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Abstract
In the brain, external objects are categorized in a hierarchical way. Although it is widely

accepted that objects are represented as static attractors in neural state space, this view

does not take account interaction between intrinsic neural dynamics and external input,

which is essential to understand how neural system responds to inputs. Indeed, structured

spontaneous neural activity without external inputs is known to exist, and its relationship

with evoked activities is discussed. Then, how categorical representation is embedded into

the spontaneous and evoked activities has to be uncovered. To address this question, we

studied bifurcation process with increasing input after hierarchically clustered associative

memories are learned.We found a “dynamic categorization”; neural activity without input

wanders globally over the state space including all memories. Then with the increase of

input strength, diffuse representation of higher category exhibits transitions to focused ones

specific to each object. The hierarchy of memories is embedded in the transition probability

from one memory to another during the spontaneous dynamics. With increased input

strength, neural activity wanders over a narrower state space including a smaller set of

memories, showing more specific category or memory corresponding to the applied input.

Moreover, such coarse-to-fine transitions are also observed temporally during transient pro-

cess under constant input, which agrees with experimental findings in the temporal cortex.

These results suggest the hierarchy emerging through interaction with an external input

underlies hierarchy during transient process, as well as in the spontaneous activity.

Introduction
Categorization of objects in the environment according to their similarity is one of the funda-
mental functions of the human brain. It is typical to conceptualize categorization as involving a
hierarchical structure: an object (e.g., A Doberman) belongs to a higher category (Dog), which,
in turn, belongs to a much higher category (Animal). Unveiling how such hierarchical structure
is represented in neural activity is essential to understanding the process of our memory and
recognition. In spite of several studies that are related to the formation of categories with neural
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activities [1–4], however, neural dynamics underlying representation of hierarchical categories
remain to be clarified.

In the traditional view, objects are represented as attractors in neural state space [5–7].
According to this view, the hierarchical structure of objects is embedded in the state space in
such a way that each attractor corresponding to an object is located in a hierarchical way[5,8–
14]. Attractors corresponding to objects in the same category are located nearby to form a clus-
ter, which corresponds to the higher category. When these clusters of attractors belong to the
same higher class of category, the clusters are again located nearby in the state space. The sta-
bility of attractors in such a hierarchical structure has been studied [9,14], and characteristic
temporal behavior of neural activity also conforms with experimental observations [12,13].

Although the “representations-as-attractors” approach provides insight into categorization,
the studies of this theoretical view have assumed that an external input is provided as the initial
condition of neural activity and, consequently, determines a subsequent response, while external
input itself does not reset neural activities as the initial condition in real neural system[15].
Recent experimental studies have revealed that intrinsic neural dynamics is highly organized
even in the absence of external stimuli [16–18] and is markedly related to response of neural
population to the external stimulus[19–22]. It is considered that responding neural activity
results from interplay between the spontaneous dynamics and the external input. Under the
“attractor” viewpoint, little attention has been paid to such interaction except few studies [23,24]
and no studies focus on the hierarchy in the terms of interaction between spontaneous activity
and external input. In this paper, we ask how hierarchical structure of categorized objects is rep-
resented in spontaneous activity, as well as the recall dynamics through the interaction.

To address this question, we modeled a recurrent neural network in which hierarchical memo-
ries are embeddedbased on “memories-as-bifurcations,” which is proposed in the previous stud-
ies[25,26]. This is a novel concept to understand possible relationship between spontaneous
activity and representations of memories. Here, we focusedon change in the flow structure in the
neural state space with increasing the input strength. Our recurrent network model and the learn-
ing task are quite simple; combination of pairs of inputs and output targets are learned.With this
simple setting, however, hierarchical clustering of neural activities depending on input strength is
shaped by learning, and one can unveil basic logic underlying therein. We found that the neural
dynamics representing a different level in the hierarchy of categories is produced as a function of
input strength: Spontaneous activity spreads broadly over neural state space during which all
memorized patterns emerge from time to time. Hierarchy of memories are embedded as the tran-
sition probability. It is interpreted that the spontaneous activity represents the highest category to
which all memories belong, but not a specific one. With increasing input strength, the neural
activity is focused around some memories in the same category. For further input strength, the
neural activity converges to a target memory. Thus, successively descending level in the hierarchy
is represented as successive bifurcations of the neural activity with increasing input strength.

This network also demonstrates the temporal transitions from the higher (coarse) to lower
(fine) category representation, during transient process under an input for constant input
strength, consistent with the recent experimental observation of temporal changes in neural
activities from coarse-to-fine representations [2,4]. In the present paper, both the changes in
the neural activity, one with an increase in the input strength and the other in time during tran-
sient process are shown to represent transitions from a higher to a lower category.

Results
Before presenting the results from our model, we illustrate the dynamical systems’ view of hier-
archical categorization to be presented here (see Fig 1). A network learns Input/Output (I/O)
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associations called η(ξ): each neuron (e.g., i-th neuron) in the network receives one input ele-
ment (ηi) and is required to generate ξi. Note that an input pattern ηI and the corresponding
target output pattern ξi are uncorrelated. Dynamics for neural activity xi for neuron i are driven
by interaction among neurons through synaptic connections, as well as an input pattern ηi. We
take a rate-coding model so that xi is continuous. Thus, an input pattern does not perfectly
determine the network state, but rather interplay between an input pattern and internal
dynamics is critical to generate the adequate output pattern.

