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Abstract
Humans are exposed to numerous xenobiotics, a majority of which are in the form of phar-

maceuticals. Apart from human enzymes, recent studies have indicated the role of the gut

bacterial community (microbiome) in metabolizing xenobiotics. However, little is known

about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The

present study reports the results of analyses on xenobiotic metabolizing enzymes in vari-

ous human gut microbiomes. A total of 397 available gut metagenomes from individuals of

varying age groups from 8 nationalities were analyzed. Based on the diversities and abun-

dances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into

three groups, namely, least versatile, intermediately versatile and highly versatile xenobi-

otic metabolizers. Most interestingly, specific relationships were observed between the

overall drug consumption profile and the abundance and diversity of the xenobiotic metabo-

lizing repertoire in various geographies. The obtained differential abundance patterns of

xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links

to pharmacokinetic variations among individuals. Additional analyses of a few well studied

classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific

trends.

Introduction

Advancements in medicine as well as health care, along with increasing awareness of health
and hygiene have resulted in a significant rise in the demand and consumption of pharmaceuti-
cals [1]. Reports have indicated that for certain countries (specifically in the middle income
group), the consumption of drugs (especially those belonging to the Sulphonyl urea based cate-
gories) in the last decade has gone up by more than 250% (http://www.who.int/medicines/
areas/policy/world_medicines_situation/en/index.html).Consequently, humans are increas-
ingly exposed to various xenobiotics, which are typically the precursors of almost all categories
of drugs/pharmaceuticals. However, given the foreign nature of these compounds (with respect
to the human physiology), their metabolism, elimination and toxicity have become a major
concern for clinicians and researchers working in areas of health sciences.

Human cells are equipped with a variety of enzymes to counter the probable harmful effects
caused by these foreign compounds. For example, drugs administered orally pass through the
alimentary canal and subsequently undergo a series of modifications. These modifications
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(referred to as Phase I of drugmetabolism) are mainly carried out by hepatic enzymes, various
cytochrome P450 proteins, and other enzymes encoded by our genome [2, 3]. The process
involves modification of the chemical moiety using either oxidation (typically using the cyto-
chrome P450 monoxygenases or flavin-containingmonoxygenases or alcohol/aldehyde dehy-
drogenases) [2], or other variants of modifications like, reduction (using cytochrome P450
reductases) and hydrolysis (by esterases and epoxide hydrolases) [3]. Various enzymes men-
tioned above are known to transform xenobiotics into less toxic, biocompatible and/or easily
excretable forms. Many of these bio-transformations, convert the xenobiotics into bioactive
compounds, which then serve their intended purpose [4, 5]. However, reports have also indi-
cated that in certain cases, the metabolites formed during the course of xenobiotic metabolism
are relatively more toxic than the administered compounds [6, 7]. Consequently, the balance
between these biochemical events, viz., biotransformation of drugs into active compounds, for-
mation of toxic metabolites and degradation of the xenobiotics consumed, decides the bioavail-
ability, toxicity and other pharmacokinetic properties of the drugs.

Given the above context, drug efficacy, modulation of pharmacological properties (upon
administration) and their links to human physiology are critical issues that need to be investi-
gated prior to their administration. Several reports have provided various pharmacokinetic
properties (e.g. ADMET) of numerous xenobiotics [8]. Combining information on drug prop-
erties with other factors like environment and host genetics/genomics, has led to a better
understanding of not only drug bioavailability, toxicity and efficacy, but also of inter-individual
variations in response to different drugs [9]. Although such insights have immense potential
for furthering the development of personalized preventive/therapeutic strategies, our under-
standing regarding the contributions of various clinical and genetic factors in drug response is
still incomplete. For example, 50% of the inter-individual variations in response to the drug
warfarin are still unexplained [9]. In order to comprehensively understand the inter-individual
variations in response to different drugs, it is important to investigate not only clinical, envi-
ronmental and genetic components, but also other possible factors.

Recent studies have indicated the role of gut microbial community in the bioavailability and
metabolism of various drugs [10]. Since a majority of drugs are administered orally, and most
of them get absorbed in our gut/intestines, the role of gut microbiota in modulating drug bio-
availability, efficacy and toxicity is inevitable.Microbes in various ecosystems are known to
have machineries that are utilized by them for metabolizing xenobiotic compounds by modify-
ing and converting them to active/inactive/toxicmetabolites [10]. Studies have also indicated
that microbes can synthesize molecules that may affect the expression levels of host drugmodi-
fying enzymes, like cytochrome P450 [11]. The mechanisms of xenobiotic modifications and/
or metabolism are mostly based on reduction, hydrolysis, mono-/di-oxygenation, cleavage and
coupling reactions [10, 12]. Recent studies have suggested the metabolic capacity and capabil-
ity of gut microbiota to be similar to those of the liver [13]. Thus, apart from gut microbiome’s
role in various diseases/disorders, it seems to play a substantial role in physiological processes,
including xenobiotic metabolism [10, 14–19].

The studies pertaining to role of microbes in pharmacology and metabolism of drugs have
been referred to as Pharmacomicrobiomics [10]. Traditionally, both in vivo and in vitro
approaches have been used in pharmacomicrobiomics [20–25]. The in vivo strategies include
analysis of drugmetabolism and drugmetabolites concentration using animal models [20–29].
The use of animal models not only provides an in vivo system to study the metabolism and
reactions of various drugs, but also bypasses the ethical and clinical issues associated with the
use of humans in drug testing. However, accurate extrapolation of the patterns observed in the
microbiomes of such animal models to humans has certain limitations, including differences in
surface area ratio, presence or absence of appendix (which has been reported as a reservoir of
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beneficial gut microbes [30]) and diet [31]. Also, it has been shown that while the composition
similarity can be seen only at higher taxonomic levels (like phylum or superkingdom level),
almost 85% of microbial composition in humans and mice are not similar [32]. In order to
overcome this limitation, studies have utilized transplantation of human faecal microbiota into
germ free/gnotobiologicalmice. The faecal microbiota transplantation (FMT) approach, how-
ever, has certain caveats which render this approach inefficient to understand the microbial
basis of human physiology. These include anatomical anomalies associated with germ free
mice like enlarged caecum, reduced villous thickness and villous capillary networks, etc. [33].

In contrast, in vitro approaches include assaying specific drug degrading capabilities of vari-
ous microbes using faecal samples [25, 34, 35]. However, adopting conventional techniques
for culturable bacteria has a major limitation since a majority of microbial species residing in
various environments cannot be cultured using traditional laboratory techniques [36]. This
inability to study the microbial community structure of the environment (in vivo, in vitro or in
situ) can be overcome using the emerging field of metagenomics. Several studies have adopted
the metagenomics approach for investigating the role of gut microbiota in various diseases/dis-
orders [37–41].

The available huge repositories of gut microbiome datasets from various geographies and
age groups have been utilized by different groups for understanding the role of gut micro-
biomes in various diseases/metabolicdisorders [42–48]. These repositories can be mined for
predictive profiling of enzymes belonging to various biochemical pathways, including those of
xenobiotic metabolism. Such studies are likely to lead to the identification of geographic as well
as age-specific variations in the xenobiotics/drugmetabolizing capabilities of the gut
microbiome.

