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Abstract
Major prehistoric forces, such as the climatic shifts of the Pleistocene, can remain visible in

a species’ population genetics. Inference of refuges via genetic tools is useful for conserva-

tion management as it can identify populations whose preservation may help retain a spe-

cies’ adaptive potential. Such investigation is needed for Australia’s southern hairy-nosed

wombat (Lasiorhinus latifrons), whose conservation status has recently deteriorated, and

whose phylogeographic history during the Pleistocene may be atypical compared to other

species. Its contemporary range spans approximately 2000 km of diverse habitat on either

side of the Spencer Gulf, which was a land bridge during periods of Pleistocene aridity that

may have allowed for migration circumventing the arid Eyrean barrier. We sampled from

animals in nearly all known sites within the species’ current distribution, mainly using non-

invasive methods, and employed nuclear and mitochondrial DNA analyses to assess alter-

native scenarios for Pleistocene impacts on population structure. We found evidence for

mildly differentiated populations at the range extremes on either side of Spencer Gulf, with

secondary contact between locations neighbouring each side of the barrier. These extreme

western and eastern regions, and four other regions in between, were genetically distinct in

genotypic clustering analyses. Estimates indicate modest, but complex gene flow patterns

among some of these regions, in some cases possibly restricted for several thousand

years. Prior to this study there was little information to aid risk assessment and prioritization

of conservation interventions facilitating gene flow among populations of this species. The

contributions of this study to that issue are outlined.
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Introduction

The Pleistocene period was marked by oscillations in global climate aridity and, as a conse-
quence, habitat fragmentation with animal species potentially surviving in refuges [1, 2].
Descendants from different Pleistocene refuges may carry valuable genetic diversity that can be
identified by well-established population genetic approaches [3–5]. Many species exhibit
genetic effects indicative of Pleistocene refuges, including most Australian species [2, 6–8], but
some Australian fauna appear to have responded idiosyncratically to Pleistocene climatic fluc-
tuations, ranging widely rather than being confined to refuges [9].

Irrespective of historical processes, conservation management policies can use information
on population structure to maximize the likely retention of a species’ evolutionary history and
adaptive diversity by minimizing the loss of distinct populations. These conservation manage-
ment concerns are pertinent for the southern hairy-nosed (SHN) wombat (Lasiorhinus lati-
frons), a large, herbivorous, fossorial marsupial from semi-arid regions of southern Australia
(Fig 1) [10, 11]. Currently the SHN wombat has a fragmented distribution, with relatively large
populations in areas of sparse human settlement, such as the far west coast and Nullarbor
Plain, and smaller remnant populations where agriculture has been intense, such as on the
Yorke Peninsula (Fig 1). Fossil evidence suggests that prior to the European settlement of Aus-
tralia, approximately 200 years ago, the species had a more continuous distribution, and was
more widespread (Fig 1 inset, [12, 13]). The SHN wombat’s contemporary range spans the
Spencer Gulf, a body of water between the Eyre and Yorke Peninsulas (Fig 1) that did not exist
when sea levels were lower during periods of Pleistocene aridity [14]. Identifying how the SHN
wombat responded to historical habitat and climatic changes is important for both our greater
understanding of its evolutionary history as well as its contemporary conservation.

The SHN wombat is not currently considered threatened as a species (although its status
requires review [15]), but under South Australia (SA)’s National Parks and Wildlife Act 1972,
the Yorke Peninsula populations have Endangered conservation status owing to their small
size and isolation due to recent farming activity [16]. In addition, the Murraylands and Lake
Acraman (near Hiltaba in Fig 1) populations are considered Vulnerable [13, 17]. In two biore-
gions (the Nullarbor Plain and the Eyre-Yorke Block) the species is classified as Persisting
(present in>50% of its former range), but in the Gawler region (also near Hiltaba in Fig 1) it is
classified as Declined (present in 10–50% of its former range), and in the Murray Darling
Depression it is classified as Severely Declined (present in<10%) [18]. The most recent esti-
mates of population sizes range from around 10 individuals at some sites on the Yorke Penin-
sula to over 150 000 in the far west coast (FWC) of SA between Ceduna and the Nullarbor
Plain, although even this largest population appears to be currently contracting [13, 19]. Thus
many populations are expected to have declining effective population size and reduced inter-
population gene flow. Populations under such conditions may experience genetic erosion and
inbreeding depression, which limits future adaptation ability and elevates extinction risk [20–
22]. These negative impacts are potentially reversible by appropriate facilitated gene flow, so it
is important to understand population genetic structure in species of conservation concern
[23].

The palaeoecologicalhistory of the region inhabited by SHN wombats raises some expecta-
tions for patterns in their genetics. Over 70% of Australia is currently arid, but during the Pleis-
tocene period these areas were even drier as water was locked up in ice caps, and many species
in Australia were presented with waterless deserts as obstructions to gene flow between popula-
tions [2, 24]. One of these was the Eyrean barrier, situated towards the eastern end of the cur-
rent SHN wombat distribution, and believed to have peaked in impact during the last severe
arid period, as recently as 18 000 to 16 000 years ago [25]. The Eyrean barrier drove speciation
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and subspeciation in semi-arid Australian birds [6, 25–29]. At the western end of the SHN
wombat’s distribution, the Nullarbor barrier had similar sub-structuring effects during Pleisto-
cene times on mesic birds, other semi-arid vertebrates, and plants [9]. But for other species,
lower sea levels caused by Pleistocene aridity opened up opportunities for dispersal and gene
flow. Spencer Gulf, which bisects the current range of the SHN wombat, was a dry land bridge
during these arid times [14]. When the Gulf was re-flooded, especially during the minor pluvial
period 8 000 to 5 000 years before present, this land bridge would have closed, leading to con-
traction and isolation of population units. The contemporary distribution of the SHN wombat
is patchy (http://maps.iucnredlist.org/map.html?id=40555), but prior to European settlement
there may have been a narrow habitat conduit around the northern end of Spencer Gulf (Fig 1
inset [12, 13]). If oscillations in Pleistocene aridity disrupted gene flow in the SHN wombat,
contemporary populations could encompass more than one unit of conservation concern, sep-
arated in evolutionary time (i.e. evolutionarily significant units [30, 31]). Earlier research based
on microsatellite data from four of the 24 populations examined in this study suggested that
there is some separation between eastern and western populations of the species [32]. It was
clear from this preliminary work that to further investigate this finding across the entire spe-
cies, more populations needed to be sampled, especially centrally located populations on the
Yorke Peninsula, and that future research should investigate gene flow. The present study
responded to these needs by increasing the number of populations sampled from four to 24,
and investigated whether the east–west separation previously reported was due to expansion