Fig 1. Schematic depiction of the dynamical systems view of categorization through bifurcation as a functionof input intensity.
A) Hierarchical structureof memorized input/ output target (I/O) associations. In the presence of an input, a network is trained for its
activity pattern to represent the associated target. These associations are divided into categoriesA and B: associations ZA1=x

A1 and
ZA2=x

A2 belong to the same categoryA, and their patternsare correlated, while associations A1 and B1 belong to different categories and
their patternsare not correlated. See “MaterialsandMethods” for details. B) Representation of hierarchically structuredassociations with
the change in input intensity. Under an input patternZA1 or ZB1 of a sufficient strength, neural activity is localized as an attractor at each of
the associated target patterns (bottompanel). The neural activity represents each target patternand thus this target is recalled
successfully. With decreasing input intensity, the above attractor is no longer stable, and the neural activity diffuses to wander among the
target patternsbelonging to the same category (middle panel). The neural activities under the different input patterns in the same
categoryare similar patterns, so that only 2 schematic figures for categoryA and B are plotted in the middle panel. The neural activity
represents each of the categoriesA or B. With furtherdecreasing input intensity, the neural activity outspreads over all the targets as
spontaneous activity in the absence of inputs (top panel).

doi:10.1371/journal.pone.0162640.g001
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Synaptic matrix between neurons is changed so that the neural dynamics under an input
generates an output that matches with the target pattern corresponding to the applied input
(See “Materials and Methods” for the explicit neural and learning dynamics). Input patterns
are randomly chosen but are correlated with each other in hierarchical manner, while target
patterns are uncorrelated with input patterns, but are again correlated among the given hierar-
chical cluster. The learning process works so that for each input Ai (Bi, Ci,. . .) for the category
A (B,C,,,), the corresponding target is generated as an output.

Now consider associations of A1 and A2 belong to the identical category A, and associations
B1 and B2 belong to the category B (see subsection “Memory structure” below for details). After
learning, the neural activity—upon presentation of a sufficiently strong input A1—is localized
around the target pattern A1. The neural activity represents the target itself. With a weaker-
intensity input A1, the neural activity changes in time, and approaches intermittently the tar-
gets A1 and A2, which belong to the category A. Hence, the evoked neural activity upon inter-
mediate input A1 represents the category A including the target A1. With a further weakened
input—or with no input—the neural activity is not focused on the corresponding category. The
neural activity wanders across the target patterns (e.g., A1, A2, B1, B2). In this manner, depend-
ing on the input strength, the neural activity can code the target pattern, the category, and all
the category’s items. We demonstrate numerically that the simple learning rule we have pro-
posed produces this dynamic representation of the neural activity.

Memorystructure
We adopted a neural network of N (= 100) rate-coding neurons, whose synaptic matrix Jij

changes according to a learning rule (described in the subsection “Materials and Methods”)
with which I/O associations are memorized in the network. Each of input and output patterns
has as many elements as neurons (here, N = 100). In contrast to our previous study [25], we
applied correlated patterns for inputs and targets forming the hierarchical structure, in which
M associations are included in each of K categories, and a total of M × K associations is memo-
rized. M input patterns as well as M target patterns are correlated within a category, while
patterns across different categories are not correlated, and any pair of an input and a target pat-
tern is not correlated. We established 6 categories (A–F), and each category contains 6 associa-
tions, giving a total of 36 I/O associations. Here, indices 0–5 associations belong to category A,
and indices 6–11 belong to category B, and so forth.

Recall of memorywith strong input
We analyzed the neural dynamics after learning process in the following part. In order to repre-
sent neural activity dynamics, which has many variables, with a few relevant variables, we use the
overlaps of the neural activity with input mm

I ¼
X

i
xiZ

m

i =N and target patterns mm
T ¼

X

i
xix

m

i =N
(see the subsection “Materials and Methods”). In the following section,we mainly use mm

T , denot-
ing it as simply mμ. We first demonstrate that our learning process works well so that a given tar-
get is recalled upon the associated input with sufficient input strength γ (γ = Γ = 16, where Γ
denotes the input strength used in the learning process. See “Materials and Methods”). As a typi-
cal example, the dynamics of evoked activities under inputs 3 and 6 are shown. By applying one
of the learned input patterns, the overlap with the associated target surges to almost unity (Fig
2A(iii) and 2A(iv)) and an attractor that matches the target pattern emerges (Fig 2B(iii) and
2B(iv)). Thus, these targets are recalled successfully, consistent with our earlier study[25].

To examine the generality of these recall behaviors, we measured the overlap with the target
μ under the associated input μ (μ = 0,� � �,35) in 10 networks (Fig 2C), each of which learns a dif-
ferent set of I/O associations. Almost all of overlaps (around 80%) take higher values over 0.9,
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Fig 2. Change in the neural activity patternagainst the increaseof the input strength.A and B) The neural dynamics (i)
without input, (ii) under the input 6 with strength γ = 6, (iii) with γ = 16, and (iv) under the input 3 with γ = 16, indicated by colored
bars above figures in white, right blue, blue and green, respectively. A) The overlaps with the targets 6, 7, and 3 are plotted as
blue, red, and green lines, respectively. Targets 6 and 7 are in same categoryB, while target 3 is in categoryA. B) The
probability density distribution of the neural activity and a sample trajectory in principal component (PC) space. Dotted circles
represent position of the targets. C) The distribution of the overlaps with the targets.We calculated the overlap with a target
under the associated input with γ = 16 for 360 associations (36 associations in 10 networks). D) The temporal average overlap
profiles for the spontaneous activity (gray) and for evoked activities with input strength γ = 6 (light blue) and 16 (dark blue). For
calculating temporal average, we used overlaps over 400 unit time after 100 unit time transient. Error bars are standard
deviation of neural activity over 400 unit time. In the following analysis, temporal average is calculated in this way unless
otherwisementioned.E,F) Change in overlap with increasing input is shown. The overlap with all of targets under input 6
against different strength is computed in E. As samples, the overlaps with targets 3,6, and 7 are plotted in F. G) Bifurcation
diagram of the overlap with target 6 through increasing the input strength of input 6 (bottom)and the largest Lyapunov exponent
(Top). We plot the overlaps at every 5 unit times over 250 unit times after transient time for each input strength.

doi:10.1371/journal.pone.0162640.g002
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meaning that almost all the targets were recalled successfully. Thus, the learning process works
well and I/O associations are embedded successfully.

