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Abstract

Objective

Mild traumatic brain injury is a major public health issue and is a particular concern in sports.

One of the most difficult issues with respect to mild traumatic brain injury involves the diag-

nosis of the disorder. Typically, diagnosis is made by a constellation of physical exam find-

ings. However, in order to best manage mild traumatic brain injury, it is critically important to

develop objective tests that substantiate the diagnosis. With objective tests the disorder can

be better characterized, more accurately diagnosed, and studied more effectively. In addi-

tion, prevention and treatments can be applied where necessary.

Methods

Two cohorts each of fifty subjects with mild traumatic brain injury and one hundred controls

were evaluated with a battery of oculomotor, vestibular and reaction time related tests

applied to a population of individuals with mild traumatic brain injury as compared to

controls.

Results

We demonstrated pattern differences between the two groups and showed how three of

these tests yield an 89% sensitivity and 95% specificity for confirming a current diagnosis of

mild traumatic brain injury.

Interpretation

These results help better characterize the oculomotor, vestibular, and reaction time differ-

ences between those the mild traumatic brain injury and non-affected individuals. This
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characterization will allow for the development of more effective point of care neurologic

diagnostic techniques and allow for more targeted treatment which may allow for quicker

return to normal activity.

Introduction
Mild traumatic brain injury (mTBI) is an increasingly common public health concern that has
garnered increased attention in both the lay press and medical literature. Neurosensory effects
are among the most common sequela seen after mTBI, with balance-related findings chief
among these. [1–8] The diagnosis of mTBI has always presented challenges. This is true in part
because many of the symptoms are self-reported with variable intensity over time. Many of the
most commonly used tests can only be performed in highly specialized labs with experienced
providers. [9, 10] And even in these labs, there is a great deal of debate as to what constitutes
definitive tests of balance dysfunction after mTBI. Moreover, the variety of tests utilized pro-
vides little help to standardized testing batteries now used as point of injury tests. [11] While
such testing is important [12], in most cases the balance components are too easy to master
even when an injury does exist to provide useful information. [13–15] In many cases, investiga-
tors have had to modify the vestibular components of the tests to achieve useful diagnostic
information, but such work has not been standardized or well defined. [14, 15] It is quite possi-
ble that the current lab and field testing paradigms have not included the most sensitive and
specific balance tests. [16]

One of the most interesting and promising areas includes examining oculomotor, vestibular
and reaction time (OVRT) reflexes in response to a variety of visual and vestibular challenges.
In this paper, we describe the use of a panel of OVRT tests performed with a set of infrared
goggles on a rotational chair platform in the diagnosis of mTBI. This work has allowed us to
identify some OVRT characteristics of mTBI and to show that a small subset of this panel can
be utilized to achieve high specificity and sensitivity for the current diagnosis of mTBI. This
objective OVRT pattern can then be utilized to help confirm diagnosis made by skilled medical
professionals.

Methods
This study and its written informed consent material were approved independently by the fol-
lowing IRB's: IRB at Naval Medical Center San Diego (NMCSD), IRB at Madigan Army Medi-
cal Center (MAMC), IRB at the University of Miami, Miller School of Medicine (UMMSM).

Subject Selection
Individuals between the ages of 18 and 45 were recruited from the emergency rooms of one
civilian and two military hospitals. Individuals were eligible for inclusion in the study if they
had a diagnosis of mTBI from the emergency room. In particular, these individuals had a head
injury and sequelae from the head injury with a Glasgow Comma Scale of 14 or greater and no
loss of consciousness greater than 30 minutes. All individuals had a diagnosis of mTBI/concus-
sion by an Emergency Room Staff Physician This group represents the spectrum of individuals
seen in an emergency room with head injury. These individuals reported to the study sites at a
scheduled time within six days of injury. The majority of subjects (52.8%) reported within 48
hours of injury; with 83.0% reporting within 96 hours. At the study site, individuals were
assessed for mTBI and the presence of any exclusion criteria. Those who were not excluded
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were offered participation in the study. All those who agreed signed written informed consent
that was approved by the IRB of each institution and kept in a study binder. Control subjects
were recruited from volunteers at the locations where the study was being conducted. These
individuals were also between the ages of 18–45 and were screened to assure that they had no
active medical condition and did not have any history of significant mTBI, ear or balance
disorders.