With the above motivation, we present in this paper an in-depth analysis of xenobiotic
metabolism pathways using an informatics approach. In addition to performing a comparative
profiling of homologues of 592 xenobiotic metabolizing proteins (belonging to 32 xenobiotic
metabolizing pathways) across 850 microbial genera, 397 publicly available metagenomic data-
sets belonging to 8 regions, viz., American, Danish, Spanish, French, Italian, Chinese, Indian
and Japanese (belonging to 6 age groups, viz, AG1, AG2, AG3, AG4, AG5 and AG6), were ana-
lyzed with the objective of identifying inter-individual, geographic and inter-age group varia-
tions of gut microbiome’s xenobiotic metabolizing capabilities and associatedmicrobial
community structure (S1 Table). Variations of selectedwell studied drugmodifying enzymes
(DMEs) involved in phase I and phase II reactions of drugmetabolisms [49, 50] were also eval-
uated. The phase I drugmetabolizing enzymes included cytochrome P450s (CYP), monoamine
oxidase (MO), epoxide hydrolase (EH), alcohol (ADH) and aldehyde dehydrogenase (ALDH).
Similarly the enzymes involved in phase II reactions involved in drugmetabolism, that were
considered in the present study included thiopurinemethyltransferase (TPMT), N-acetyl
transferase (NAT) and glutathione S-transferase (GST).

Results

Profiling xenobiotic metabolizing capabilities of microbes

In order to investigate xenobiotic metabolizing capabilities of various microbes, homologues of
such enzymes were first identified across all fully and partially sequencedmicrobial genomes.
The abundance profiles of these enzymes, at the taxonomic level of genus, were obtained for
each of the 850 genera. Principle coordinate analysis (PCoA) of these profiles identified three
distinct clusters, referred to as G1, G2 and G3 (Fig 1A). Each cluster represented groups of
microbial genera having similar patterns of xenobiotic metabolizing enzyme abundances in
them. The list of genera, their group affiliations, along with the abundances of the various
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xenobiotic metabolizing proteins harbored by them is provided in S2 Table. Out of the 850
genera, 442 belonged to G1, 339 belonged to G2 and only 69 belonged to the group G3. Com-
parison of the members belonging to different clusters (G1, G2, G3) indicated differences in
the diversity of xenobiotic metabolizing enzymes (i.e. the total number of detected enzymes)
harboured by them (Fig 1B). The diversity of these enzymes was observed to be highest for
members belonging to group G3 and lowest for those belonging to G1. Thus, based on the
diversity of the enzymes harboured, the members belonging to G1, G2 and G3 could be classi-
fied as least versatile (LV), intermediately versatile (IV) and highly versatile (HV) xenobiotic
metabolizers, respectively. The fraction of species belonging to the aforementioned genera, har-
bouring the xenobiotic metabolizing enzymes, also showed variations (S3 Table).

It is to be noted that the enzymes considered in the study encompass a large variety on
xenobiotic metabolizing enzymes that are likely to be functional in various pathways. Thus,
only a few selectedwell studied drugmodifying enzymes (DMEs) which are involved in phase I
and phase II reactions of drugmetabolisms were also evaluated. Similar to the variations of the
xenobiotic metabolizing abundances in the microbial groups, members of G3 were observed to
harbour the highest abundance of the DMEs, followed by members of G2 and G1 (S1 Fig). The
details of EC numbers and KO ids, corresponding to these DMEs have been listed in S3 Table.
Thus, in addition to the total number of xenobiotic metabolizing enzymes, the abundances of
certain drugmetabolism enzymes involved in phase I and II reactions of drugmetabolism also
correlate with the versatilities (i.e. LV, IV and HV) of the xenobiotic metabolizers.

Profiling homologues of xenobiotic metabolizing enzymes in gut

microbiomes

Xenobiotic metabolizing enzyme repertoire in gut microbiomes of individuals from var-
ious geographies. To investigate whether there exist any geographic trend with respect to the
microbial composition as well as abundances of the xenobiotic metabolizing enzyme repertoire
in the gut microbiomes, homologues of various xenobiotic metabolizing enzymes were

Fig 1. Principal Coordinate analysis (PCoA) of profiles of xenobiotic metabolizing enzymes in microbes (at genera level). (A) Profiles of xenobiotic

metabolizing enzymes were obtained as abundance of selected enzymes in each genus per genome present in the database. Members of each cluster

include microbial genera having similar abundance patterns of xenobiotic metabolizing enzymes. (B) Diversity of xenobiotic metabolizing enzymes harbored

by members belonging to clusters G1, G2 and G3 were calculated and plotted as box plot. Significant differences (Kruskal-Wallis test p-value <0.05) in

abundances of enzymes are observed among members of each cluster. Based on the diversities, the three groups, G1, G2 and G3 are considered as least

versatile (LV), intermediately versatile (IV) and highly versatile (HV) xenobiotic metabolizers, respectively.

doi:10.1371/journal.pone.0163099.g001
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identified in various metagenomic samples (S5 Table). Abundance of xenobiotic metabolizing
enzymes (calculated as the number of homologues identified per 5 million base pairs of meta-
genome) were obtained for each gut microbiome and compared across various nationalities
(Fig 2). As can be seen from the figure, Spanish individuals showed the highest median abun-
dance (115.8), followed by adult Japanese (110.1), Chinese (109.2) and Danish (107.1). The
Chinese were observed to have the highest degree of inter-individual variation. Interestingly, in
contrast to the noticeable differences in the median abundance of xenobiotic metabolizing
enzymes across the European and American nationalities, the East Asian populations (Chinese,
Japanese adults and children) were observed to have almost similar median abundances. Based
on the specific abundance, representing the contribution of each genusto the xenobiotic metab-
olizing enzyme repertoire of gut, certain geographic clustering trends were observed.While the
European and American regions clustered closer to each other, the Asian populations (Indian,
Chinese and Japanese children) clustered separately. The only exceptions to this trend were the

Fig 2. Variation in abundances of xenobiotic metabolizing enzymes in gut microbiomes of individuals belonging to different geographies.

Abundance of enzyme homologues in each sample was calculated as number of contigs showing hits with the enzymes of interest per 5 mega bases of

respective metagenome volume. Significant differences (Kruskal-Wallis test, p-value< 0.05) in abundances were observed both at intra and inter-regional

levels. While Spanish individuals had the highest abundances, Chinese population showed highest inter-individual variations.

doi:10.1371/journal.pone.0163099.g002
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Japanese adults that clustered with the European populations but appeared closer to the Asian
cohorts (Fig 3). These results suggest that the individuals belonging to different geographies
have gut microbiota with distinct xenobiotic metabolizing capacities.

The microbial groups could be further divided into different categories based on their spe-
cific abundance patterns (in the xenobiotic metabolizing enzyme repertoire) across various
nationalities (Fig 3). The first group consisted of genera which had a high specific abundance
across all regions. These included the commonly found gut associated genera like Prevotella,
Faecalibacterium, Dorea, Roseburia, Eubacterium, Ruminococcus, Bacteroides, etc. The second
group included genera like Neisseria, Bacillus, Slackia, Coprobacillus, Treponema, etc. While,
these genera were observed to have higher specific abundance across the European and Ameri-
can populations, they were found to be relatively depleted in the gut microbiomes of individu-
als belonging to the Asian nationalities. The third microbial group, consisting of the genera
like, Rhizobium, Rhodospirillum, Bradyrhizobium, Rhodopseudomonas, Methylobacterium,
were sparsely detected in the xenobiotic metabolizing enzyme repertoire in the gut micro-
biomes of European and American individuals and were not detected in the gut microbiomes
of individuals from Asia. The genus Escherichia, as part of the genera harboring the xenobiotic
metabolizing enzyme repertoire, was only detected in the gut microbiomes of the Asian indi-
viduals. These results indicate that the xenobiotic metabolizing enzyme repertoire in the gut
microbiome differs noticeably across nationalities and bears certain geography-specific trends.