Emergence of hierarchy with increasing input strength: From diffuse to
focused representation
In the previous subsection,we showed that under a sufficiently strong input, a different
attractor corresponding to the target pattern emerges depending on the applied input. We
investigated how neural activity changed with increasing input strength in the following sub-
sections. By using neural activity under input 6 as an example (Fig 2), we demonstrated that
hierarchy of representation emerges: from representation of a category to that of a specific
memory.

Fig 2A and 2B, show the neural activity dynamics during no input (i.e., spontaneous activ-
ity) and those under input pattern 6, with γ = 6 and with γ = 16. The spontaneous activity
shows chaotic behavior (Fig 2A(i)) with a positive maximal Lyapunov exponent (Fig 2G)
and shapes an attractor around the origin in the PC space (Fig 2B(i)). The neural activity
approaches intermittently to the targets, which is analyzed later. Under the input with γ = 6,
flow structure is changed (Fig 2B(ii)). A new attractor appears in the vicinity of both the target
patterns 6 and 7. In fact, the overlaps of the evoked activity with targets 6 and 7 are elevated,
while the overlap with target 3 remains low (Fig 2A(ii)). Here, targets 6 and 7 belong to the
same category (called B), while 3 belongs to a different category (called A).

To more clearly show the relation between the evoked neural activity and targets depending
on input strength, we computed a set of overlaps mμ as a function of μ = 0,1,. . .,35 (= all memo-
rized targets), which we refer to as the overlap profile (see “Materials and Methods”). Here, we
calculated the temporal average overlap profile (Fig 2D). The profile line for the spontaneous
activity is flat over all of targets. A network, thus, cannot distinguish targets each other, by
overlap values. Then, the profile for γ = 6 shows that the overlaps with targets that belong to
the same category as target 6 take distinctly higher values, as compared with other overlaps.
The overlap profile is nearly flat against targets in category B, with the overlap values, 0.44
±0.19, 0.35±0.19, 0.23±0.15, 0.22±0.17, 0.30±0.17, and 0.24±0.17 for target 6–11, respectively.
Here, SD shows not the statistical error but the amplitude of temporal fluctuation around the
mean value. Mean values plus one-SDs are comparable to the given correlation of targets (1,
0.56, 0.38, 0.3, 0.3, and 0.38, respectively), indicating that overlaps sometimes take values larger
than the given correlation. Thus, the neural activity is sometime highly correlated with some of
the targets in the category B beyond the given correlation of targets. Thus a network generates
a neural activity which has a much higher similarity with targets in the category B than the
expected by the given correlation structure. The produced output is interpreted not as repre-
senting only target 6, but representing the category B. Under a much stronger input value, the
overlaps with targets 6 and 7 are separated (Fig 2A(iii)). The overlap profile shows that the neu-
ral activity matches well with target 6 and distinguishes it from other targets (Fig 2D).

To show the change in the neural activity by gradually increasing the input strength γ, we
computed change of the overlaps with all of the targets (0, 1, . . ., 35) with increasing input
strength (Fig 2E). For the intensity near zero, none of the overlap takes selectively a high value.
As the intensity increases, the overlaps belonging to category B take higher values than those of
the rest of overlaps in other categories. With increasing the strength further, the overlap with
only target 6 is clearly higher than other overlaps. With increasing input strength, therefore,
representation by the neural activity progresses from all targets to a category and then to a spe-
cific target. Finally, we confirmed generality of this change with increasing input strength in S1
File and S1 Fig.
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Hierarchical clusters of neural activity under different inputs
We, next, investigate how activities evoked by different inputs are organized with increasing
input strength. Especially we will show that different clusters of these neural activities are gen-
erated in a hierarchical way depending on the input strength. For this purpose, we first demon-
strate that neural activities for inputs 3,5,6 and 7 exhibit such hierarchical clustering, as an
example and then analyze the entire behavior for all input patterns.

Fig 3A shows temporal average activity patterns under input patterns 3, 5, 6, and 7 with
increasing input intensity, represented in the PC space. Relationship between these associa-
tions are shown in a tree diagram in Fig 3B. For lower intensity of input, the neural activity
patterns under inputs 6 and 7 (belonging to the same category B) are located closely with
each other, while they are separated distinctly from those under inputs 3 and 5, which belong
to a different category (i.e., A). These similar patterns are much more similar than expected
by the given correlation structure as shown below. With increasing input strength, the activity
patterns in the same category are separated. For γ = 16, the overlap under input 6 is distinct
not only from those under inputs 3 and 5 but also from that under input 7. To quantitatively
compare closeness, similarity between the neural activities under different inputs, μ and ν
were computed by Smv ¼

X

i
xi;m xi;v=jxm jjxv j where xi;m denotes the temporal average activity

of the i-th neuron under input μ, and jxv j denotes the magnitude of xv . In this case, the
similarities for γ = 6 are S36 = 0.065, S37 = 0.012, and S67 = 0.80. The similarities for γ = 16
are S36 = −0.02, S37 = 0.02, and S67 = 0.56. The similarities between targets themselves are
S36 = −0.04, S37 = 0.04, and S67 = 0.56. Thus, for intermediate input strength, the neural pat-
terns evoked by inputs 6 and 7 are more clustered than a given target cluster and hard to be
distinguished, while for a higher strength, the neural patterns evoked by these inputs are
more easily distinguished. In other words, the network responds similarly to different inputs
in the same category when input is at an intermediate strength, while the network responds in
a manner that allows the categories to be easily distinguished, even for inputs in the same cat-
egory, when the input is stronger.