Fig 1. Collection Sites. Southern Australian collection sites for the Lasiorhinus latifrons (southern hairy-nosed wombat)

samples used in this study.▲ = Set A,● = Set B, & = Sets A and B. Dotted lines indicate the major geographic regions

where these sites were located. Inset shows probable species distribution of L. latifrons prior to European settlement and the

main map shows the hypothesised extent of the Eyrean Barrier in the late Pleistocene, which could have restricted gene flow

between east and west. Map from Natural Earth (public domain): http://www.naturalearthdata.com/.

doi:10.1371/journal.pone.0162789.g001
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from a single refugium on one side of Spencer Gulf, or multiple refugia. This research also
investigated to what extent gene flow has been achieved by any dispersal made possible by the
Spencer Gulf land bridge, or the narrow conduit to its north that existed until recently.

Here, we examine genetic patterns to distinguish between four different scenarios: 1) no
impact of the disappearance of the land bridge, and so no east or west post-Pleistocene refuges;
2) east and west refuges with no or very little gene flow between them, followed by subsequent
secondary contact; 3) east and west refuges with little or no admixture; and 4) post-Pleistocene
populations surviving only on one side of Spencer Gulf with subsequent recolonization across
the current range. We expect that these competing scenarios will be reflected in mitochondrial
DNA (mtDNA) and microsatellite DNA data as follows:

Scenario 1: ‘no refuges’ would be supported by low divergence between populations on either
side of the Spencer Gulf land bridge. This could be due either to insufficient time post the
Spencer Gulf barrier, or ineffectiveness of the Eyrean barrier to prevent movement and gene
flow.

Scenario 2: ‘multiple refuges with secondary contact’ would be supported by divergence
between the descendants of putative refuge populations, with estimates of time of diver-
gence consistent with impact of the re-flooding of the Gulf, and maximal genetic diversity
where the genes from the different refuges are admixed, unless population size reduction
and genetic drift cause loss of variation at the contact zones.

Scenario 3: ‘multiple refuges without admixture’ also predicts divergence between the refuges,
like Scenario 2, but does not predict higher diversity in between, given no admixture. As
small numbers of wombats spread out into the colonised areas, many genotypes may have
survived, but rare alleles may have been lost during successive drift events.

Scenario 4: ‘recolonisation from one side of Spencer Gulf ’would be supported by a lack of
strong genetic division, and by genetic diversity gradually reducing with increasing distance
from the refugium, or homogeneity or isolation-by-distance if gene flow has been sufficient.
In this case, genetic subdivision should be unrelated to putative phylogeographic barriers
and times of high aridity when the gulf was dry.

We investigated the effects of environmental influences since the late Pleistocene on SHN
wombat population structure, and attempted to uncover the population genetic patterns that
existed prior to land-use by European settlers and the relationships among extant populations.
We applied microsatellite and mitochondrial DNA data, collected from sites across the entire
current range of the SHN wombat, to estimate genetic differentiation and gene flow at different
time scales. We provide genetically based recommendations for conservation management of
the SHN wombat, building upon previous preliminary studies of the genetics of this species
[32–34] and the broader literature [23]. This paper also highlights the use, at very broad geo-
graphical scales, of non-invasive genetic data collection techniques for rare or elusive species:
data for this paper were obtained mostly from hairs captured on adhesive tape at burrow
entrances [34–38].

Materials and Methods

Sampling and DNA extraction

This study’s protocol was approved by the Committee on the Ethics of Animal Experiments of
the University of New South Wales (Permit Numbers: 93/65 and 94–26). The NSW National
Parks and Wildlife Service approved the holding of samples from South Australia in NSW
(Permit Numbers: A941 and B1025). All efforts were made to minimize impacts on animals,
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and so DNA was extracted mainly from hair samples collected on sticky tape from wombats as
they entered or left their burrows [34, 36–38]. Blood samples were taken from the cephalic vein
of anaesthetised animals. No animals were killed specifically for this study, but tissue samples
were obtained opportunistically from road-kill animals or animals killed by farmers under SA
Department of Environment and Natural Resources destruction permits (Permit Numbers:
S11017 and A02340). Destruction permits require that wombats are killed only by a clear brain
shot from a high-powered rifle (minimum calibre .243; 6.2 mm) [39]. Wombats were sampled
at 24 sites in five geographic regions (Nullarbor Plain and FWC; Gawler Ranges—the area
around Rose Swamp, Lake Harris, Hiltaba, and Scrubby Peak; Eyre Peninsula; Yorke Peninsula;
and the Murraylands; Table 1, Fig 1), representing all major and>90% of minor known popu-
lations of the entire species [34]. The SA Department of Environment and Natural Resources
gave permission for locations in national parks. For locations on private land, the owner of the
land gave permission to conduct the study on that site (names of owners are listed in [19] and
[40]; available from the authors on request). Samples and data were collected during two sepa-
rate time periods, 1994–1996 (set A) and 2000–2002 (set B), with the intervening time being
unlikely to be genetically relevant given the longevity of the species (>15 years in the wild
[10]). There were no differences in allele frequencies between sets A and B at any of their three
shared sites (averaging over 4 common loci, Brookfield: A = 5.25, B = 7.00, P = 0.250; Kulpara:
A = 6.00, B = 6.00, P = 1.000; Wauraltee: A = 8.00, B = 6.75; P = 0.500; Wilcoxon signed-ranks
tests). Set B DNA was extracted via same-day 5% Chelex extractions performed in the field (S1
Text) [41]. Set A included DNA from hair but also from blood and tissue, all extracted using
phenol/isoamyl alcohol+chloroform extraction protocols (S1) [42, 43]. Blood samples were
taken into tubes containing EDTA, and frozen immediately in liquid nitrogen. Tissue samples
were frozen immediately in liquid nitrogen in the field then kept at −80°C, or held at room
temperature in absolute ethanol (AnalaR) or dimethyl sulphoxide storage buffer [44].

Mitochondrial DNA analyses

Two approaches to analyse mtDNA sequence variation were used: (i) Southern blot RFLP anal-
ysis of the whole mtDNA genome and (ii) single-strand conformation polymorphism (SSCP)
combined with sequencing of a 400-bp section of cytochrome b. Cytochrome b is useful when
looking for longer-term signatures of isolation owing to its relatively well-studied rate of evolu-
tion in mammals [45]. Note that mtDNA analyses could be performed only on populations for
which tissue samples were available; insufficient DNA was available from single hair samples
also being genotyped for microsatellites.