Investigating the specific abundances of genera harboring the DMEs showed geography-
specific clustering of sample groups. While the American and European groups clustered
together, the Asian cohorts showed region specific clustering (S2 Fig). Interestingly, the Japa-
nese groups, i. e., Japanese adults and children appeared to cluster together and were separated
from the Indian and Chinese groups. It was also observed that most of the microbial genera
had higher specific abundance of DMEs in the European groups. These results suggest that the
gut of individuals belonging to different geographies vary with respect to abundances of spe-
cific drugmetabolizing enzymes that are involved in phase I and II reactions during drug
metabolism.

To further explore the variation of enzyme abundance within sample cohorts, median abun-
dance of each xenobiotic metabolizing enzyme (EC number and KO ids present in at least 30%
of samples of either of the regions) was calculated for each cohort followed by rank normaliza-
tion and bi clustering on a heat map (S3 Fig). While cohorts obtained from older age groups
(French and Italian samples with age> 60 yrs) were observed to cluster together along with
Japanese adults (AG2-AG4), Japanese children were observed to be outliers. All the other sam-
ple groups (Indian, Danish, Spanish, American and Chinese) clustered separately according to
geography. Although, there was no function specific patterns of the DMEs, the enzyme
involved in phase I reactions of drugmetabolism (ADH, ALDH, CYP, EH,MO) showed higher
numbers in Japanese, French and Italian samples. On the other hand, the DMEs involved in
Phase II reactions (GST and NAT) of drugmetabolism showed higher abundance in Indian,
Chinese, American, Danish and Spanish cohorts. This suggests that along with other xenobi-
otic metabolizing enzymes, these specificDMEs may have a role in the drugmetabolism varia-
tions between sample groups.

Cumulative abundance analysis of the selectedDMEs showed that these enzymes contrib-
uted 40% of the overall xenobiotic metabolism enzyme abundance in each of the cohorts.
Based on median abundance in each region, these enzymes were found to cluster according to
their functions (S4 Fig). While enzymes involved in phase I of drugmetabolism appeared
together, enzymes involved in phase II reaction (i.e., conjugation reactions) belonged to a sepa-
rate cluster. Further, the cohorts showed age-dependent grouping. While Japanese and Indian
children appeared to be outliers, eldest sample groups (FR and IT) formed a part of separate
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cluster and those belonging to middle age groups occurred together. This suggests that the bio-
chemical roles of the drugmetabolizing enzymes involved in phase I and phase II drugmetabo-
lism reactions co-occur, irrespective of the variations of the abundances across sample groups.

Analysis of the diversity of xenobiotic metabolizing genes and their abundances in the meta-
genomic samples showed a direct relationship. However, the degree of correlation across vari-
ous regions was observed to vary (S5 Fig). While a strong positive correlation was seen between
the diversity and the abundance of these genes in the Chinese, Spanish and Japanese popula-
tions, the degree of positive correlation was observed to be lower for other populations. The
Shannon diversity distributions of the microbial genera for the overall microbiome as well as
the specificmicrobiome harboring the xenobiotic metabolism repertoire, for the European
populations were observed to have higher median values than the Asian cohorts (S6A and S6B
Fig).

In order to evaluate whether the observedgeography-specific trends of the abundance as
well as the microbial composition of the xenobiotic metabolizing enzyme repertoire correlates
with the drug consumption, the available daily drug dosage data (Drug units/day/capita) for
five nationalities (Americans, Denmark, Spain, France, Italy) was utilized [1, 51]. This data was
compared with the specific as well as the overall abundances of the three groups of bacteria
(namely G1 or LV xenobiotic metabolizers, G2 or IV xenobiotic metabolizers and G3 or the
HV xenobiotic metabolizers). Except for the Italian population, a positive relationship between
specific (as well as the overall) abundance of drug-metabolizinggut bacteria and the per capita
drug consumption was observed (Fig 4). This indicates that high drugs/xenobiotics usage is
likely to create an environment that provides a selective survival advantage to drugmetaboliz-
ing bacteria, thereby increasing their abundance in the gut microbial community.

An interesting observationwas obtained when the variation of Shannon diversity values
(both overall gut microbiome as well as xenobiotic metabolizing gut microbiome) was com-
pared with drug consumption data available for certain countries. Contrary to the direct rela-
tion between cumulative genera abundance and drug consumption, the Shannon diversity
showed an inverse relation. In other words, the Shannon diversity was observed to be lower for
regions with higher drug consumption as compared to those with low drug intake (Fig 4C and
4D).

Xenobiotic metabolizing enzyme repertoire in gut microbiomes of individuals of vari-
ous age groups. To investigate patterns of xenobiotic metabolizing enzyme repertoire in the
gut microbiome of individuals belonging to various age groups, the individuals under study
were categorized into 6 age groups (AG1: 0–10 years, AG2: 10–30 years, AG3: 30–40 years,
AG4: 40–50 years, AG5: 50–60 years, AG6: 60 years and above). The abundance of xenobiotic
metabolizing enzymes showed inter-age group variations (Fig 5). Lowest abundance of xenobi-
otic metabolizing enzymes was observed in the youngest age group (0–10 years). A sharp
increase in their abundances was observed in the age group of 10–30 years, followed by satura-
tion beyond this age group. This suggests that, increase in exposure to wide range of drugs/
xenobiotics with age probably leads to an increase in the xenobiotic metabolizing potential of
the gut microbiome.

Fig 3. Analyses of microbial groups (genera) harbouring xenobiotic metabolizing enzymes in the gut microbiomes across

different geographies. Specific abundance profiles, representing contribution of each genera in harbouring xenobiotic degrading

enzymes, in each sample was calculated. Genera which were present in minimum of 30% of samples, belonging to at least one region,

were considered. Median values of each microbial genus for each region was calculated and ranked within each regional group, and

plotted as heat map. Differential as well as specific microbial compositions were observed in different regions. While some microbial

genera were found to have similar abundance in all the regions, some showed region specific preferences. European and American

regions clearly clustered distinctly from Asian samples.Kruskal-Wallis H test was performed among groups for each genera and

significant genera (p-value < 0.05) have been reported.

doi:10.1371/journal.pone.0163099.g003
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Based on the xenobiotic metabolizing enzyme repertoire in the microbiomes of all individu-
als, age-specific clustering was observed (Fig 6). This suggests that gut microbial composition
harbouring the xenobiotic metabolizing enzyme repertoire has age specific signatures. Further
it was observed that different genera could be divided into two broad groups based on their
specific abundance profiles across age-groups (Fig 6). Members of the first group, comprising
equal numbers of LV xenobiotic metabolizers (belonging to group G1) and IV xenobiotic

Fig 4. Variation of cumulative abundances of genera harboring xenobiotic metabolizing enzymes with ranked Daily Drug Dosage (DDD). (A)

Variation of ranked cumulative specific abundance with ranked DDD.Cumulative specific abundances of microbial genera of groups G1, G2 and G3 were

calculated for each geography, namely, France (FR), Italy (IT), Spain (ES) and America (AM). The Cumulative specific abundance represents the

abundance of each microbial genera in the xenobiotic metabolizing repertoire, and is obtained by calculating number of contigs (in the corresponding

metagenome) showing hits against genes corresponding to xenobiotic metabolizing enzymes, assigned to a particular genera, normalized by total number

of contigs in the metagenome. Median was calculated for each region and was ranked, and plotted against their respective daily drug dosage (ranked)

obtained from earlier reports. A linear increase in abundance with increase in DDD was observed suggesting a role of drug consumption in modulating the

abundances of xenobiotic metabolizing enzymes. Kruskal-Wallis H test was performed and the differences were found to be significant (p-value < 0.05).