We also compared the neural activity under all the inputs memorized (μ = 0,1,� � �,35) to
confirm the generality of the above behavior. Fig 3C diagrams similarity Sμν between the neural
activity patterns evoked by inputs μ and ν, for input strengths 4, 6, and 16. Higher similarity
Sμν indicates that a network generates similar neural patterns even under different inputs μ and
ν. In these diagrams, a cluster formation that is dependent on the intensity of input is clearly
visible. For γ = 16, each small cluster in the diagram corresponds to one of 6 categories A–F.
This cluster structure exactly reflects that of the embedded targets (S2 Fig). As input strength
is decreased to γ = 6, the degree of similarity in each category increases. Average similarity
between neural patterns evoked by inputs in the same category is 0.71, while that between tar-
gets is ~0.49, which is about the value of imposed correlation. The average similarity between
0.49 and 1 indicates that similarity of neural patterns are determined not by solely correlation
of the targets themselves, but is generated by the interplay between internal dynamics and an
applied input. Decreasing the input strength to γ = 4 results in much higher similarity Sμν for
inputs μ and ν in the same category (averaged similarity = 0.78), particularly for inputs A, B,
and F. Interestingly, the similarity for neural activities not only between pairs in the same cate-
gory, but also even between some pairs in different categories (A and F, B and C, and D and E)
is selectively increased. This structure is not included in the given correlation structure of the
target at all (S2 Fig). These clusters of categories are spontaneously generated with internal
neural dynamics, through learning process. These clusters of categories can be considered as a
higher level than the category level. Hence, a higher level in hierarchy is generated spontane-
ously as a result of memorizing simply correlated patterns.
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Fig 3. The neural activities under different input patternswith changing input intensity. A) Temporally average neural activity
patternsprojected in PC space. Spontaneous neural activity and evoked activities under input patterns3 (green), 5 (magenta), 6 (blue),
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Finally, we quantitatively characterized the similarity diagram by using the hierarchical clus-
ter analysis (see“Materials and Methods”). We calculated the diagram from the above similarity
matrix Sμν in Fig 3D and counted the number of clusters by setting a certain threshold for simi-
larity distance (= 0.3 for all input strength). In Fig 3E, the number of clusters is plotted as a
function of the input strength. For a weaker input strength, the number of clusters is around
10, implying that the neural activities under 36 different inputs are categorized into 10 groups.
By increasing input strength, the number increases, until it reaches 31, nearly the number of
learned associations, showing that each of the neural activities under different inputs is distin-
guishable from all others. To confirm if such behavior of the number of clusters is general, we
computed the number of clusters for other ten networks and plotted in Fig 3E. The numbers of
clusters in all networks are around 10 for a weaker input and with increasing input strength,
the number increases more than 30.

In summary, neural activity patterns evoked by different inputs form a hierarchical struc-
ture. With increases in input strength, large clusters—within which neural activities evoked by
different inputs are much more similar than the expected by correlation of targets—are succes-
sively separated into smaller clusters. Hence A network in our model represents a hierarchical
category structure that depends on input strength. Note that this hierarchy is generally
observed for another correlation parameter C as long as C is sufficiently larger (larger than
around 0.16). See details in Supplemental information.

Hierarchical structure embedded in spontaneous activity
Spontaneous neural activity in the absence of inputs shows chaotic oscillation (Fig 2A(i) and
2B(i)). As already discussed[16,19,20], spontaneous activity observed in neural system is not
just noisy but also shows a structured spatio-temporal pattern in which specific patterns similar
to stimulus-evoked patterns appear transiently[17,18]. It suggests that information about the
stimulus-evoked patterns is potentially embedded in the spontaneous activity. In the present
study, target patterns are embedded as evoked patterns in the presence of an input with suffi-
cient strength. We then asked how a hierarchical category of these targets is embedded in
the spontaneous neural activity, by comparing overlaps of spontaneous activity with target
patterns.

We first examined whether spontaneous activity contains information of the target or input
patterns. Here, (normalized) overlap of the neural activity with a given pattern provides a mea-
sure of distance between the generated neural activity and the pattern: If the overlap is closer to
unity, the neural activity is closer to the pattern. In Fig 4A, the overlap of the spontaneous
activity with a given target (target 1) intermittently takes a large value, while overlap neither
with a non-memorized, randomly chosen pattern (green) nor with an input pattern (red)
shows such intermittent increase and fluctuates around the value 0. This indicates that the
spontaneous activity approaches the memorized target patterns more closely than other
patterns.