Wholemitochondrial genome RFLP. A preliminary RFLP analysis of the entire SHN
wombat mtDNA genome used 22 restriction enzymes, five of which revealed polymorphisms
characterising two haplotypes, in four individuals from the Murraylands area [33]. Because
DNA was limiting for some samples, only three of these polymorphic enzymes (Acc I, Ava II
and Hpa I) were employed for population samples, with the primary aim of identifying the geo-
graphic distribution of the two known haplotypes. DNA from 47 tissue samples was used, from
seven sites spanning the SHN wombat distribution: three locations in the Murraylands in the
eastern species range (10 individuals from Swan Reach, 5 Brookfield, 9 Sturt Highway), three
locations from the western (FWC) region (6 Fowler’s Bay, 3 Nundroo, 6 Coorabie, and one
location on the Eyre Peninsular on the western side of the Eyrean barrier (8 Mount Wedge)
(Fig 1). Restriction digests of 4 μg of genomic DNA were performed overnight in 30 μL reac-
tions, and the digests electrophoresed for 15–18 hours at 50–60 V beside a Lambda/Hind III
size marker. Southern transfers were performed in 0.4 M NaOH overnight to nylon mem-
branes (Hybond-N+, Amersham). The mitochondrial DNA used as a probe for the
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hybridisation was from a dasyurid marsupial, the common dunnart Sminthopsis crassicaudata
(probe pSMB9, 15 kb of mtDNA cloned into pBR322 by Dr Rory Hope and colleagues at

Table 1. Estimates of genetic variation at four microsatellite loci in 24 Lasiorhinus latifrons sampling sites from southern Australia.

Site Data Set Latitude Longitude n AD AR HE FIS nPA

West of the Eyrean Barrier

Nullarbor + Far west coast (FWC)

Eucla B 31˚400S 128˚530E 9.00 4.50 3.02 0.63 0.00 0

Nullarbor B 30˚510S 130˚280E 27.00 5.00 2.86 0.62 -0.10 0

Nundroo A 31˚470S 132˚120E 12.25 7.00 3.83 0.75 0.26 1

Coorabie A 31˚540S 132˚180E 13.50 6.25 3.66 0.75 0.00 1

Fowler’s Bay A 31˚580S 132˚340E 6.00 4.50 3.52 0.70 -0.15 0

Ceduna A 32˚080S 133˚410E 3.00 4.50 4.50 0.72 0.07 0

Average 11.79 5.46 3.33 0.68 0.00 0.36

Gawler Ranges

Lake Harris B 31˚040S 135˚140E 13.00 4.25 2.72 0.51 -0.01 0

Rose Swamp B 31˚170S 134˚550E 8.75 4.50 3.11 0.64 -0.02 0

Hiltaba A 32˚080S 135˚030E 14.25 6.75 3.87 0.77 -0.05 2

Scrubby Peak B 32˚310S 135˚190E 24.00 4.25 2.81 0.59 -0.05 0

Average 15.00 4.88 3.09 0.62 -0.04 0.48

Eyre Peninsula

Poochera B 32˚430S 134˚500E 6.50 4.75 3.50 0.70 0.24 0

Bramfield A 33˚380S 134˚590E 7.75 4.75 3.21 0.64 -0.01 0

Mount Wedge A 33˚290S 135˚090E 9.75 3.75 2.70 0.60 -0.15 0

Average 8.00 4.34 3.08 0.64 0.00 0.00

Average (west) 11.90 5.06 3.20 0.65 -0.02 0.35

East of the Eyrean Barrier

South and West Yorke Peninsula

Rickaby B 34˚430S 137˚310E 5.00 4.25 3.31 0.63 0.14 0

Wauraltee A/B 34˚300S 137˚360E 43.50 10.00 3.51 0.73 0.13 1

Point Pearce B 34˚240 137˚260E 6.25 3.25 2.59 0.53 -0.29 0

Junkyard B 34˚250 137˚300E 6.75 3.75 2.88 0.61 -0.04 0

Wallaroo B 33˚560 137˚360E 8.00 4.75 3.12 0.63 -0.13 0

Average 13.90 7.77 3.31 0.68 0.05 0.63

Northeast Yorke Peninsula

Kulpara A/B 34˚040S 138˚020E 81.25 8.25 3.56 0.76 0.01 0

Tiparra B 34˚060S 137˚540E 6.50 5.00 3.43 0.65 0.07 1

Average 43.88 8.01 3.55 0.75 0.01 0.07

Murraylands

Sturt Highway A 34˚250S 139˚080E 8.00 5.25 3.72 0.75 -0.17 0

Mannum B 34˚540S 139˚180E 3.75 3.00 2.73 0.50 0.26 0

Swan Reach A 34˚340S 139˚360E 82.75 9.25 3.89 0.80 -0.02 1

Brookfield A/B 34˚210S 139˚240E 115.75 7.50 3.66 0.78 0.03 1

Average 52.56 8.02 3.74 0.78 0.01 0.94

Average (east) 33.41 7.97 3.61 0.76 0.02 0.68

Average (overall) 21.76 7.11 3.49 0.72 0.01 0.58

Average sample size per locus (n), Allelic diversity (AD), allelic richness (AR), expected heterozygosity (HE), inbreeding coefficient (FIS), and number of

private alleles (nPA) are presented for each sample sitesite. Sample-weighted averages are calculated.

doi:10.1371/journal.pone.0162789.t001
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Adelaide University). Detailed descriptions of the hybridisation procedure are given in [40].
Each fragment was scored as present or absent in each individual.