(B) Variation of ranked cumulative overall abundance with ranked DDD.Overall abundance of each genus, as a measure of contribution of each microbial

genera, in the whole metagenome of each sample, was considered. Cumulative of the overall abundance of microbial genera of groups G1, G2 and G3

were calculated for each sample. Median was calculated for each region and was ranked and plotted against their respective daily drug dosage. A similar

(linear) trend obtained, suggest a role of drug consumption in modulating the abundances of xenobiotic metabolizing microbes in the microbiome. Kruskal-

Wallis H test was performed and the differences were found to be significant (p-value < 0.05).(C) Variation of Shannon index calculated for xenobiotic

metabolizing microbiome with ranked DDD. Kruskal-Wallis H test was performed and the differences were found to be significant (p-value < 0.05).(D)

Variation of Shannon index of overall microbiome with DDD. Kruskal-Wallis H test was performed and the differences were found to be significant (p-

value < 0.05).

doi:10.1371/journal.pone.0163099.g004
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metabolizers (belonging to group G2), were observed to be present across all age-groups. Mem-
bers of the second group, consisting of mostly IV and a few HV xenobiotic metabolizers
(belonging to groups G2 and G3, respectively), were observed to populate the xenobiotic
metabolizing enzyme repertoire of individuals above the age of 30 years (AG3-AG6). The first
group could further be sub-divided into three sub-groups, namely 1A, 1B and 1C.While mem-
bers of 1A had a noticeably higher abundance across all age-groups as compared to 1B and 1C,
members of 1B was found to be absent in the youngest group (AG1). This indicates that certain
genera gain entry into xenobiotic metabolizing enzyme repertoire with increasing age of the
individual.

When specific abundance of microbes harbouring the selectedDME classes was analyzed, a
similar age related clustering of the sample cohorts was observed (S7 Fig). While the youngest
age group (AG1) appeared to be outliers, the comparatively older age groups (AG2 and AG3)
were observed to cluster together. The eldest age groups appeared as a complete separate

Fig 5. Variation of xenobiotic metabolizing enzyme abundance across age groups. Abundance of enzyme homologues for each sample was

calculated as number of contigs showing hits with the enzymes of interest per 5 mega bases (Mbp) of respective metagenome volume. Significant

differences (Kruskal-Wallis test, p-value< 0.05) in homologue abundance were observed for both at intra and inter-regional levels. The youngest group

(AG1: 0–10 years) showed the least abundance, followed by a sudden increase at age group G2 (10–30 years), and subsequently, a saturation in

abundance was observed.

doi:10.1371/journal.pone.0163099.g005
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cluster. The microbial genera, harbouring the DMEs, also showed age specific signatures.
While, those genera, highest in AG1 were observed to be present in other sample groups,

Fig 6. Variations in microbial genera composition and abundance of xenobiotic metabolizing enzymes across different age groups. Specific

abundance profile, representing contribution of each genus in harbouring xenobiotic metabolizing enzymes, in each sample was generated. Only those

genera were considered which were present in minimum of 30% of samples belonging to at least one age group. Median values of each microbial genus

for each region was calculated and ranked within each age group, and plotted as heat map. There is a differential as well as specific microbial composition

in different age groups. While some microbial genera were found to have similar abundance in all the age groups, some showed age specific preferences.

Age-specific clustering pattern was also observed. Kruskal-Wallis H test was performed among groups for each genera and significant genera (p-value

<0.05) have been reported.

doi:10.1371/journal.pone.0163099.g006
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microbial genera, specific to older groups, were seen to cluster together. These results suggest
that the potential of gut microbes harbouring drugmetabolizing enzymes is dependent on age.

Enzyme abundance analysis of the members of age groups, also showed age specific signa-
tures (S8 Fig). The youngest age group appeared as an outlier, followed by seniority based clus-
tering of the sample groups. Interestingly, it was observed that the DMEs involved in phase I
reactions (ADH, ALDH and EH) were present in higher abundance in younger age groups.
Conversely, the phase II DMEs (GST, NAT, and TPMT) were observed to be higher in the
older groups of samples. Analyzing the cumulative abundances of the selectedDME classes
indicated that while DMEs specific to Phase II drugmetabolism are present in high amounts in
older age groups, those involved in phase I reactions are found to be low in all the age groups
(S9 Fig). The increased abundance of phase II DMEs in the older sample groups may be
because of increase in xenobiotic exposure.

For each age group, analysis of cumulative specific abundances of three functional catego-
ries of genera, namely, LV xenobiotic metabolizers (G1 members), IV xenobiotic metabolizers
(G2 members) and HV xenobiotic metabolizers (G3 members), further identified prominent
variations with age (Fig 7). While the cumulative abundance of LV xenobiotic metabolizing
group (G1) was observed to be highest at the youngest age group (AG1), it was found to
decrease till the penultimate group and increase at the oldest age group (AG6). The cumulative
abundances of the IV xenobiotic metabolizing group (G2) was found to increase till the age of
40 (AG3), followed by decrease thereafter. The abundances of the HV xenobiotic metabolizing
group (G3) were observed to increase from the age of 10 (AG2) till 60 (AG5) and were found
to decrease slightly at old age (AG6). These results indicate that the abundances of the three
xenobiotic metabolizing groups (i.e. low, intermediate and highly versatile) show distinct
trends across age groups.

The diversity of microbial genera that harbor xenobiotic metabolizing enzymes was found
to decrease from group AG1 (0–10 years) to AG2 (10–30 years), increase until middle age
group AG4 (40–50 years), and finally attain saturation beyond the age of 50 (AG5 and AG6)
(Fig 8A). Investigation of the percentage of genera harboring the homologues of xenobiotic
metabolizing enzymes across individuals of different age groups indicated lower values at the
youngest and oldest age groups and a zone of stability in the intermediate ones (Fig 8B). Similar
to regional level analysis, an overall positive correlation was observedbetween Shannon diver-
sity of the genes of xenobiotic metabolizing enzymes and their abundances in the samples (S5
Fig). While a strong correlation was observed in AG2 and AG3, other age groups did not dis-
play a strong correlation.

At the age group level, it was seen that the median Shannon diversities (corresponding to
the overall as well as the xenobiotic specificmicrobiome) increasedwith seniority of age groups
(S6C and S6D Fig). This indicates that the overall diversity of the gut microbiota including that
of the microbiota harbouring the xenobiotic metabolizing repertoire increases with age. This is
further indicated by the strong positive correlation between the Shannon diversity and the age
of the individuals, obtained using a windows based approach [41] (S6E and S6F Fig).

Enzyme level analysis of Gut microbiomes. Different sample groups corresponding to
various geographies and age groups are likely to harbor different xenobiotic metabolizing
enzymes originating from the same genus. In order to investigate this, the abundances of each
xenobiotic metabolizing enzyme (present in at least 30% of samples belonging to either differ-
ent geographies) in all the microbes which showed significant differences at the regional level
(S6 Table) were evaluated. This was followed by pair-wise quantification of dissimilarity using
cosine distance as a measure.