and 7 (red) with increase in input intensity are depicted. Bold points on lines show the neural activity patternsunder the different input
intensities from γ = 0 to γ = 16 by every 1 point. B) The hierarchy of embedded mappings is also plotted for reference, where the targets
aremarked in the same colors in the PC space. C) The similaritymatrixSμν between the evoked patternsunder inputs μ and ν is plotted
for γ = 4,6, and 16. Similarity is defined in the main text (see also detailed definition in”MaterialsandMethods”), whose (μ,ν) element
indicates the similarity between the neural activities evoked by different inputs μ and ν. D) The cluster dendrogramof the similarity
matrix in C. Dotted line shows threshold value (= 0.3) for counting the number of clusters. E) The number of the clusters as a function of
the input strength. For each input strength, the number of clusters is obtained from the cluster dendrogramas in D. Bold line
corresponds the number of the clusters for the network analyzed in above, and other lines show those for other networks.

doi:10.1371/journal.pone.0162640.g003
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To analyze closely relationship between the spontaneous activity and the target patterns, we
again used an example, where the targets 6 and 7 belong to the same category B, the target 1
belongs to category A, and 22 belongs to category D. The overlaps of identical spontaneous
activity with target patterns 6 and 7 (Fig 4B(i)) and those with target patterns 1, 6, and 22 (Fig
4B(ii)) are presented. The overlaps with target patterns 6 and 7 oscillate with high correlation
with each other, although these show different peaks with slightly different timing. In contrast,
the overlaps with target patterns 1, 6, and 22 do not show a correlated change. Approaches to
these targets exhibit much larger different timing. The spontaneous activity approaches inter-
mittently the different targets belonging to the different categories (Fig 4C) and we present the
overlap profiles at these approaching times in Fig 4D. At t = t1, t2, and t3, the overlaps with the
targets in the categories A, B, and D take high values in a target-selective fashion, respectively.

Finally, we investigated how the spontaneous activity temporally approaches the targets
within the same category and across different categories quantitatively. We calculated the

Fig 4. The neural dynamics in the spontaneous activity. A) Left: The overlaps of the spontaneous activity with target 1 (green) and with input 0
(blue) are plotted,while the overlap with a randomly generated binarypattern is plotted for reference in red. Right: The distribution of the overlap with
targets, inputs and randompatterns that are computed averaged over 36 patterns (μ = 0,1,� � �, 35) are shown. Color bars represent standard
deviations of the distributions. B) The time series of the spontaneous neural activity is plotted. Time series of overlaps of the spontaneous activity with
target 6 (blue) and 7 (red) are plotted in B(i), while that of the overlaps with target 6 (blue), 1 (green), and 22 (brown) are plotted in B(ii). C) The neural
dynamics projected into three-dimensional space (each axis indicates the overlap with the target).Colored circles show the position of the target
patterns.D) The overlap profile of the snapshot spontaneous activity at t = t1 (green) t = t2 (blue), and t = t3 (brown) for the time series shown in A.

doi:10.1371/journal.pone.0162640.g004
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transition probability Pμν (Fig 5A) and mean transition time Tμν from the ν-th to the μ-th target
(Fig 5C) (See “Materials and Methods”). Spontaneous activity exhibited more frequent transi-
tions often from one target to another (e.g., from target 2 to 5) than others that are less frequent
(e.g., from target 2 to 35). To compare transition within a category and between categories, we
calculated transition probability P’ab and mean transition time matrix T’ab among categories,
as are plotted in Fig 5B and 5D, respectively. Spontaneous activity is highly likely to move
within each of categories with shorter transition time, while it rarely jumps across categories

Fig 5. Temporal structureof spontaneous activity. A) Transition probabilityPμν from the ν-th target to the μ-th target.We cannot compute the
probability of self-visitingPμμ, and set at 0, becausewe did not distinguish continuous stay of the neural state around a target from coming in-out-
in the identical target. B) Transition probabilityPab from the categoryb to the categorya. C) Transition time Tμν from the ν-th to the μ-th target
which is averaged with Pμν. White tiles indicate that there is no transition and we cannot calculate the transition time. D) Transition time Tab from
the target b to a. all of values are calculated from the spontaneous activity (0<t<10000). See “Materials andMethods” for the detailed.

doi:10.1371/journal.pone.0162640.g005

DynamicOrganization of Hierarchical Memories

PLOSONE | DOI:10.1371/journal.pone.0162640 September 12, 2016 11 / 19



and takes longer transition time. This means that the hierarchy of the targets is embedded in
the temporal structure in the spontaneous activity.

Hierarchical structure in transient dynamics: From diffuse to focused
representation in time
So far, we have shown how neural representations change with increases in strength of an
input in accordance with a hierarchical structure.We found that these transitions also occur
temporally during the recall process under an input, when its input strength is constant. Dur-
ing recall, neural activity initially represents a category of several target patterns, and then con-
verges to an attractor that represents a specific target.

In Fig 6, we present recall dynamics until the neural activity converges on an attractor
under input pattern 11 for γ = 5, which is slightly above the bifurcation point: under this point
(γ = 4) an attractor in which the activity wanders among targets of a category is formed and,
above this point γ = 5, a more localizedpattern emerges as an attractor. The overlap of this neu-
ral activity with target 11 is plotted in Fig 6A. Up to t = 150, the neural activity fluctuates and
then converges to a fixed-point attractor. In the transient fluctuation, the neural activity
approaches not only target 11 but also other targets in the same category (Fig 6B). After this
approach to the category, the neural activity converges on target 11 selectively. The neural
activity pattern during the transient process reflects the attractor under a weaker input, where
the neural activity is less localized and represents a coarser category. In fact, neural activity
under input 11 after convergence to the attractor for γ = 4 (gray line in Fig 6) is highly over-
lapped with the transient neural activity when γ = 5 (magenta line in Fig 6). For many different
initial conditions of trajectories, the neural activities show the same transition in time with dif-
ferent timing. Although, here, we demonstrate just one example, this temporal change is gener-
ally observed for different inputs (S3 Fig). In this way, the neural activity first approaches a
state representing the category, before reaching the final attractor matching the single target,
showing that the neural activity dynamics are organized hierarchically in time from a coarse to
a specific representation.