Cytochrome b. Cytochrome b PCR analyses were performed on DNA from 64 tissue sam-
ples from the same seven sites used in the RFLP survey (21 Swan Reach, 10 Brookfield, 8 Sturt
Highway; 6 Fowler’s Bay, 3 Nundroo, 7 Coorabie, 9 Mount Wedge). These 64 samples included
all 47 used for the whole genome RFLP analyses, plus 17 more that had insufficient DNA for
RFLP analysis but enough for PCR. Universal primers L14724 and H15149 [46] were used to
amplify a 400-bp region of the cytochrome b gene. Ten μL PCRs were conducted in the pres-
ence of 2.5 mM MgCl2, 5 pmoles each primer, 200 μM each dNTP, 1 X PCR reaction buffer
(Gibco/BRL) with 0.5 units Taq polymerase and 0.05 μl α-dATP33 for 30 cycles with an anneal-
ing temperature of 50°C. Denatured PCR products from all 64 samples were first screened by
SSCP [47] to identify sequence variants. This identified two gel phenotype variants. Twelve
individuals (representing six of each gel phenotype, and spanning regions) were sequenced for
the entire 400-bp fragment in both directions using standard ABI dye-terminator procedures
(ABI Prism 377) with the PCR primers as the sequencing primers. There were no sequence dif-
ferences among members of the same SSCP phenotype from different populations, giving con-
fidence that sequence variation in the included populations had been well assayed. As is typical
for mammalian cytochrome b, the sequences aligned perfectly with no insertions or deletions
being evident.

Mitochondrial DNA analyticalmethods. Genetic diversity parameters were estimated
from the southern blot RFLP and SSCP haplotype data using REAP (Restriction Enzyme Anal-
ysis Package, version 4.0 [48]). For the RFLP data, REAP also estimated evolutionary distances
(based on pairwise distances), and ARLEQUIN was used to estimate a minimum spanning tree,
Fu’s FS test for population expansion and/or selection [49], and Tajima’s D test for expansion,
bottlenecks, and other departures from the neutral mutation hypothesis [50]. ARLEQUIN was
also used for analyses of molecular variance (AMOVA) that estimated variance among groups
(FCT), among populations within groups (FSC) and within populations (FST).

The extent of geographic heterogeneity in the frequencies of haplotypes was assessed using
Monte Carlo simulations executed by REAP, following the method of Roff and Bentzen [51].
For each of the two haplotype frequency matrices (RFLP and cytochrome b), 10 000 randomi-
sations were performed for each of three datasets: all seven sites together, the three Murray-
lands sites together in an eastern group and the four western sites (including Mount Wedge
from the Eyre Peninsula) in another group.

Nuclear DNA analyses

Microsatellite screening. Although more markers were available by the time of the second
study [34, 36, 37, 52], these were not retrospectively applied to sample set A as little DNA
remained from those samples. Further, the goals of the second study and the low DNA
amounts in single hairs dictated that not all markers used in the first study were scored in sam-
ple set B. Hence, only four microsatellite loci were common to both data sets: Lla54CA,
Lla67CA, Lla68CA and Lla71CA [32, 33, 35]; four loci– 3AT, Lla16CA, Lla55A and Lkr107 –
were unique to set A (making a total of eight for that set [45]); five loci were unique to set B:
Ll2, Lk13, Lk21, Lk23 and Lk37 (making a total of nine for that set [19]). Although sets A and
B were analysed several years apart, the same amplification and genotyping procedures were
used, and reference individuals from set A were used for sizing control (S1) [52]. At the three
sites common to sets A and B, we checked for genotype matches and there were none, implying
no animal was sampled in both periods. Rigorous quality control procedures were employed to
prevent genotyping errors when identifying individuals from anonymously collected hair.

Subdivision of Southern Hairy-Nosed Wombats
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Single hairs only were used for set B [34, 36], but both single and pooled hair samples were
used for set A. Pooled samples showing more than two alleles at any locus were identified as
mixed, and removed. Given the variability of the loci, the probability of identifying mixed sam-
ple as a single individual was extremely low: using eight loci in set A, PID < 0.01 [53], and
using nine loci in set B, PID < 5.93 × 10−6 [54].

Genetic diversity frommicrosatellite data. Sets A and B were combined for analysis of
their four shared loci. Where appropriate, separate analyses were conducted for sets A and B
using the eight or nine microsatellite loci available, respectively. Genetic diversity measures
within sampling sites, sample size per locus, expected heterozygosity, FIS and number of private
alleles were obtained using GENALEX (version 6.5 for Excel 2010 [55]). Allelic diversity and alle-
lic richness were calculated using FSTAT (version 2.9.3 [56]). Deviations of genotype propor-
tions from Hardy-Weinberg equilibrium (HWE) were estimated using the Markov chain exact
probability method [57] in GENEPOP (version 4.1 [58]). In each sampling site, linkage disequilib-
rium (LD) among the loci was evaluated using ARLEQUIN (version 3.5.1.3 [59]). Friedman tests
were used to test whether expected heterozygosity (HE) and allelic richness (AR) differed
among sites. Identification of sites with high or low diversity was conducted by comparisons
among all pairs of sites using Wilcoxon paired-samples signed-ranks tests with locus as the
pairing factor. As there were only four loci, the maximum possible P-value for pairwise tests
between sites was 0.07, so these are taken as significant.

For situations where many significance tests were carried out, corrections for multiple tests
were applied using the sequential Bonferroni technique [60]. Nonetheless, sequential Bonfer-
roni can mask important effects if applied in a blanket fashion, so individually significant
results were examined to identify any individual loci or sites that persistently showed deviation
from genetic equilibria.

Genetic structure using microsatellite data. We used a Bayesian approach to determine
the number of distinct population clusters within the combined four-locus sample sets. The
program STRUCTURE (version 2.3.4 [61, 62]) was used to calculate the probability of the data (X),
given a hypothesized number (K) of clusters, Pr(X|K), for all possible K, from 1 to the total
number of collection sites (24 sampling sites, 12 sampled in set A, 16 in set B, with 4 sites in
common). STRUCTURE is a genotype-based analysis and hence will reflect shorter-term gene
flow than will genic measures (i.e. based on allele frequencies). We used the approach of
Evanno et al. [63] to identify the number of clusters, setting the parameters to their default val-
ues, as recommended by the STRUCTURE users’ manual. After identifying the most likely K
(which required 20 runs for each of the 24 potential K, using a minimal 10 000 burn-period fol-
lowed by 10 000 replications for each run [63]), a final run was undertaken with a burn-in
period of 30 000 followed by 500 000 replications. The groups of sites identified by STRUCTURE

as sharing genetic cluster membership were used to specify the population groupings for analy-
ses of molecular variance (AMOVA), carried out using ARLEQUIN, to quantify genetic differentia-
tion in a framework based on allele proportions.