The results (S10 Fig) indicate a marked dissimilarity betweenmicrobiomes of various
cohorts and the xenobiotic metabolising enzymes contributed by them. Interestingly, samples
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belonging to Indian and Japanese children (i.e. younger age group) grouped separately while
the Japanese and Chinese adults were seen to occurwith European cohorts.While the Italian
and French groups appeared together (majority of samples above age of 60 years), all the other
European groups (Danish and Spanish) were seen as a separate class along with the Chinese
and American cohorts (majority of samples in the middle age group, 30–60 years). These
results further suggest a consorted effect of geographical region as well as age group on the
xenobiotic metabolizing repertoire of the gut microbiome.

Classificationof enzymes based on abundance in samples. A broad level Principal Com-
ponent Analysis of the enzymes of interest was performed based on their abundances in the
samples. It was observed that the enzymes formed 4 distinct clusters (S11 Fig and S7 Table).
Based on rankedmedian cumulative abundances of members of each cluster in each sample
group, it was observed that the sample groups clustered strictly based on ethnicity (S12 Fig).

Fig 7. Variation of cumulative specific abundance of genera belonging to the three categories (Least versatile, Intermediately versatile and

Highly versatile xenobiotic metabolizers) with respect to age groups. Abundances of members of each category, namely, G1, G2 and G3, were

cumulated and variations were checked with increase in age. The cumulative abundances were ranked among each other and plotted against their

respective ranked age groups, based on seniority. All reported differences were statistically significant (Kruskal_wallis H-Test, p-value < 0.05).

doi:10.1371/journal.pone.0163099.g007
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While abundance of cluster 1 was observed to be higher in the Asian cohorts, cluster 3’s abun-
dance was high in the European sample groups. This indicates that xenobiotic metabolizing
enzyme repertoire differed across populations.

Following PCoA, we characterized the members of the clusters based on COGs (cluster of
orthologous groups). We identified the COG affiliations for each EC numbers and KO ids and
observed that members of cluster 1 contained the highest number of COGs, followed by cluster
3, cluster 4 and cluster 2, which contained very less COGs as compared to cluster 1 (S13 Fig).
The EC numbers and KO ids, along with their corresponding cluster affiliation and COGs have
been listed in S7 Table. It was observed that COGs belonging to each cluster were mostly
unique and very less COGswere common between the clusters suggesting a functional based
separation of the xenobiotic metabolizing enzymes (S14 Fig and S8 Table). We further checked
the COG functional category distribution of the clusters. Similar to previous observation, clus-
ter 1 included highest number of functional categories, followed by cluster 3, 4 and 2 (S15 Fig).
This suggests that the members of cluster 1 are more dynamic and play major role in different
other processes besidesmetabolism of xenobiotics. Overall specificity of the functional catego-
ries identified, showed that COG categories belonging to cellular metabolismwere highest in
each of the clusters (S16 Fig). The DMEs also belonged to a variety of COGs. It was observed
that the enzymes involved in phase I reactions of drugmetabolism (ADH, ALDH, EH and
MO) belonged to less number of COGs than those involved in phase II reactions of drug
metabolism (GST, NAT, TPMT). While the enzymes involved in phase I reactions belonged to
an average of 7.7 COGs per enzyme, the phase II DMEs belonged to a higher average COGs
per enzyme (12.09). The details of enzymes, their names, number of COGs and the COGs are
provided in S4 Table.

Discussion

The current study reports, for the first time, a genome wide profiling of xenobiotic metaboliz-
ing enzymes as well as xenobiotic metabolic capabilities of various bacteria (and their commu-
nities) based on genomic (and metagenomic data). The study has identified 850 bacterial

Fig 8. Variation of diversity of microbial genera harboring xenobiotic metabolizing enzymes with age group. (A) Variation of diversity of microbial

taxa with age groups. Microbial taxa diversity was calculated as number of unique microbial genera, harbouring xenobiotic metabolizing enzymes, per 5

mega bases of the metagenome. The calculated diversity was plotted against respective age groups. (Significance: Kruskal-Wallis H test, p-value < 0.05).

(B) Variation of fraction of microbial genera, harbouring xenobiotic metabolizing enzymes, with age. Microbial genera fraction was calculated as the ratio

of number of microbial genera harbouring xenobiotic metabolizing enzymes and total number of microbial genera present in the metagenome. The

obtained fraction, representing microbial contribution towards repertoire of xenobiotic metabolizing enzymes, was plotted against respective age groups

(Significance: Kruskal-Wallis H test, p-value < 0.05).

doi:10.1371/journal.pone.0163099.g008
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genera that can potentially metabolize one or more xenobiotics. Results also indicated the pres-
ence of three groups of bacterial genera that have differences in the overall abundances of xeno-
biotic metabolizing enzyme repertoire. These groups include LV xenobiotic metabolizers (G1),
IV xenobiotic metabolizers (G2) and HV xenobiotic metabolizers (G3). Family level analyses
of these genera indicated distinct tendencies of the respective families to belong to the groups
of LV, IV and HV xenobiotic metabolizers (S17 Fig and S9 Table). These differences in tenden-
cies (to belong to one of the groups) could be a reflection of the ecological/habitat specific pref-
erences. For example, as observed in a previous study [52] species belonging to families like
Comamondaceae and Burkholderiaceae are present in a larger variety of habitats, as compared
to those belonging to the family Enterobactericeae (which are present mainly in gut and aerial
environment). Consequently, Comamonadaceae and Burkholderiaceae are expected to be
exposed to a higher variety of chemicals (including Xenobiotics) and thus harbor a larger xeno-
biotic metabolizing repertoire as compared to Enterobacteriaceae. This trend is also revealed in
the current analysis, where in, Enterobacteriaceae is observed to be less versatile in its xenobi-
otic metabolism (and hence tend to belong to the group G2), as compared to Comamondaceae
or Burkholderiaceae (which are more versatile and hence tend to belong to G3).

Results of the analyses on 397 gut metagenomes of individuals belonging to different geog-
raphy also indicate distinct inter-regional variations in the overall abundances of xenobiotic
metabolizing enzymes. The study also suggests that an increase in drug consumption may
result in a concomitant increase in the number of bacterial lineages harbouring enzymes that
metabolize these xenobiotics. It is important to note that not all xenobiotics are drugs and
many of them (that utilize pathways for detoxification of environmental pollutants) are not
used clinically. However, since the majority of drugs are structurally homologous to some
xenobiotic or intermediates (or metabolites) of the correspondingmetabolizing pathway, they
are likely to be metabolized by enzymes of the same degrading pathways. It can be assumed
that if an individual’s gut microbiome has higher abundance of homologues of xenobiotic
metabolizing enzymes, then he/she is likely to have higher xenobiotic metabolism capability.
This increase in the xenobiotic metabolism capability of the microbiome is likely to result in a
decrease in the bioavailability of the xenobiotics in this individual. This in turn may lead to an
increase in the toxicity levels for some of the drugs.

We have compiled information on few clinically relevant drugs and their metabolic path-
ways from widely used reference databases/repositories like KEGG, BioCyc, PubMed and
www.drugbank.ca (S10 Table). It is observed that, with the exception of DDT, Nitrotoulene
and Atrazine, 25 out of 28 different xenobiotic metabolizing pathways have the potential to
metabolize at least one clinically used drug. Thus, there is an overlap betweenmajority of xeno-
biotic metabolizing pathways (considered in the study) and different classes of drugs.