Fig 6. The transientneural activity before reaching the attractor. A-C) Transient dynamics of the neural activity under input 11
with γ = 5. The dynamics is colored before reaching the attractor in magenta and after convergence to the attractor in red. Neural
activity after convergence to an attractor with a less intense strength (γ = 4) is plotted in gray, for reference. A) Time series of the
overlap with the target pattern11. B) Overlap profiles before and after convergence in magenta and red are plotted.Here, the
former overlap profile is measured by averaging overlap after 50 unit-time transient up to the convergence point. The latter profile is
measured after convergence. We also plot the profile for the neural activity with a less intense strength in gray as reference. C) The
orbit of the neural activity dynamics in A is plotted, by projecting it into the two-dimensional space. The horizontal and vertical axes
represent the overlaps with targets 8 and 11, respectively.

doi:10.1371/journal.pone.0162640.g006

DynamicOrganization of Hierarchical Memories

PLOSONE | DOI:10.1371/journal.pone.0162640 September 12, 2016 12 / 19



Discussion
It has recently been revealed that the interplay between spontaneous neural dynamics and
external stimuli is significant in response behavior of neural activity[17–22].We have proposed
the novel viewpoint, “bifurcation memories through input strength” to understand this inter-
play[25,26]. By introducing a model that embodies this view, we focus on how hierarchical
memories could be represented. We have shown that the neural dynamics generates their hier-
archical structure from a coarse to a fine level with the increase in the input strength. Spontane-
ous activity in the absence of inputs shows successive approaches to and departures from each
of the memories in the neural state space, representing the highest (coarsest) category to which
all memories belong. By applying a learned input pattern with an intermediate strength, the
evoked neural activity is localized near several targets, to represent the lower (finer) category to
which a few associated memories belong. With further increases in the input strength, neural
activity is localized only around a single target pattern associated with the applied input.

With increasing input strength, a network represents different level in hierarchy, (all targets
-> a category -> a target). This hierarchy is included in a given correlation structure in I/O
associations in the present model. However, by focusing carefully on the neural activities
evoked by different inputs for smaller input strength shown in Fig 3, we found that the neural
activities under different inputs in different categories, A and F, or B and C, exhibit higher sim-
ilarity than correlation of these targets. This indicates that a network identifies these activities
as a same pattern and a new level in hierarchy is generated through interplay between internal
neural dynamics and inputs. Detailed study for the mechanism of spontaneous generation of
new level is left as a future work.

Interestingly, we also found that the transition from coarse to fine categories is valid not
only against the input strength but also in the temporal course of memory recall, which is con-
sistent with previous experimental studies [2,4,27]. These studies have investigated how hierar-
chical objects are represented and processed in neural systems, especially in the visual system.
In a visual system, many studies have revealed that the neural activity patterns showing coarse
category emerge first and then fine category-related neural patterns arise in the process of iden-
tifying an object[2,27].

In our model, neural activity, in response to an input with a sufficient strength, first takes a
broader distribution ranging over all the target patterns within the same category including the
target to be recalled, before it converges on the target pattern. The broader distribution in the
transient time represents the coarse category. Further, we have found that the temporally tran-
sient recall from a coarser to finer category reflects the bifurcation structure from the broader
to localized attractor through the input strength. This result implies that the bifurcation struc-
ture in the intrinsic neural dynamics underlies the temporal processing from coarse to fine cat-
egory observed in the experimental studies. Our proposition that relates the hierarchy to time
and to input strength can be tested experimentally by observingneural activity dependence
upon the input strength. This may be achieved by measuring the activity in the Inferior Tem-
poral area [2] or olfactory bulb [28], as a function of input strength e.g., visual contrast or con-
centration of odors.

There are extensive studies on the conventional associative attractor memorywith hierar-
chical structure, concerning dependence of the stability of memories upon their number
[5,8,9,11,14] and also fluctuation on the weight matrix in terms of statistical physics [29]. Fur-
ther, some studies [12,13] have proposed Hopfield-type models that embed hierarchical mem-
ories and exhibit the transient recall of mixed memories corresponding to coarse category.
These, however, adopt a constant flow structure on neural state space with initial conditions
determined by inputs. Hence relationship between neural activities with and without inputs
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cannot be discussed.Although some studies investigated this relationship [30–32], representa-
tion of hierarchical memories are not addressed. Rather, in the present study, we have revealed
that a hierarchical structure of embeddedmemories in a network is reflected in the spontane-
ous activity, in bifurcation process with increasing the input strength and in the transient pro-
cess during recall of a memorized pattern. These different representations of the structure of
embeddedmemories have not been investigated in the previous studies. In addition, in our
view, there is a single (or a few) attractor(s) for each of input strength and neural trajectories
on neural state space from most of initial states converge to the required attractor, which is in
contrast to the previous studies where trajectories from only neighborhoodof the required
attractor converge due to multiple attractors.