Differences in allele proportions between samples from different sites were examined using
GENALEX, which was also used to calculate the mutual information index, SHUA, which pro-
vides a more robust measure of genetically effective dispersal (migration) than does FST [64].
The number of migrants between populations, Nm, was calculated from SHUA. To estimate
divergence times using Goldstein et al.’s [65] absolute dating method, we first calculated their
measure of genetic distance, (δμ)2 [65, 66], using ARLEQUIN. The number of generations, τgen,
since coalescence, was calculated using the following equation (Eq 2 in [67]):

tgen ¼
ðdmÞ

2

2m
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where μ is the microsatellite mutation rate. We used a mutation rate of 10−3 for microsatellites
in vertebrates [68–70] and a generation time of 10 years [35] to estimate divergence times. If
we use a mutation rate an order of magnitude lower (10−4) our estimated divergence times are
an order of magnitude longer, in tens of thousands rather than thousands of years. In any case,
10−3 is an average of a set of values with high variance; the actual rates of the particular loci are
what matters and these are unknown. As these divergence estimates are based on only the four
loci common to all samples, stochasticity will be high and so their relative values, which will
not change if we change mutation rates, are more valid than their absolute values. We provide
a range of times (95% confidence intervals), rather than a point estimate [71]. If this confidence
interval included 0, the divergence time was not significant. We also supply divergence time
estimates based on eight (set A) or nine loci (set B).

Network analysis was implemented in EDENetworks [72] to construct a minimum-span-
ning tree (MST) based on the genetic distance between populations. An MST is the minimal
network necessary to connect all population genetic samples taken at sites in a whole data set.
For this purpose, the program plots all sites (nodes) in a network graph with connections
(edges) between all nodes. Each edge was weighted according to its pairwise genetic distance
((δμ)2). The MST selects a subset of edges that connects all nodes while minimizing the overall
genetic distance. The layout of the MST was recalculated 1000 times to generate a 50% boot-
strap tree. The resulting network was then manually manipulated (without changing degree of
connectedness) to better conform to geographic reality.

Results

Geographic patterns of variation within populations

Mitochondrial DNA. Six RFLP haplotypes were identified across the seven SHN wombat
sites surveyed (Table 2 and Fig 2). Five haplotypes (I–V) were found in the 24 eastern (Murray-
lands) individuals, while the 23 western samples–collected over a much larger geographic
area–revealed only haplotypes I and VI. Haplotype I, the only one shared between geographic
regions, was also the most common in each region. The average within-site RFLP nucleotide
diversity across all seven sampling sites was 2.41% (SE = 0.002, range 0.40–6.63%,Table 2). The
average within-site nucleotide diversity for the eastern sites (4.94%) was an order of magnitude
higher than that of the western sites (0.52%). All four western sites had significant negative val-
ues for Fu’s FS, indicating population expansion or selection (Table 3). Two of the three eastern
sites had non-significant FS, but Brookfield had a significant negative FS (Table 3). Tajima’s D,
which is less powerful in detecting population expansion or selection than is FS, was significant
only for Fowler’s Bay in the west, and even then, only marginally (Table 3).

Among the 64 individuals screened by SSCP, two cytochrome b haplotypes were evident,
named F (Genbank HM008258) and G (Genbank HM008259). Sequencing of 12 SSCP pheno-
type representatives revealed no further sequence diversity than was evident from SSCP pheno-
type alone and showed that the two haplotypes differ by only two base pairs (0.5% sequence
divergence)–both synonymous, third position transitions. The haplotypes associated perfectly
with the two whole-mtDNA RFLP haplotypes identified by Taylor [33]. Haplotype F was pres-
ent in all sites, but haplotype G was present only in the three eastern sites. The six RFLP haplo-
types were nested within the two cytochrome b haplotypes: individuals with RFLP haplotypes
I, III, IV or VI had cytochrome b haplotype F, while individuals with the RFLP haplotypes II or
V had cytochrome b haplotype G. Cytochrome b nucleotide diversity was greater for the east-
ern (0.17–0.26) than the western sites (all 0).

Nuclear DNA. At all 24 sites, the four microsatellite loci common to all samples were
polymorphic, with an average of five or more alleles per locus, and expected heterozygosities
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(HE) were high (average = 0.72) (Table 1). There was little indication of Wahlund effect or
technically problematic loci. The Wahlund effect occurs when a population has more homozy-
gous and fewer heterozygous genotypes than would be expected [73]. This effect would be evi-
dence that wombats from different areas had been pooled in the most recent generation, either
naturally, or by our sampling. There were only two significant homozygous excess deviations
from HWE out of 96 exact tests (Bramfield, locus 54A; and Poochera, 68CA), both west of the
Eyrean barrier. Using all available loci in each set increased the number of significant devia-
tions to only eight (7 of 96 exact tests in set A, 1 of 135 in set B), adding sites east of the Eyrean
barrier (Brookfield, locus 3AT; Swan Reach, 3AT; and Wauraltee, 16CA, 54CA, 68CA in set A;
Kulpara, 68CA in set B; Nundroo, 71CA, 107 was the only significant western site, in set A).
Similarly, the few significant LD tests were not patterned with respect to locus pairs or sites.
Even when all available loci were examined, the number of private alleles was highest on the

Table 2. Southern blot RFLP compound haplotypes and frequencies, and nucleotide diversity (as percentages) in seven sites of SHN wombats.

Haplotype

Site Region I II III IV V VI Diversity

Fowler’s Bay west 3 0 0 0 0 3 0.55

Nundroo west 2 0 0 0 0 1 0.62

Coorabie west 4 0 0 0 0 2 0.49

Mount Wedge west 2 0 0 0 0 6 0.40

Average (west) 0.52

Swan Reach east 4 4 0 0 2 0 4.19

Brookfield east 2 1 1 1 0 0 6.63

Sturt Highway east 5 2 0 1 1 0 3.99

Average (east) 4.94

doi:10.1371/journal.pone.0162789.t002

Fig 2. RFLP Haplotypes. Unrooted neighbour-joining tree of six whole mtDNA RFLP haplotypes in L. latifrons populations. E = east of the Eyrean barrier,

W = west of it.

doi:10.1371/journal.pone.0162789.g002
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Yorke Peninsula, consistent with its many small and isolated populations (S1 Table). Thus
there is little evidence of substructure within sites.