Another interesting observation from the present study pertains to the xenobiotic metabo-
lizing capability of microbial composition (in terms of the different bacterial genera) in individ-
uals belonging to different ethnicities. For example, Asian individuals (Indian, Chinese and
Japanese) are observed to have similar compositions of bacterial groups containing these
enzymes, which are distinct from those in American and European individuals. This result is in
line with previously published studies, which have shown a similarity in drug response with
ethnicity [53–54]. Results of the present study also indicates similarity in the xenobiotic metab-
olizing enzymes within various age groups, an observation that is in line with the earlier reports
which suggest xenobiotic metabolism and drug response to be dependent on age [55–57].
However, it is interesting to note that this observation is true irrespective of ethnicities of the
individuals in each age group.

The present study also indicates that bacterial genera that are LV xenobiotic metabolizers
(G1), IV xenobiotic metabolizers (G2) and HV xenobiotic metabolizers (G3) have different
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representations in the gut microbiomes.While members of IV xenobiotic metabolizers have
highest abundance (60%) in the gut microbial communities, members of HV xenobiotic meta-
bolizers have lowest abundance (1–2%). On the other hand, members of LV xenobiotic meta-
bolizers are observed to have an intermediate abundance (around 20%). In spite of having an
intermediate diversity of xenobiotic metabolizing enzymes of IV xenobiotic metabolizers,
members belonging to this G2 group have the potential to metabolize the most number of
drugs (S11 Table). In other words, in spite of having lesser variety of individual enzymes, G2
members are likely to contain enzymes that have the ability to metabolize a much larger num-
ber of xenobiotics. Therefore, IV xenobiotic metabolizers (G2 members) may be considered as
drivers of the xenobiotic metabolizing enzyme repertoire in a gut microbiome. The observed
increase in abundances of HV xenobiotic metabolizers (members of G3) with increase in age of
individuals is likely to be due to the accumulation of specialized xenobiotics metabolizing bac-
teria with time and exposure to xenobiotics.

The reduced contribution of various genera at age extremities suggests a certain degree of
disequilibrium in the diversity as well as the contribution of various genera in xenobiotic
metabolism. A likely reason for this observation could be that while children have unstable
microbial composition (still under development) and thus have low microbial diversity, the
microbial community in older people is dysbiotic due to onset of senescence.

The enzyme repertoire as well as the microbes contributing these enzymes showed distinct
distribution between sample groups with specific age and geography dependent trends. This
suggested that not only the abundance of microbes harboring the enzymes of interest, but also
the variety of enzymes in those microbes play a role in determining xenobiotic metabolizing
capabilities of a metagenome.

Analyses of abundance of enzymes showed that well established DMEs contributed only
30–40% of total xenobiotic metabolizing enzyme repertoire in each microbiome. The results
further indicated role specific clustering of the enzyme types, irrespective of sample groups.
Since, the well studied DMEs show only partial contribution to the gut xenobiotic metabolizing
repertoire (30–40%), there exists potential to explore the roles of other enzymes (forming rest
60%) in the context of drugmetabolism by human microbiome.

A potential issue associated with the current study is the likely presence of cohort- and
study-specific biases that could skew the data. Such biases have been discussed in earlier studies
[46, 58, 59]. In order to reduce additional biases related to analyses, contigs generated by the
studies were used and same approaches (softwares and tools) were applied to all the datasets
(see methods). Cohort and sample specific biases have also been addressed in this manuscript.
Also, the number of samples in different sample groups was not uniform. Thus, to tackle this
issue, non parametric central tendency values for each sample group were analyzed. Addition-
ally, in the current study, all the individuals in the French and Italian cohorts belonged to the
elderly age group (i.e. greater than 60 years). Similarly, the Indian cohort consisted of the gut
microbiomes from 20 children. However, two distinct patterns observed in the current study
indicate that the age-specific bias of a few cohorts did not significantly affect the results of this
study. The first was the progressive increase of higher xenobiotic metabolism capability with
age (in spite of the biases in the nationalities of the individuals belonging to the different age-
groups). The second is the similarity between the compositions of the xenobiotic metabolizing
enzyme repertoire across the Asian nationalities (in spite of the distinctly lower age of the
Indian individuals). Thus, although the age-specific biases may skew the data, such effects are
not observed to significantly affect the results obtained herein.

Another aspect which remains critical is the annotation of EC numbers and KO ids to the
sequences of the seed database and identified homologues. This is due to the fact that BLAST
searches may identify remote homologues which may not perform the desired functions. To
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ensure minimal errors in this aspect, we have used accurately curatedand widely accepted pub-
lic databases (like KEGG and NCBI) to populate the reference database. Also, stringent cut offs
were used during BLAST searches (seemethods) in order to ensure that the homologues identi-
fied in the metagenomes are annotated correctly. Further validation was performed to ensure
the accuracy of BLAST parameters while assigning annotation of EC numbers on the basis of
homology (described in S1 Text). Based on the results, identity percentage between sequences
belonging to same EC numbers considered were above 40% at all taxonomic levels. On the
other hand, identity percentage of maximum blast hits between sequences of different EC num-
bers lied below 40%. Thus, an identity cut off of> 40%, apart from stringent subject coverage,
was used to assign enzyme function to the identifiedmetagenomic homologues.

Experimental studies, characterizing the xenobiotic degrading capabilities in different bacte-
ria, are currently limited. Therefore, apart from the current analyses on gut microbiomes, the
aim of the genome-wide analyses (performed in this study) was to obtain a comprehensive pro-
file of the occurrence likelihoods of the various xenobiotic degrading enzymes across all bacte-
rial clades (which may or may not be associated with humans). Obtaining such a profile is
helpful because xenobiotic degradation pathways not only have clinical importance with
respect to drug bio-availability, but also have implications in bio-remediation as many of these
pathways play a role in the de-toxification of pollutants like DDT, Atrazine, PAHs, etc. Using
the information obtained from the current study, researchers working on a given xenobiotic
degrading pathway(s) can now focus their investigations on specific clades of bacteria.

It is to be noted that metagenomic studies provide only a static overviewof putative
enzymes and pathways. To confirm the expression and the functional status of the same, addi-
tional experimental studies of the gut microbiota, using transcriptomics/metatranscriptomics,
RNA-Seq analysis, meta-proteomics and metabolomics, are required. Such studies will not
only give an idea about the gene expression, enzymatic activity and metabolic dynamics of the
gut microbiome, but will also help in making the predictions more robust and accurate.

Another aspect that needs investigation is the role of mobile genetic elements in the transfer
of xenobiotic metabolizing traits. Extensive use of xenobiotics in the form of pesticides and
pharmaceuticals, introduces a selective survival pressure in the environment that may facilitate
the spread of such elements across microbial species. Previous studies have identified and elab-
orated on the role of such mobile genetic elements in the transfer of xenobiotic metabolizing
capabilities in bacteria [60–61]. Due to continuous exposure to xenobiotics, mainly in the form
of pharmaceuticals, there is also a possibility of constant selective pressure maintained in the
gut bacterial community. Due to this, the aspect of inter-cellular horizontal acquisition of such
genes using mobile genetic elements and its role in providing additional survival advantage to
the microbes cannot be ignored. As seen in a previously published report on gut microbiomes,
enzymes responsible for conferring antibiotic resistance to bacteria were found to be associated
with DNA sequences responsible in horizontal transfer of genes [43]. Microbiomic investiga-
tions of such elements, specificallywith respect tothe transfer of such traits in the gut micro-
biota could provide a much more holistic and dynamic perspective on the xenobiotic
metabolizing capabilities of the gut microbiome.