Finally, we discuss on the biological plausibility briefly. The learning rule we employ does
not follow the Hebbian unsupervised fashion often used in standard recurrent neural-network
models of the cerebral cortex [33], nevertheless it satisfies the minimum requirement for a bio-
logical learning rule in contrast to standard supervised learning fashion in recurrent networks
[34,35]: According to one study [33], information available to a synapse is only local informa-
tion for pre- and postsynaptic cells it directly connects and not any global information on cells
it does not directly connect. In fact, our learning rule needs information only on the neural
activity of the pre- and postsynaptic cells (xj and xi, respectively) and the target signal to the
postsynaptic cell ξi. A possible situation might be considered to be a cortical circuit that
receives bottom-up input from a lower sensory area or the thalamus and also top-down input
from a higher area. This circuit is assumed to learn associations between these inputs and, after
learning, reproduces the neural pattern matching with the top-down input pattern in response
to the bottom-up input. Here, the top down input to an i-th neuron represents ξi. This example
is only one possible way to implement our model in a biological neural network, and future
studies are needed to establish the model’s validity.

Materials andMethods

Patterns to be memorized
We let a network of N-neurons learn I/O associations, in which inputs called η and targets
called ξ are binary patterns. In contrast to our previous study [25], we applied correlated pat-
terns, which have a hierarchical structure, as follows: We generated K categories and M × K
associations. We set 2K random patterns, ηA and ξA, (A = 0,1,� � �,K − 1), as typical patterns of
categories, where each element of a pattern takes a binary value generated with the probability
p(x) = (1/2)δ(x − 1)+(1/2)δ(x + 1), and any pair of patterns is not correlated. Second, 2M mem-
bers for each category are generated from the typical patterns, by flipping each element of
the typical pattern with pflp. Thus, targets or inputs in the same category are correlated with
C = (1 − 2pflp)2 on average and otherwise any pairs (including pairs of an input and its associ-
ated target) are not. We set N = 100, K = 6, M = 6, and pflp = 0.15 so that C = 0.49. Within each
category, inputs and targets are generated to satisfy ½

X

i
Zn

i Z
m

i =N� ¼ ½
X

i
x

n

i x
m

i =N� ¼ 0:49 for
μ6¼v, while otherwise, correlation between any patterns is chosen to be zero. Here, [� � �] repre-
sents the average over an ensemble of randomly generated patterns. Hence, 36 associations dis-
tributed among 6 categories are learned. Six categories j (j = 0,1, ���,5) is termed as A, B, C, ���, F
in the order of j, and the associations μ = 6j + l (l = 0,1, ��,5) belong to the same category.

Neural dynamics
We consider a system composed of N (= 100) continuous rate-coding neurons whose activity
xi (i = 1,2,���,N) lies between −1 and 1, basically identical to the network in our earlier study
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[25] and evolves according to

_x ¼ Fðfxig; fJijgÞ ¼ tanhðbð
XN

j6¼i

Jijxj þ gZm

i ÞÞ � xi ð1Þ

where Jij denotes a connection from the j-th to i-th neuron, γημ represents an input patternμ-
with strength γ, andμis the index of learned I/O associations. Parameterβ is set at 4, respec-
tively. We adopt the following learning procedure to embed the I/O associations.

Learningprocedure
The neural activity during learning process evolves in the presence of γηwith a constant γ = Γ,
while the connection Jij is changed so that the neural activity pattern matches the target ξ. Note
that Γ is used during learning process and γ is used in analysis of recall process after learning is
completed. While Γ set at 16, we change γ between 0 and Γ to study the dependence of input
strength on recall process. This evolution of the synaptic connection Jij is given by

_J ¼ aðxi � xiÞxj ð2Þ

where α> 0 is a learning parameter representing the rate of change in synaptic connections
(relative to that of the neural activity). The above synaptic dynamics are determined by correla-
tions between the activities of the pre- and postsynaptic neurons. This learning rule takes a
similar form as the perceptron learning rule [36] where the synaptic connection is changed by
correlations between activities of elements in the input and output layers. We set parameters at
α = 0.01 and Γ = 16, since we have already confirmed that the network can learn a large num-
ber of memories with these parameter values (see [25]).

After an I/O association is learned according to (eq 2), the next association is learned. We
train a network to memorize MK associations by applying this process iteratively MK × 100
times in a random order. During the learning process, both neural and synaptic dynamics run
concurrently. The initial states are set as follows: the neural activities xi take random values
between −1 and 1 with a uniform probability, Jij takes a random value from a binary ensemble
of ±1 with equal probability. Fully connected networks without self-connections are used. For
each run of different learning processes, different sets of mappings are learned so that the gen-
erated networks are different.

Overlap analysis of neural dynamics
We define the following quantities to characterize the neural dynamics. The dynamics of the
network are represented as a trail in N-dimensional neural state space; N is the number of neu-
rons and is set at 100. N-dimensional trail is difficult to investigate directly, so we project these
high-dimensional dynamics to a lower-dimensional state space by using the overlap of the neu-
ral dynamics with the inputs and targets: the overlaps with the input μ and the target μ are
defined as mm

I ¼
X

i
xiZ

m

i =N and mm
T ¼

X

i
xix

m

i =N, respectively. These values increase as the
distance between the neural activity pattern and an input (or target) pattern is decreased, and
they take unity when the distance vanishes. We use the overlap with a few of targets to under-
stand how close the neural dynamics is to the concerned targets, denoted as mμ (expressed, for
simplicity, without the index T).

In contrast to single overlaps, we also use “overlap profile” to analyze global information.
This is a function of overlap mμ against μ = 0,1,� � �,(KM − 1) and represents how far the neural
dynamics are to each of the targets. Let us first considering uncorrelated patterns. In this case,
when the neural activity pattern is similar to one of targets, only the overlap with this target
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takes near-unity and others are close to zero, forming an overlap profile with a single peak. In
contrast, when the neural dynamics do not approach any of the targets or approach all the tar-
gets equally, the overlaps with all the targets take near zero or a comparably high value, respec-
tively, forming a flat overlap profile. In this way, the shape of the overlap profile indicates how
much a given neural activity is localized to one (or a few) target pattern(s). This is the case for
hierarchical patterns. Quantitative analysis is in Supporting information.