Study Visits
All mTBI subjects underwent an initial visit, targeted to be within three days of injury, and
were then requested to complete two follow up visits at one- and two-weeks post injury. Con-
trol subjects were requested to complete only the initial visit. At each visit, mTBI patients
underwent a symptom profile (investigator-administered questionnaire), a functional gait
index (FGI), a Dizziness Handicap Inventory (DHI), and the battery of OVRT tests detailed
below. The control subjects completed the same assessments, with the exception of the FGI.

The battery of OVRT tests was conducted on a standard clinical I-Portal1 Neuro Otologic
Test Center (I-Portal–NOTC, Neuro Kinetics Incorporated, 126 Gamma Drive, Pittsburgh, PA
15238) system located within a lightproof enclosure. Participants were secured into a com-
puter-controlled rotational chair within 36 inches from a black featureless enclosure wall.
Movements of each eye were recorded with integrated video cameras (100 frames per second)
in head-mounted goggles using off-axis infrared lighting (940mn) and the black pupil tech-
nique for identifying the pupil centroid. Specific tests include in the battery are shown in table
1. A pattern of moving random dots, covering at least 90% of the visual field, was projected on
the enclosure wall for optokinetic stimuli and a two axis, high speed servo-controlled galva-
nometer controls projection of a 650 nm 3 mm laser dot for fixation, pursuit and saccade target
stimuli.

In order to respond to visual and auditory stimuli, participants were provided left and right
buttons located in the chair handles. These buttons were used to register a subject’s reaction to

Table 1. Tests performed.

Test Variables

Optokinetic Left and Right Gain and Asymmetry for nystagmus beats

Smooth Pursuit–Horizontal/Vertical Percent of Saccadic Intrusions, Initiation Time

Saccade-Random–Horizontal/Vertical Saccade Onset Latency, Accuracy, Peak Velocity

Predictive Saccade Point in cycle at which subject anticipates/predicts the fixed timing
interval and dot position as well as percent of correct predictions

Anti-saccade Horizontal Number of Pro-saccadic errors, correct anti-saccades, Latency,
and Velocity

Self-paced Saccade Saccades per second

Gaze Horizontal Vertical peak and average slow phase velocity

Visual Reaction Time Mean and Standard Deviation (SD) of Latency

Auditory Reaction Time Mean and SD of Latency

Saccade and Reaction Time Saccade Onset Latency, Accuracy, and Latency and SD for motor
responses

Computer Controlled Rotation Head
Impulse Test (crHIT)

Left and Right Gain and Asymetey

Sinusoidal Harmonic Acceleration
(SHA)

Gain, Phase, and Asymmetry—High Frequencies

Visual Enhancement Gain, Phase, and Asymmetry—High Frequencies

Visual Suppression Gain, Phase, and Asymmetry—High Frequencies

doi:10.1371/journal.pone.0162168.t001
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either visual or auditory stimuli, the latter of which were presented using an 85 decibel piezo-
electric buzzer.

Two cohorts of fifty mTBI patients and two cohorts of one hundred control adults volun-
teered to participate and were included in this study analysis. Cohort 1 was accrued through
August 2014; cohort 2 was accrued through October 2015. The ages for the participants ranged
from 18 to 45 years and did not differ between cohorts or between the mTBI subjects and the
controls within each cohort, either in mean values or age group distributions. For the combined
cohorts, the age group distribution was 45% 18- to 25- year olds, 39% 26- to 35- year olds, and
16% 36- to 45- year olds. Gender representation for this study did not differ significantly
between cohorts. The combined cohorts (mTBI and controls) included 226 (75.1%) males and
74 (24.9%) females. Females accounted for 33% of the individuals with mTBI and 20.5% of the
control subjects across cohorts. All of the individuals in both cohorts were either high school
graduates with some college education or college graduates. Given the neurologic nature of
these tests, this level of education is sufficient for understanding the instructions provided by
the examiner and differences between high school and college graduates would not be expected
to affect this type of testing. All individuals in both cohorts reported that they had not suffered
a TBI in the twelve months prior to the current visit (excepting the current mTBI by the mTBI
subjects) and no individual in either cohort (mTBI or control) had a history of ever being hos-
pitalized for TBI. As such we believe this population of subjects is representative of the general
population at large.