Levels of genetic variation at microsatellite loci differed among the 24 sites (Friedman tests
for HE P = 0.003, for AR, P = 0.002). There was little or no east–west pattern in level of genetic
variation: correlations of HE and AR with longitude were small and non-significant (HE:
r = 0.034; AR: r = 0.009; P> 0.10). However, there were consistent collections of regional sites
that had high or low diversity as identified by the approach specified in Methods (S2 Table).
The FWC, with its large population sizes, had relatively high diversity: Nundroo and Coorabie
in particular had many significantly high HE comparisons with other sites, and these sites plus
Ceduna similarly showed high AR. Equally, the large Murraylands populations in the east gen-
erally had high HE: Sturt Highway, Swan Reach and Brookfield had many significantly high
pairwise comparisons with other sites, and the first two of these sites also showed high AR. In
contrast, the remaining sites, central to the species range, showed generally low variation with
the notable exception of Hiltaba, which had high HE and AR. Point Pearce and Wallaroo
(Yorke Peninsula), and Mount Wedge (Eyre Peninsula), had significantly low HE compared to
most other locations, and disproportionately low values of AR were seen at Point Pearce, Wal-
laroo and the other Yorke Peninsula site Junkyard, also Mount Wedge, and two Gawler Ranges
sites (Scrubby Peak and Rose Swamp).

Regional population genetic structure

Common variation in mitochondrialDNA shared across the Eyrean barrier. There was
modest divergence between locations east and west of the Eyrean barrier, based mainly on a
few closely related haplotypes being recorded only in the east or only in the west. A hierarchical
AMOVA on these mtDNA data indicated east vs. west structuring: between the two regions
FCT = 0.34, P< 0.028; among sites within regions FSC = 0, P> 0.41; within sites FST = 0.33,
P< 0.001. It should be noted that the absolute estimates of mtDNA divergence are upwardly
biased because we screened known polymorphic RFLP haplotypes, so relative divergences are
most relevant. The smallest and the largest haplotype frequency divergences (found by REAP)
were between haplotypes in the east (Murraylands) (0.82% similarity between haplotypes II
and V; 17.95% between II and III). The two haplotypes seen in the west (I and VI) had low
divergence (0.92% similarity).

Cytochrome b haplotype F was present at all sites, but haplotype G was detected only in
eastern sites. Based on their 0.5% divergence, and assuming 2% divergence per million years
[74, 75], these two haplotypes may have diverged approximately 250 000 years ago. Since this
derives from only two base pairs, the estimate is highly uncertain, but is consistent with the
whole-mtDNA RFLP estimates in being small. This mtDNA divergence pre-dates by many
thousands of years the divergence revealed by the microsatellite data (see below).

Table 3. Fu’s FS and Tajima’s D values, based on RFLP haplotypes, for seven sites of SHN wombats.

Site Region FS P D P

Fowler’s Bay west −5.95 <0.00001 1.75 0.05

Nundroo west −6.35 <0.00001 1.03 0.19

Coorabie west −6.35 <0.00001 1.03 0.20

Mount Wedge west −5.27 <0.00001 0.41 0.34

Swan Reach east −0.94 0.26 0.03 0.48

Brookfield east −30.08 <0.00001 −0.75 0.32

Sturt Highway east −1.35 0.14 −0.26 0.43

doi:10.1371/journal.pone.0162789.t003
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Close relationships in nuclearDNA between locations neighbouring each side of the
Eyrean barrier. STRUCTURE identified six microsatellite clusters, which were highly associated
with geographic regions: cluster 1 represented individuals mainly from Nullarbor + FWC, clus-
ter 2 Gawler Ranges, cluster 3 Eyre Peninsula, cluster 4 south and west Yorke Peninsula, cluster
5 northeast Yorke Peninsula, and cluster 6 much of the Murraylands (Fig 3, S3 Table). Proba-
bility of membership of a single cluster was very clear, 0.9 or greater, for 10 of the 24 sites (S3
Table). There were two sites (Tiparra, Sturt Highway) with the greatest affiliation to clusters
outside their geographic area, but in both cases they were also strongly affiliated with their
expected cluster. Two other sites, Mannum and Swan Reach, were most strongly associated
with their geographic area but were almost equally associated with clusters outside their geo-
graphic area. Clusters 1 and 6, the extreme west and east clusters, were also evident using set A
alone (eight loci) or set B alone (nine loci). These within-dataset analyses are reported in more
detail below.

As would be expected, the six geographic groupings that are also largely reflected in micro-
satellite cluster membership (S3 Table) were significantly genetically differentiated according
to hierarchical AMOVAs of microsatellite data (Table 4). However, the allele frequency variance
within these groupings was higher than the variance among, reflecting the complexity of local
differentiation.G tests of SHUA (measure of gene flow) were significant for only three of 276

Fig 3. Microsatellite Clusters. Proportion of each of six microsatellite STRUCTURE clusters represented in individuals from each sampling site,

using the four loci in the combined dataset (sets A and B). Columns represent data from individual SHN wombats, divided into sampling sites

by vertical narrow dark lines, and organized into geographic regions.

doi:10.1371/journal.pone.0162789.g003

Table 4. Hierarchical analysis of molecular variance (AMOVA) based on microsatellite data for 24 SHN wombat sample sites, (a) among the six geo-

graphic groups identified by STRUCTURE, and (b) among two groups (East v. West) identified by forcing K = 2.

Source of variation Variance % total Probabilitya F-statistics

(a) 6-cluster solution

Among groups 0.10 10.89 <0.0001 0.109

Among sites within groups 0.04 4.11 <0.0001 0.046

Within sites 0.77 85.00 <0.0001 0.150

(b) 2-cluster solution (East v. West)

Among groups 0.03 3.79 <0.0001 0.038

Among sites within groups 0.14 15.76 <0.0001 0.164

Within sites 0.71 80.45 <0.0001 0.196

a. Probability of having a significantly higher variance component and F-statistic than the observed values by chance alone (1023 permutations).

doi:10.1371/journal.pone.0162789.t004
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pairwise comparisons between sites, indicating restricted gene flow: Hiltaba (Gawler Ranges)
vs. three south and west Yorke Peninsula sites—Junkyard (SHUA = 0.743, P = 0.019), Point
Pearce (SHUA = 0.728, P = 0.019) and Rickaby (SHUA = 0.699, P = 0.042). Levels of subdivision
within geographic groupings varied: average estimates for the Murraylands were relatively low
(gene flow high), being SHUA = 0.119, Nm = 1.719, and were higher (gene flow lower) for other
regions (Nullarbor+FWC, 0.280, 0.310; locations on the Yorke Peninsula 0.342, 0.208; Eyre
Peninsula 0.340, 0.210; Gawler Ranges 0.307, 0.258).