Cluster analysis
In order to analyze how the neural activity is organized in response to different inputs of differ-
ent input strength, we applied hierarchical cluster analysis against KM samples of neural activ-
ity under KM different input patterns for the same strength; here, KM = 36. In hierarchical
cluster analysis, we chose two of the closest elements (a sample or a cluster of samples) and
merged them into a larger cluster as a new element and this process was applied iteratively
until the number of elements reached 1. To do this, we needed to define distance between ele-
ments (i.e., between a sample and a sample, a sample and a cluster, and a cluster and a cluster).
In our analysis, samples were represented by neural activity patterns, and we defined the dis-
tance Dμν between the neural activity patterns under input μ and ν by defining the similarity
Sμν as

Smn ¼
X

i
xi;mxi;n=jxm;xnj ð3Þ

Dmn ¼ 1 � Smn ð4Þ

We denoted the neural activity under input ν as xν and x represents the temporal average of
x. We adopted the group average method as the criterion for forming the new larger cluster,
using SciPy (see http://www.scipy.org/).

To study the effect of different input strengths, we examined the hierarchical analysis to plot
dendrograms for γ = 4,6, and 16 in Fig 3D. We set the threshold at 0.3 under which the number
of clusters is counted. The cluster number is computed for different input strengths and plotted
for ten networks (Fig 3E). The value of the threshold is arbitrary, but the qualitative behavior
of the cluster number against the input strength does not change.

Transition probability in spontaneous activity
To analyze temporal structure of the spontaneous activity, we calculated which of the targets
and when the spontaneous activity approaches. We first defined “approach to a target” as the
neural state showing the overlap with this target larger than 0.5. (If more than one targets give
overlaps of more than 0.5 simultaneously, a target with the highest overlap is defined as the
approached one). By this definition, we computed set of time {ti} (0< t0<t1<. . .) at which the
spontaneous activity approaches a target most closely. A approached target at ti is denoted as
αi (i = 0,1,,,35).We calculated sequences of the approach time {ti} and of approached target
{αi} from spontaneous activity (0<t<10000). From these sequences, we calculated the transi-
tion probability Pμν (SμPμv = 1) and mean transition time Tμν from the ν-th to the μ-th target.
Further, we computed transition probability P’ab and mean transition time T’ab from category
b to a according to

Pab ¼ ð
X

m2a;n2b
dðaiþ1 ¼ mÞdðai ¼ nÞÞ=

X

m;n2b
dðaiþ1 ¼ mÞdðai ¼ nÞ; ð5Þ
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Tab ¼ ð
X

m2a;n2b
ðtiþ1 � tiÞdðaiþ1 ¼ mÞdðai ¼ nÞÞ=

X

m;n2b
dðaiþ1 ¼ mÞdðai ¼ nÞ ð6Þ

Supporting Information
S1 Fig. Neural dynamicswith increasing input strength.A) Schematic image of the localiza-
tion factor σ. The factor indicates how the overlap profile becomes concentrated on fewer tar-
gets and then how the neural activity is localized around these targets. B) The upper figure is
same as Fig 2E for comparing with the localization factor. In lower figure, the normalized local-
ization factor averaged over 200 unit-time-steps is plotted. Each line indicates change in the
localization factor for neural activity response to different input patterns. Blue line corresponds
to the factor computed from Fig A.
(EPS)

S2 Fig. Similarity between different patterns. A) Similarity matrix between different targets
that are prescribed (Left) and inputs that are applied(Right). Similarity matrix is measured in the
same way as in Fig 3C. B) Deviation of similarity between evoked neural patterns against inputs
from the similarity in the target patterns. Each element in the matrix is defined as Sμv,activity −
Sμv,target. Here, Sμv,activity and Sμv,target are similarity between evoked activities under input μ and ν
and similarity between targets μ and ν, respectively. See details in “Materials and Methods.”
(EPS)

S3 Fig. Transient dynamics under different inputs. A(i) Transient dynamics of the neural
activity under input 11 as same as Fig 6A for reference. (ii) Time series of the temporally aver-
age localization factor. The temporal average of the localization factor was computed with a
sliding window of 20 unit-time-steps. B) overlap with target 7 for input strength γ = 11 and its
localization factor as same as in A. C) The time series of the localization factor for neural activ-
ity under different input patterns. The black bold line corresponds to the example used in A
and B, while gray lines show the time series of the factor upon the inputs other than 7 and 11.
(EPS)

S4 Fig. Similaritymatrix for different parameters.AB) The similarity matrix Sμν between the
evoked patterns for different correlation parameters, corresponding to Fig 3C. Similarity matrix
for the correlation parameter 0.36. B) That for the correlation parameters = 0.16. C) Deviation of
the similarity of the evoked patterns under inputs in the same category from correlation of targets
for different correlation parameters. The deviation is calculated as Sμ,v in same category(Sμv,activity −
Sμv,target)/(M(M − 1) × K). Sμv,activity and Sμv,target are same as in S2 Fig. M and K are the number of
members in each category and that of categories, respectively.
(EPS)

S1 File. Supporting analysis.

1. Generality of dynamic hierarchy against the change in input strength.

2. Comparison between dynamics structure and a given memory structure.

3. Generality of temporal hierarchy.

4. Neural behavior for different parameters.

5. Supplemental methods.
(DOCX)
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