All testing was performed in the MAMC or NMCSD clinical vestibular labs. The mTBI sub-
jects were tested three times at equivalent intervals over an average of 18 days. The results pre-
sented in this paper are for the first testing sessions, which took place between 4–166 hours of
the incident (mean = 2.6 days, SD = 1.6 days). The distribution of time between traumatic
event and test was 52.8% within 48 hours, 76.4% within 72 hours, and 83% within 96 hours.
The subject and test time demographic data are shown in more detail in Table 2. A successive,
two cohort design was chosen for this case versus control cohort study, with replicability as a
criterion to control for unknown confounding factors in biomarker studies with only a single
cohort. [17]

Data Analysis
The goal was to identify OVRT performance metrics that differentiate between mTBI and con-
trol groups, as well as to create a model to enable us to accurately evaluate assessing mTBI

Table 2. Characteristics of the subject population.

Control Group mTBI Group

Cohort 1 Cohort 2 Cohort1 Cohort 2

Gender (Females: Males) 25:75 19:81 21:29 12:38

Sample size (N) 100 100 50 50

Age (years, mean ± SD) 29.7±6.2 26.3±6.0 26.7±6.4 26.0±7.0

Symptom Score (22 item SCAT, 22 minus number symptoms, mean ± SD) 20.2±2.7 20.6±2.4 8.5±6.3 8.3±6.0

Symptom Severity (22 item SCAT, mean ± SD, max 132) 2.9±5.1 2.4±5.4 44.5±26.8 43.2±30.5

Time post-TBI (hours, mean ± SD) 58.1±35.6 66.6±39.6

Glasgow Coma Scale (mean ± SD) 15.0±0.0 14.8±1.0

Functional Gait Index (maximum 30, mean ± SD) 24.7±4.6 25.7±5.8

Dizziness Handicap Inventory Total Score (mean ± SD) 33.5±24.1 28.5±20.0

Trail Making Test A (sec, mean ± SD) 29.1±11.5 31.1±12.1

Trail Making Test B (sec, mean ± SD) 55.4±18.5 56.9±28.9

doi:10.1371/journal.pone.0162168.t002
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neurologic status in patients. Logistic linear regression analysis was utilized to produce coeffi-
cients that could categorize subjects belonging to control or mTBI groups from the set of 105
measures that characterized each subject’s test performance. Maximum likelihood estimation
was used in a step-wise algorithm to identify variables that could sufficiently separate the
mTBI and control subject groups. Specifically, conditional regression (p = .05 to entry, p = .10
to removal) was performed using SPSS1 21.0 or 24.0 software on 105 variables characterizing
test performance.

Separate statistical models were replicated on data from each cohort of 50 mTBI and 100
control subjects, as well as data from combined cohorts. The ability to discriminate between
study populations was assessed from receiver-operator characteristic (ROC) curves. The area
under the curve, sensitivity (true positive rate) and specificity (true negative rate) were calcu-
lated to assess the classification. Leave-one-out and in-out sample 70%/30% cross-validation
showed that the models estimates for classification are stable.

Results
In this study, we tested the hypothesis that videonystagmography and reaction time responses
can be used to quantify the profile of OVRT deficits that form the basis for an objective neuro-
logic diagnosis of mild traumatic brain injury. This documents a small set of non-invasive, reli-
able, and objective measurements from a battery of OVRT tests that provide metrics to identify
objectively the individuals with mTBI.

