 2/185 (1.1) 2/60 (3.3) 0

Hispanic 5/185 (2.7) 4/60 (6.7) 1/125 (0.8)

Male 129/240 (53.8) 37/87 (42.5) 92/153 (60.1)

Excess Alcohol Consumption Prior to PCT Diagnosisa 117/161 (72.7) 30/57 (52.6) 87/104 (83.7)

HCV Positive 73/148 (49.3) 9/47 (19.1) 64/101 (63.4)

a Ethanol consumption in excess of 20g per day

doi:10.1371/journal.pone.0163322.t001

Table 2. Allele Frequency of GNPAT D519G, HFE C282Y, and HFE H63D.

Genoptype HOM n (%) HET n (%) WT n (%) Total n Patient Frequency Control Pop. Frequencya P-value

Familial PCT

GNPAT D519G 7 (8.1) 37 (42.5) 43 (49.4) 87 29.3 19.7 p = 0.0014

HFE H63D 2 (2.3) 33 (37.9) 52 (59.8) 87 21.3 13.7 p = 0.0037

HFE C282Y 3 (3.5) 21 (24.1) 63 (72.4) 87 15.5 5.1 p<0.0001

Sporadic PCT

GNPAT D519G 0 (0) 55 (35.9) 98(64.1) 153 18.0 19.7 p = 0.4477

HFE H63D 11 (7.2) 48 (31.4) 94 (61.4) 153 22.9 13.7 p<0.0001

HFE C282Y 17 (11.1) 31 (20.3) 105 (68.6) 153 21.2 5.1 p<0.0001

aEuropean (Non-Finnish) population frequency in Exome Aggregation Consortium database[19]

doi:10.1371/journal.pone.0163322.t002
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with fPCT but not in sPCT. The basis of this difference is speculative but may be due to the rel-
ative potency of GNPAT D519G as an enhancer of iron absoption and recycling. Uroporphyri-
nogen III is the natural substrate of URO-D, however, when uroporphyrinogen III undergoes
iron-dependent oxidation to uroporphomethene, it functions as a competitive inhibitor of the
enzyme.[3] Given the relative abundance of hepatic iron, some formation of uroporpho-
methene likely occurs under normal physiological conditions, but the amount of inhibitor
formed is insufficient to limit enzyme activity such that pathophysiologic levels of hepatic
heme precursors accumulate. In cases of fPCT, however, where URO-D activity is abnormally
low due to heterozygous mutation, evenmodest increases in hepatic iron concentration could
result in inhibitor formation sufficient to produce clinical symptoms of PCT. Thus, a relatively
weakmodifier of iron metabolism, such as GNPAT D519G, would increase the probability of
developing symptomatic PCT in individuals with fPCT (Table 2). On the other hand, relatively
strong modifiers of iron metabolism such as HFE C282Y and H63D are more likely to generate
the conditions necessary to produce symptomatic sPCT. (Table 2) The finding of a significantly
greater frequency of excess alcohol consumption and HCV infection among patients with
sPCT compared to those with fPCT (Table 1) supports the hypothesis that induction of the
clinical phenotype in patients with sPCT requires a greater accumulation of disease-associated
risk factors. In this case, excess alcohol consumption and HCV infection appears to enhance
formation of the URO-D inhibitor by mediating oxidative liver injury.
The correlative relationship betweenHFE C282Y genotype and PCT in the current study

supports our previous observations[7] and those of others[20] however, conflicting data sur-
round the relationship betweenHFEH63D and PCT risk.[21] In a study involving fewer
patients, we observeda non-significant trend toward enrichment of HFEH63D among patients
with fPCT.[7] In that study, the frequency of HFE H63D was set at 15.9% (vs. 13.7% in the cur-
rent study, Table 1). Some investigators have observed a higher frequency of HFE H63D
among patients with PCT while others have not.[20, 22, 23] Those outcomes appear to be influ-
enced by frequency estimates used for the control population. For example a study from France
used a frequency of HFE H63D in the general population of 12.9% while a study from Brazil
used a frequency of 31.1%.[22, 24] These disparities likely reflect differences in demographic
characteristics of the study populations and sampling of relatively small numbers of individuals
within the general population. The current study provides support for a correlative relationship
betweenHFEH63D and PCT in the United States (Table 2).
The absence of HFE C282Y, HFE H63D or GNPAT D519G in 43 patients (17.8%), suggests

that other genetic modifiers of iron metabolismmay be identified in patients with PCT. Our
studies demonstrate that GNPAT D519G is a risk factor for developing PCT when a URO-D
mutation is also present. These results support both the characterization of PCT as an iron
dependent disease and the concept of GNPAT D519G as a genetic modifier of iron homeosta-
sis[25].
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