Divergence times estimated from (δμ)2, calculated from four loci common to all samples,
showed patterns that were not clearly related to geographic proximity, and showed several rela-
tively close relationships between locations on different sides of the Eyrean barrier (Table 5).
These microsatellite data divergence times were in hundreds to thousands of years, rather than
the hundreds of thousands of years indicated by the mtDNA data (see above). Between the six
clusters, only six divergence times were significant. Nullarbor + FWC showed significant diver-
gence from the Murraylands, south and west Yorke Peninsula, Eyre Peninsula and Gawler
Ranges. There was also significant divergence between Eyre Peninsula and south and west
Yorke Peninsula, and between south and west Yorke Peninsula and the Murraylands. Recent
habitat fragmentation and consequent lower-than-average HE on the south and west Yorke
Peninsula is likely to have inflated the differentiation of these sites (and estimated divergence
times) from the nearby Murraylands. Again, this same pattern of results was found using sets
A and B alone (as reported in more detail below). The longest significant divergence time in
both sets was associated with the extreme west cluster.

Network analysis, which allows visualisation of these population relationships, showed
numerous connections in genetic similarity between clusters on either side of the Eyrean bar-
rier (Fig 4). Indeed, if populations east and west of the barrier were distinct, we would expect
the barrier to break no edges on Fig 4, whereas it breaks six. Consistent with this, forcing STRUC-

TURE to identify two clusters yields two groups that are genetically different from each other
(Table 4, SHUA = 0.372, AMOVA P< 0.0001), but in which the cluster containing eastern sites
also included some sites west of the Eyrean barrier (Hiltaba, Bramfield and Mt Wedge). As a
result of this cross-gulf relatedness, an a priori east–west split separating sites on either side of
the Eyrean barrier did not produce significantly different groups (AMOVA P = 0.141).

Using more loci available within subsets of data. The main findings of the range-wide
four-locus analyses were supported by separate analyses using all eight loci available in set A
and nine in set B. Because each set sampled different sites, STRUCTURE found only four clusters,
not six, in each set. In both sets, the Murraylands sites east of the Eyrean barrier formed one
cluster, and the Nullarbor + FWC and some Eyre Peninsula sites to the west of the barrier
formed another cluster. In both sets, the two other clusters were on the Yorke Peninsula,
although in set A the northeast Yorke cluster (east of the Eyrean barrier) also included sites
from the Eyre Peninsula (west). Hierarchical AMOVA analyses confirmed significant differences
in variation among the four clusters identified in each set (set A P = 0.032, 2.23% of total varia-
tion; set B P< 0.0001, 5.71% of variation).

A similar pattern of relative divergence times between sites was seen in estimates based on
the combined four-locus data, and estimates using all available loci in sets A and B separately.
All divergence times were significant with the exception of one time in set B (between the west-
ern—Nullarbor/FWC/Eyre Peninsula—cluster and the south and west Yorke Peninsula clus-
ter). Most importantly, in both data sets, the western cluster was associated with the longest
divergence times. The divergence time between the western cluster and the eastern Murray-
lands cluster was 2.3 times longer than the shortest divergence time. In set A, the longest diver-
gence time (between the western and northeast Yorke Peninsula clusters) ranged from 356,537
to 658,445 years whereas the shortest time, between the Murraylands cluster and the south-
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and-west Yorke Peninsula cluster, ranged from 19,687 to 177,885 years. In set B, the longest
divergence time (between the western and Murraylands clusters) ranged from 16,642 to
807,729 years whereas the shortest time, between the two Yorke Peninsula clusters, ranged
from 27,275 to 327,805 years. The different estimates from the different numbers of loci reflects
sensitivity of (δμ)2 to the number and diversity of loci employed [65, 66]

Discussion

Our results suggest that geological events may have structured genetic variation in the SHN
wombat, but in such a way that neither the Eyrean barrier nor the Spencer Gulf marks a clear
genetic break in the centre of the SHN wombat distribution. We found some evidence for
genetic differentiation between the most easterly and westerly sampled locations of SHN wom-
bat. This may reflect past influence of the closing of the land bridge, where Spencer Gulf now
lies, when the sea level rose after the period of maximum Pleistocene aridity, approximately
17,000 years ago (Fig 1) [14]. The period of maximum aridity also produced the Eyrean barrier
north of Spencer Gulf land bridge [25, 26] and the Nullarbor barrier at the western end of the
SHN wombat’s current distribution [9]. Molecular data have shown that these two barriers
were responsible for major phylogeographic breaks in birds, other vertebrates and plants [9,
27, 28]. We tried to sample SHN wombats 175 km west of Eucla (Fig 1) but the populations
there appeared extinct [19]. However, future research using mtDNA from both sides of the
Nullarbor barrier may potentially reveal a SHN wombat Pleistocene refuge west of this barrier.
For some marsupials, this period of maximum aridity did not present barriers but instead
opened a land bridge across Spencer Gulf and to Kangaroo Island [2]. Closing of this land

Fig 4. Network Analysis. Minimum-spanning tree based on pairwise genetic distances [(δμ)2] arranged approximately by geographic layout of

sampling locations. Size of nodes and edges are scaled to the degree of ‘connectedness’ to other populations, lighter colours of edges indicate

decreasing connectedness. Dashed lines enclose STRUCTURE microsatellite clusters.

doi:10.1371/journal.pone.0162789.g004
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bridge after the Pleistocene arid period may have contributed to changes in genetic diversity in
the SHN wombat and speciation in other marsupials.

We examined four scenarios for the potential consequences of the closing of the Spencer
Gulf land bridge on patterns of genetic diversity in and among SHN wombat populations. Sce-
nario 1 proposed that the Eyrean barrier did not prevent gene flow and hence there would be
low divergence between populations on either side of the Gulf. The genetic analyses present
considerable support for this scenario. First, nuclear variation indicated relatively close genetic
similarity of many pairs of locations on opposite sides of the Eyrean barrier / Spencer Gulf,
providing evidence for gene flow across the barrier. In particular, the Eyre Peninsula (west)
cluster is weakly diverged from the Murraylands (east). The Gawler Ranges (west) also has
some strong connections with eastern sites, including in the Murraylands (Fig 4). The geo-
graphic arrangement of these east–west connections suggests complex patterns of gene flow
across the barrier. While the absolute estimates of divergence times here are coarse [76–78],
they are in thousands rather than millions of years, and many east–west site pairs are only as
diverged as ones within the same regional cluster. Such patterns are consistent with gene flow
occurring during late Pleistocene and Holocene environmental fluctuations, fitting plausible
biogeographic scenarios such as movement across the Spencer Gulf land bridge during periods
of Pleistocene aridity.