Characteristics of the subject population can be seen in Table 2. The two cohorts did not dif-
fer in functional test results; impairment was in the mild range relative to population norms for
the FGI, DHI and trail making tests. The OVRT data from each cohort were subjected sepa-
rately by step-wise logistic regression analysis. The parameter estimates for logistic regression
models of each cohort and the combined data are summarized in Table 3 and the sensitivities
and specificities are summarized in Table 4. These analyses identified four metrics from differ-
ent tasks as significant indicators of a mTBI in both cohorts (p<0.001 for the model). The
overall prosaccade error rate is a measure of the ability to inhibit erroneous saccades, while the
predictive saccade performance measures the error rate of saccade response to a predictable

Table 3. Parameters for logistic regressionmodels and significance levels. (* p<0.05, ** p<0.01, *** p<0.001).

Cohort 1 Cohort 2 Combined

Parameter (coefficient) Estimate ± SE Wald Estimate ± SE Wald Estimate ± SE Wald

Prosaccade error (%) 0.129±0.034 13.97*** 0.107±0.028 14.91*** 0.117±0.021 31.00***

crHIT absolute gain symmetry 0.824±0.231 12.79*** 1.099±0.280 15.43*** 0.9297±0.166 31.32***

crHIT average gain -32.216±8.901 13.10*** -36.603±10.039 13.29*** -32.058±6.025 28.30***

Predictive Saccades (number) -0.190±0.077 6.18* -0.204±0.071 8.26** -0.195±0.050 15.51***

Intercept 26.212±8.024 10.67** 30.895±8.956 11.90*** 26.456±5.461 23.47***

doi:10.1371/journal.pone.0162168.t003

Table 4. Sensitivities and specificities.

True Positive (Sensitivity) True Negative (Specificity) Correct ROC AUC

Cohort 1: Data 88% 99% 95.3% 0.9714

Cohort 2: Data 92% 98% 96.0% 0.9752

Combined: Data 89.0% 97.5% 94.7% 0.9727

70/30 in-out sample 90.9% 98.5% 97% 0.9765

Leave one out 87% 97% 93.7%

doi:10.1371/journal.pone.0162168.t004
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stimuli. The absolute gain symmetry and average gain of eye movements on the computer con-
trolled rotational head impulse test (crHIT) are measures of high frequency horizontal vesti-
bulo-ocular reflex performance that can detect enter unidirectional or bidirectional deficits.
The predictive saccade metric was the number of predictive saccades (beginning less than 50
ms after target onset) for presentation of alternating ± 10 degree targets at a fixed interval of
650 ms. The estimated parameters were virtually identical for the two cohorts, with a specificity
of at least 97% (at the default 0.5 cutoff), meaning that they correctly rejected at least 97 of the
100 control subjects in each of the respective cohorts as not belonging to the mTBI group.
The sensitivity was at least 88%, indicating that at least 44/50 mTBI patients were ‘correctly’
identified. For the combined cohorts, the specificity was 97.5% and the selectivity 89%. The
ROC plots for all three models are shown in Fig 1. The areas under the curve (AUC) of the
ROC characteristics exceeded 0.97 for the cohorts and the combined data. In-out sample (70%/
30%) validation for the combined data revealed that the AUC for this validation model was
0.9765; model sensitivity was 90.9% and specificity 98.5%. Leave-one-out validation revealed a
model sensitivity of 87% and specificity 97%. Hence, these four metrics provide robust and
objective identification of the group with acute mTBI.

Summary statistics for these individual metrics (Table 5) were highly reproducible across
cohorts. The overall prosaccade error rate (a measure of impaired inhibition of saccades) was
elevated in subjects with mTBI (p<0.001 for either cohort and for the combined data). The
crHIT gain was more asymmetric in the subjects with mTBI (p<0.001 for either cohort and for

Fig 1. ROC curve for Individual Cohorts and Combined Group.ROC curves for the first cohort of subjects
with mTBI (red), second cohort of subjects with mTBI (green), and the combination of both groups (black).

doi:10.1371/journal.pone.0162168.g001

Table 5. Summary statistics for each cohort and combined group.