Conclusion

The present study reports the first ever comprehensive analyses, with respect to xenobiotic
metabolizing enzymes, on gut microbiomes of large cohorts. In contrast to earlier studies
which adopted culture-basedmethodologies for deriving inferences about drugmicrobe inter-
actions, the present study employs a combination of genome-wide variation and metagenome-
wide homologue detection approach for comprehensively profiling (in silico) the xenobiotic
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metabolizing capabilities of various microbes. The study also puts forward interesting insights
regarding variations observed in these capabilities (of gut microbiomes) with respect to age
and geography.

The results reported in the present study also corroborate previously known pharmacoki-
netic variations (such as ethnic and age related drug efficacy).Overall, the trends observed
(from the present study) suggest a direct role of intestinal microbes in pharmacokinetic varia-
tions. The study stratifies microbes into three broad groups based on their xenobiotic metabo-
lizing capabilities. Once experimentally validated, these insights can be potentially employed
for devising/designingappropriate (personalized) therapeutic regimens. Furthermore, a combi-
nation of gut microbiome based profiles of xenobiotic metabolizing enzymes (as presented in
the current study) and wide association studies (along with information from clinical trials) is
expected to help in creation of a comprehensive data/knowledge base. This information reposi-
tory has the potential for predicting the pharmacokinetic parameters and their variations in
each individual, with better accuracy. This in turn, is likely to help addressing issues like drug
bioavailability, drug overdose, side effects and adverse drug reactions which may further help
in advancing the field of predictive medicine and pharmacology.

Methods

Database creation of xenobiotic metabolizing enzymes present in

various microbial genomes

KEGGOrthology (KO) and Enzyme Commission (EC) numbers of enzymes belonging to vari-
ous xenobiotics biodegradation and metabolism pathways in KEGGwere fetched from KEGG
(www.genome.jp/kegg/). A total of 284 KO IDs and 300 EC numbers corresponding to 32
pathways were obtained. The details of these enzymes, in terms of KO IDs, EC numbers, along
with their corresponding xenobiotic degradation pathways, are provided in S12 Table. The
NCBI GI numbers of the respective EC numbers and KO IDs were identified and sequences
were fetched fromNCBI-NR (a non-redundant protein sequence database from NCBI) data-
base. Furthermore, the NCBI-NR database was also searched for sequences containing the key-
word 'Cytochrome P450'. This created a database of 1,62,054 sequences from 850 microbial
genera. In addition, to identify sequences correspondingmore xenobiotic metabolizing
enzymes, the database was further enriched by performing a BLASTp search of the constituent
sequences against the NCBI-NR database (with thresholds of Identity> = 90%, Subject cover-
age> = 90% and E-Value < 1e-5). Best hits were identified using bit score parameters. The
homologues obtained were assigned the same EC and KO annotation as that of the matched
sequences in their respective databases. Additionally to check for errors and extent of diver-
gence, two tests were performed (S1 Text).

Classification of bacterial genera based on genome scale profiling of

xenobiotic metabolizing enzymes

Microbial taxa affiliations of xenobiotic metabolizing enzyme sequences present in the final
database were considered for genome scale profiling at the genus level. Based on the occur-
rences of various KO IDs of the sequences in each genomes (belonging to different genera rep-
resented in the database), an abundance table consisting of different genera and the
occurrences of each EC/KO was created. To remove database bias, the occurrenceswere nor-
malized by total number of unique genomes of each genus. Using the abundance table, Princi-
ple Coordinate analysis was performed using the protocol used earlier by Arumugam et al.
[47], based on which clusters of bacterial genera having similar profiles of xenobiotic

Xenobiotic Metabolism and Gut Microbiomes

PLOS ONE | DOI:10.1371/journal.pone.0163099 October 3, 2016 18 / 26

http://www.genome.jp/kegg/


metabolizing enzymes (belonging to various pathways) were identified. To identify the opti-
mum number of clusters, we calculated Calinski-Harabasz (CH) Index (S18 Fig). The cluster
number with highest CH index (N = 3) was considered as the optimal one. For cluster valida-
tion, we usedmean silhouette score as a part of global assessment of the clusters. A positive
mean score of 0.247, which along with CH index analysis suggested robust clustering of the
microbial genera, into 3 distinct groups, based on enzyme abundances.

Profiling homologues of xenobiotics metabolizing enzymes in gut

microbiomes of individuals from various geographies

Datasets used. Gut metagenomic sequences (available as contigs) from 27 individuals
belonging to Italian, French and Japanese, previously analyzed by Arumugam et. al. [47], were
downloaded from http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html.
Additionally, contigs of metagenomic sequences corresponding to 116 European (81 Danish
and 35 Spanish) individuals, previously analyzed by Qin et al. [42], were downloaded from
http://gutmeta.genomics.org.cn/. Further, contigs corresponding to 90 gut metagenomes of
American individuals, sequenced as part of the Human Microbiome Project [62], were down-
loaded fromHMP-DACC website (http://www.hmpdacc.org/HMASM/). Apart from this, con-
tigs from gut metagenomic datasets from 20 Indian children of varying nutritional status,
previously analyzed by Ghosh et al.[41],were downloaded from http://www.ncbi.nlm.nih.gov/
Traces/sra. In addition, a set of gut metagenomic contigs from 144 Chinese individuals, previ-
ously analyzed by Qin et al. [38],were also downloaded fromhttp://gigadb.org/dataset/100036.
Details on all the datasets are listed in S13 Table.

The basis for using metagenomic contigs (instead of sequence reads) for this analysis is as
follows. Firstly, contigs, by virtue of their longer lengths, facilitate the detection of full length
genes, enhancing the reliability of the results obtained. Secondly, it is likely to remove the biases
associated with using sequence data frommultiple studies. Different sequencing platforms and
DNA extractionmethodsmay have a possible impact on the comparative analysis of data from
multiple studies. The primary issue of comparing datasets obtained using different sequencing
platforms is the variations in the read lengths of the sequences. These are likely to have artefac-
tual effects on the taxonomic and functional profiles obtained for the analyzed datasets. By
ensuring similar sequence lengths across all datasets, the use of longer high quality contigs is
likely to bypass these limitations. For example, in the current analysis, metagenomic contigs of
most of the datasets were observed to have lengths greater than 1000 base pairs (S19 Fig). How-
ever, biases could also originate due to differences in the DNA extractionmethod and other
experimental protocols. To ensure that such biases were not present in the datasets in the cur-
rent study, taxonomic classification of the contigs in each of the samples (in each dataset) were
first obtained using DiScRIBinATE [63]. The taxonomic profiles of each sample (in the differ-
ent datasets) were then compared by PCA using STAMP [64]. It was observed that the samples
from different datasets clustered together with no significant biases in any of the components
(S19 Fig).

Identification of homologues of xenobiotic metabolizing enzymes in gut micro-
biomes. Homologues of xenobiotic metabolizing enzymes were identified in the gut metagen-
omes by performing BLASTx searches of the metagenomic contigs against the xenobiotic
metabolizing enzyme database (created as described earlier). Preliminary filtering of the
BLASTx involved a sequence identity cut-off of>40%, subject coverage cut-off of>75% and
e-value cut-off of<1e-5. Alignment with the highest bit score was considered as best hit. The
identity cut off of 40% was used because it has been shown earlier that 90% accuracy can be
achieved while assigning full EC numbers when sequence identity is more than 40% [65–67].
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Additionally, two different validation tests were performed to specifically investigate the pat-
tern of sequence divergence observedwithin the families containing the xenobiotic degrading
enzymes and to further check whether the above criteria is stringent enough (so as not to result
in false positive associations). The details of these tests have been provided in S1 Text.