Second, the data are also consistent with only a partial closure of the Spencer Gulf land
bridge 10 000 years ago, so that some gene flow was maintained to the north of Spencer Gulf.
This partial closure version of Scenario 1 would account for the moderate diversity in the Eyre
Peninsula contact zone compared to the east and west extremes, the only moderate differentia-
tion between east and west, and the weak evidence for expansion from the east. We note that
currently, the range of the SHN wombat has become patchy due to European settlement (Fig
1), cutting off gene flow via the narrow band of suitable habitat north of Spencer Gulf.

Scenario 2 proposed post-land bridge admixture between refuges west and east of Spencer
Gulf, and therefore greater diversity in the contact zone(s) between the two refuges. There was
also support for this scenario, as two potential refuges were indicated by mtDNA and nuclear
DNA variation. While mtDNA divergence was slight, and the most common haplotype shared
between east and west, the east had three haplotypes not found in the west and the west had
one not found in the east, resulting in a significant AMOVA differentiation test. Nuclear varia-
tion was less clearly split, as expected given its higher effective population size but nonetheless
there were some relatively large and significant differences between the most westerly and the
most easterly sampled locations. The mtDNA cytochrome b divergence dates back to approxi-
mately 250 000 years ago, well before the Last Glacial Maximum (24 500 BCE), whereas the
nuclear DNA divergences are much more recent, less than 100 000 years ago (the longest diver-
gence time in Table 5 is 13 715 years). While these patterns could coincide with refuges caused
by mid-Pleistocene aridity, as suggested for other fauna in the region [2], rather than post-
Pleistocene refuges, both could reflect isolation by distance, prior to and after the disappear-
ance of the Spencer Gulf land bridge.

Notwithstanding apparent east–west differentiation, the prediction of Scenario 2 of highest
diversity at the point of contact between two refuges was not fulfilled by the data. Average
expected heterozygosity (HE) was perhaps even relatively low where eastern and western puta-
tive populations would be expected to meet (Table 1). This may reflect recent population
reduction and habitat fragmentation effects.

The competing Scenario 3 –little or no contact between refuges on either side of Spencer
Gulf–is inconsistent with the above evidence for low differentiation and inferred gene flow
among regions. Scenario 4 proposed that the species expanded from a single Pleistocene refuge.
On the contrary, we found the above evidence for western and eastern differentiation. Fu’s FS
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was significant, indicating expansion, for sites from the west and the east, but these results were
not replicated using Tajima’s D. Although diversity indices tended to be lower in the west com-
pared to the east (Tables 1 and 2), the correlations between longitude and HE and AR were
small and not significant, providing no isolation-by-distance evidence for expansion from a
single refuge. Thus the data do not support Scenario 4.

Overall the data give the greatest support to Scenario 1 (low divergence between populations
on either side of the Spencer Gulf land bridge), plausibly consistent with little impact of the
Gulf as a post-Pleistocene barrier. Nevertheless, across the species’ broad range, some geo-
graphic groups might have been separated for some thousands of years.

Conservation Implications

Microsatellite and mtDNA data are consistent with SHN wombat population differentiation
caused by periods of Pleistocene aridity, as has been established for many other taxa in the
region [2, 9, 27, 28]. Even if we assume a microsatellite mutation rate an order of magnitude
faster than the vertebrate average (10−2 instead of 10−3), divergence between the east and west
ends of the species’ distribution seems to predate the 500 years that is conventionally accepted
as the time when humans began to impact on natural evolution [79]. Thus, any proposal for
translocation to enhance gene flow between these two extremes would warrant risk assessment
[79, 80], even though there are no ecological differences between the regions where SHN wom-
bats are currently found (including these east and west extremes) [40]. But additional informa-
tion would be valuable before any determination of appropriate conservation interventions,
including more robust estimates of divergence times and gene flow based on more loci and ide-
ally conducted by simulation-based coalescent analysis, and even more importantly, relative
fitness consequences of inbreeding and outbreeding depression [79, 81]. The effects of translo-
cations between substantially distant populations should be observed first in fenced-off experi-
mental plots before repeating the procedure in the field. Regardless, in the case of extremely
small, isolated populations that are suffering inbreeding depression or likely to do so, making
them prone to extinction, gene flow from nearby but distinct populations is likely to be suffi-
ciently beneficial to outweigh the competing risks of delaying action [23]. We do not advocate
expensive risk assessment, but a cautious balanced approach is necessary for managers to take
appropriate conservation actions, weighing up costs and benefits and the urgency of the situa-
tion. For some smaller populations sampled over a decade ago, intervention may already be too
late, as they are likely extinct.

Six distinct geographic population groupings were identified. The largest population of
SHN wombats exists towards the western edge of its distribution, the FWC, on which basis this
would be the most likely population to survive into the future. However, this population repre-
sents only one of six genotypic groups, and only the western (much less variable) mitochon-
drial grouping that putatively reflects only one of two mid-Pleistocene refuges. Much genetic
information and evolutionary potential could be lost if genetic variation from the other five
genotypic zones were not also conserved.

The Yorke Peninsula populations have diverged from the others at least in part as a conse-
quence of fragmentation and genetic drift. However, two sites, Tiparra and Wauraltee, preserve
private alleles, and may harbour genetic variation of value to the species as a whole. Only seven
animals were found with thorough sampling at the Tiparra site.

In summary, we found evidence that the SHN wombat species is genetically subdivided into
six genotypic clusters, some of which may have persisted for thousands of years. There is some
evidence for two refuges, or possibly isolation by distance, on each side of the land bridge
across the Spencer Gulf that existed during periods of Pleistocene aridity. This substructure

Subdivision of Southern Hairy-Nosed Wombats

PLOS ONE | DOI:10.1371/journal.pone.0162789 October 12, 2016 17 / 22



should be considered in efforts to preserve the maximum potential for adaptation in the spe-
cies, including conservation interventions involving facilitated gene flow [23]. It also presents a
basis for thorough investigation of the genome-wide structure of the species given the availabil-
ity of current efficient genomic screening [82]. Future studies that combine new genetic sam-
pling in the contact zone west of Spencer Gulf and additional markers such as 50 000 single
nucleotide polymorphisms in a spatial analysis with contemporary environmental data (e.g.,
land use change, geology, hydrology and vegetation types) would provide substantial insights
into the combined influence of past climatic changes and current land use on SHN wombat
population viability. This approach would support the identification and prioritization of loca-
tions for amelioration of land degradation and facilitation of natural gene flow.
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