Cohort 1 Cohort 2 Combined

Variables Control mTBI Control mTBI Control mTBI

Prosaccade error (% responses) 12.8±12.7 31.2±20.4 12.8±10.5 37.3±26.4 12.8±11.6 34.2±23.7

crHIT absolute gain symmetry 1.8±1.2 5.5±4.4 1.6±1.3 6.2±5.0 1.7±1.2 5.9±4.7

crHIT average gain 0.96±0.04 0.86±0.12 0.97±0.04 0.82±0.12 0.96±0.04 0.84±0.12

Predictive Saccades (number) 14.5±4.8 9.6±5.8 15.4±4.1 11.0±6.0 14.9±4.4 10.3±5.9

doi:10.1371/journal.pone.0162168.t005
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the combined data). The crHIT average gain (average of leftward and rightward responses) was
also reduced significantly in subjects with acute mTBI (p<0.001 for either cohort and for the
combined data). Significant reductions were also present in the mTBI groups for predictive sac-
cade performance (p<0.001 for either cohort and for the combined data) and the saccadic
reaction time latency (p<0.01 for either cohort and for the combined data).

To this point, we have reported that a weighted linear combination of these metrics differen-
tiated mTBI subjects from controls. It is also instructive to examine the patterns displayed by
individual mTBI subjects. Ninety-two of the subjects were outside the 95% range of the control
population on one or more of the four metrics in the logistic regression model. The cumulative
distribution functions for the combined cohorts are shown in Fig 2. The most prevalent occur-
rence outside the 95% control range was the crHIT average gain (62/100 mTBI subjects, less
than 0.9), followed by the absolute gain symmetry (56/100 mTBI subjects, greater than 4.14%),
the error rate for the anti-saccade saccade task (36/100 mTBI subjects; at least 37.5% error), 22/
100 for the increased saccade onset latency (at least 0.26 sec) and 22/100 for the number of

Fig 2. Cumulative distribution functions are shown for the four metrics in the logistic regression model, 89% sensitivity and 97.5%
specificity. Concussion (red) plotted with controls (black). The vertical line in each graph demarcates the location of the upper or lower 5%
cutoff for control subjects.

doi:10.1371/journal.pone.0162168.g002
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predictive saccades. Twenty-six of these subjects had only one metric outside of the 95% con-
trol range (9 for a high crHIT gain asymmetry, 7 for a low crHIT average gain, 6 for an elevated
error rate the in the anti-saccade task, 1 for a slow saccadic latency and 3 for a low level of pre-
dictive saccade performance). The remaining 66 subjects showed two or more metrics outside
the 95% range for controls. The combinations are listed in Table 6. Twenty-nine mTBI subjects
had three or more or more metrics outside the 95% range for controls. For example, 17/19 sub-
jects with outlier scores for the prosaccadic error rate and crHIT gain symmetry also had an
outlier finding for the crHIT average gain.

It also important to note that the performance of mTBI subjects did not differ from controls
on test metrics such as gain and phase of the low frequency horizontal vestibulo-ocular reflex,
horizontal saccade accuracy, and the phase of the velocity of horizontal smooth pursuit of
visual target. These normal results argue against a lack of attention or motivation as a con-
founding factor in this population.

Discussion
This study identifies metrics from three OVRT tests that identify patients who have sustained a
recent mild mTBI; furthermore, we are able to distinguish them from uninjured control sub-
jects with greater than 97% sensitivity and 89% specificity. It is important to note that these
measures discriminate mTBI patients from controls: (1) without a requirement for baseline
test data before the concussive event, (2) independent of gender, and (3) for testing within a
window of at least 4 days after the event. Hence, they can form the basis for a robust, objective
screening test for acute mTBI.

Two main caveats regarding diagnosis and study design qualify the reported sensitivity and
specificity findings from these test populations. Firstly, the diagnosis of TBI, particularly mTBI,
is far from straightforward. [11, 12] In this study population, mTBI was defined by (1) expo-
sure to a documented concussive event, (2) either an alteration or momentary loss of con-
sciousness, and (3) the presence of a defined set of post-concussive symptoms. Because there is
not a distinctive, objective threshold for diagnosing mTBI, it is possible that the diagnosis may
include a few individuals who will not display objective signs on further examination. Secondly,
there was no baseline testing of the control population and the only medical history was a self-
report. Hence, it is possible that the control population may include individuals with chronic,
asymptomatic sequelae of mTBI. Given these factors, we consider a sensitivity of 0.975 and
selectivity of 0.89 to be strong results for a test battery of only four metrics that does not require
pre-injury baseline data.