Abundances of xenobiotic metabolizing enzymes and analysis of microbial community
across gut microbiomes. The overall abundance of each xenobiotic metabolizing enzyme in
each gut microbiome was calculated as total number of detected genes corresponding to that
enzyme per 5 million base pairs of the respectivemetagenome. The calculated abundances of
all xenobiotic metabolizing enzymes in all gut microbiomes were compared for identifying
inter-individual, inter/intra-regional and inter-age group variations of the xenobiotic metabo-
lizing enzymes.

In order to investigate the trends in the overall abundances of various xenobiotic metaboliz-
ing enzymes, analyses of the microbial communities in the gut microbiomes was performed,
with specific focus on the microbial genera harboring various xenobiotic metabolizing
enzymes. For this purpose, for each metagenome, the taxa affiliations of all contigs, identified
to harbor xenobiotic metabolizing enzymes (using the BLAST search), were first obtained
using the DiScRIBinATE method [63]. This method, along with a few other methods [68–69],
utilizes BLAST alignment parameter based thresholds for the accurate taxonomic affiliation of
metagenomic sequences/contigs.A recent comparative evaluation of 38 taxonomic classifica-
tion methods observedDiScRIBinATE to have the highest sensitivity and specificity values in
typical metagenomic scenarios, where in a majority of sequences originate from hitherto
uncharacterized genomes [70].

Subsequently, based on the taxa assignments for each metagenome, the abundance of vari-
ous xenobiotic metabolizing enzymes at the taxa level of genera was obtained and was used for
all further analyses. The contribution of each genera to the xenobiotic metabolism gene reper-
toire in each microbiome (i.e. specific abundance) was then obtained by calculating number of
contigs (in the correspondingmetagenome) showing hits against genes corresponding to xeno-
biotic metabolizing enzymes, assigned to a particular genera, normalized by total number of
contigs in the metagenome. Specific abundance represents the contribution of a microbial
genus to the xenobiotic metabolizing enzymes repertoire. On the other hand, the calculated
overall taxonomic abundances (overall abundance) represent contributions of a particular
microbial genus in the whole microbiome. Both, specific and overall abundances were used for
further analyses.

Statistical tests for comparison of various groups of gut microbiomes. All multiple
group statistical comparisons were performed using Kruskal-Walis H test, followed by multiple
test corrections using Benjamini-Hochberg FDR correctionwherever applicable. Statistically
significant differences with corrected P-value < 0.05 are reported.

Data Acquisition

We would like to note that no human subjects were used during the course of this study. All
human microbiomic sequence data, used as part of this study, were sequenced as part of previous
sequencing initiatives and were publicly available. These data were downloaded from the respec-
tive repositories as mentioned in theMethods section and re-analyzed in the current study.

Supporting Information

S1 Fig. Variation of abundance of selecteddrugmodifier classes (DMEs) in each of the
microbial groups.
(PDF)
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S2 Fig. Variation of Specific abundance (based on selecteddrugmodifying enzyme classes)
of microbial genera across regions.
(JPG)

S3 Fig. Variation of enzyme abundance across regional cohorts.
(JPG)

S4 Fig. Heat map showing variation of cumulative abundances of the drugmodifying
enzyme classes (DMEs), in different regional cohorts.These enzymes included cytochrome
P450s (CYP), monoamine oxidase (MO), epoxide hydrolase (EH), alcohol dehydrogenase
(ADH), aldehyde dehydrogenase (ALDH), thiopurinemethyltransferase (TPMT), N-acetyl
transferase (NAT) and glutathione S-transferase (GST).
(JPG)

S5 Fig. Variation of xenobiotic metabolizing gene diversity with gene abundance at
regional and age group levels.
(TIF)

S6 Fig. Variation of Shannon index (for both overallmicrobiome and xenobiotic metabo-
lizing microbiome) with region and age.
(TIF)

S7 Fig. Variation of Specific abundance (based on selectedDME classes) of microbial gen-
era across age groups.
(JPG)

S8 Fig. Variation of enzyme abundance across age groups.
(JPG)

S9 Fig. Heat map showing variation of cumulative abundances of the drugmodifying
enzyme classes (DMEs), in different age groups. These enzymes included cytochrome P450s
(CYP), monoamine oxidase (MO), epoxide hydrolase (EH), alcohol dehydrogenase (ADH),
aldehyde dehydrogenase (ALDH), thiopurinemethyltransferase (TPMT), N-acetyl transferase
(NAT) and glutathione S-transferase (GST).
(JPG)

S10 Fig. Cosine distance comparison as a measure of dissimilarity in enzyme harbouredby
microbial genera in each region.
(JPG)

S11 Fig. Clusters obtained from PCoA performedusing abundance of each xenobiotic
metabolizing enzyme in the metagenomic samples.
(JPG)

S12 Fig. Heat map showing variation of cumulative abundances of members of each
enzyme cluster in different sample groups.
(JPG)

S13 Fig. Variation of COGabundance in each enzyme cluster.
(JPG)

S14 Fig. Venn diagram showing number of COGs unique or shared by the enzyme clusters.
(JPG)

S15 Fig. Variation of COG functional categories abundance in each cluster.
(JPG)
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S16 Fig. Variation and distribution of each COG functional category in each enzyme clus-
ter.
(JPG)

S17 Fig. Propensities of family to belong to the three functional categories, G1 (Least versa-
tile xenobiotic metabolizers),G2 (Intermediately versatile xenobiotic metabolizers)and G3
(Highly versatile xenobiotic metabolizers).
(PDF)

S18 Fig. Variation of Calinski-Harabasz (CH) Index with number of clusters.
(TIFF)

S19 Fig. (A)Distribution of the length of contigs in samples belonging to different geographic
regions. (B) Principal component analysis (PCA) of genera abundances in metagenomic sam-
ples (Study1: JP_AD, JP_CH; Study2: Chinese; Study3: Danish, Spanish, French and Italian;
Study4: Indian; Study5: American). Statistical analyses (performed using KruskalWallis H-
test, with Benjamini-Hochberg Correction indicated no significant variations in the different
components across the samples belonging to any of the regions (PC1< 0.784; PC2< 0.784;
PC3< 0.764).
(TIF)

S1 Table. List of regions included in the study and corresponding age groups represented.
(PDF)

S2 Table. Presence or absence of EC numbers and KO IDs corresponding to the xenobiotic
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(PDF)

S3 Table. List of species and their corresponding genera, harbouring xenobiotic metaboliz-
ing enzymes.
(XLSX)

S4 Table. List of EC numbers, KO ids and COGs corresponding to selectedDME classes.
(XLSX)

S5 Table. Abundances of xenobiotic metabolizing enzymes (with their EC numbers and
KO IDs) in each of the metagenomic samples.
(PDF)

S6 Table. List of microbial genera and xenobiotic metabolizing enzymes harbouredby
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(XLSX)

S7 Table. List of EC numbers and KO ids along with their corresponding cluster affiliations
and COGs.
(XLSX)

S8 Table. List of COGs shared or unique to enzyme clusters.
(XLSX)

S9 Table. List of taxonomic families and their preferences for three different groups (Least
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or G2; Highly versatile xenobiotic metabolizersor G3) along with their cluster affiliations.
(PDF)
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S10 Table. List of clinicallyused drugs and their respectivemetabolic pathways.
(PDF)

S11 Table. List of selecteddrugs and bacterial genera capable of metabolizing them (infor-
mation obtained from literature), along with their group affiliations.
(PDF)

S12 Table. List of EC numbers and KO IDs of xenobiotic metabolizing enzymes along with
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(PDF)
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