Individual Test Significance
Because the different metrics that discriminate the acute mTBI group from the control subjects
are statistically uncorrelated, they can collectively give insight into combinations of underlying
dysfunction in those presenting with acute mTBI. It is instructive to begin with a consideration
of their potential significance individually. The anti-saccade task is one assessment of the core
executive function of response inhibition. [18] The increased prosaccadic error rate during the

Table 6. Prevalence of paired combinations of metrics outside the 95% control performance levels in subject with acute mTBI.

crHIT gain symmetry crHIT average gain Predictive Saccades

Prosaccade error 19 25 9

crHIT gain symmetry 39 12

crHIT average gain 12

doi:10.1371/journal.pone.0162168.t006
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anti-saccade task likely reflects impaired inhibitory contributions of the influences of several
frontal cortical regions (frontal eye fields, supplemental eye fields and dorsolateral prefrontal cor-
tex) and the basal ganglia on GABAergic output from substantia nigra, pars reticulata to the
superior colliculus and thalamus. [18] This inhibitory contribution appears to be critical for sup-
pressing the prosaccade. Like other saccades, an antisaccade is thought to be programmed in the
frontal cortex. The difference in antisaccade error rate between the control and mTBI groups is a
further indication that the higher level performance of these pathways is sensitive to acute mTBI.

The head impulse test gain and gain symmetry provide measures of high frequency vesti-
bulo-ocular reflex function. It is presumed to be a measure of functional performance of a
network that includes the vestibular periphery, the vestibular nuclei and related cerebellar con-
nections, and direct projections from the vestibular nuclei to the abducens, trochlear and ocu-
lomotor nuclei. In addition to peripheral vestibular insults, abnormal HIT gains have been
reported for conditions such as brain stem strokes and cerebellar ataxia.[19, 20]

The impaired ability to generate predictive (or anticipatory saccades) was observed. The
ability of normal subjects to switch from a reactive to a predictive saccade generation mode has
long been noted in the literature.[21, 22] Predictive saccade performance is impaired in neuro-
logic disorders such as Parkinson’s disease, Parkinson’s disease dementia, and dementia with
Lewy bodies.[21, 22] Saccadic performance factors that may contribute to the observed decre-
ment in making predictive saccades will be the subject of a future communication.

Differentiating mTBI from Controls
The set of four uncorrelated metrics appears to differentiate mTBI patients from controls on the
basis of performance of neural networks that involve: (1) processing capacity of prefrontal corti-
cal circuits and (2) posterior fossa processing associated with motion detection and ocular
responses; however, we cannot disentangle how the findings indicate both direct and ‘down-
stream’ effects of concussive events, as well as evolving functional consequences of recovery and
compensation on cognitive reserve.[21, 22] The anti-saccade task error rate and the predictive
(or anticipatory) saccade performance need to be considered as proxies for cognitive reserve.

We have described a set of elements taken from a larger test battery of oculomotor and ves-
tibular tests performed on a larger balance testing device located in specialized tertiary care
facilities. The tests performed with this device each provide information about OVRT neuro-
logic function. The tests are most conveniently considered as functional test batteries. Combin-
ing all the tests produces a slight increase in both values yielding 89% sensitivity and 95%
specificity. Moreover, these last values can be achieved with a subset the combined tests (anti-
saccade testing, predictive saccade testing, and crHIT). As such this work provides initial infor-
mation to help solve the dilemma facing those who study mTBI. The combination can be used
as one secure element in any test battery being performed in the clinic setting to diagnose
mTBI. Also it should be noted that this particular subset of three tests can be performed with-
out the large tertiary center device and without specialized medical training. In this way, an ini-
tial quantitative assessment of neurologic status can be performed near the point of injury to
and this device can be used to help medical professionals make diagnosis in a variety of settings
away from traditional clinics. This initial work could profit from further exploration. The use
of these tests on subjects in an at risk population followed over time would help to further vali-
date this model. Such work is already underway in our lab.
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