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Abstract

Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome
contains a family of four genes, one of which is expressed preferentially in the lung. In this
study, we compared the expression of the four bovine NK-lysin genes in healthy animals to
animals challenged with pathogens known to be associated with bovine respiratory disease
(BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins,
especially NK2C, was elevated in challenged relative to control animals. The effects of syn-
thetic peptides corresponding to functional region helices 2 and 3 of each gene product
were tested on both model membranes and bio-membranes. Circular dichroism spectros-
copy indicated that these peptides adopted a more helical secondary structure upon binding
to an anionic model membrane and liposome leakage assays suggested that these pep-
tides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects
of these peptides on BRD-associated bacteria, including both Pasteurella multocida and
Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multo-
cida cells by transmission electron microscopy revealed the lysis of target membranes.
These studies demonstrate that the expanded bovine NK-lysin gene family is potentially
important in host defense against pathogens involved in bovine respiratory disease.

Introduction

Cationic antimicrobial peptides (AMPs) are important molecules in the host innate immune
system and are widespread in both plants and animals [1]. One of the conserved characteristics
of AMPs is their cationic and hydrophobic composition, which makes them potent killers of
microbial targets with cytoplasmic membranes rich in anionic phospholipids and they are
selectively safe to host cells with neutral charged membranes. Several mechanisms have been
proposed to describe the AMP-target interaction, and the basic steps are similar [2]. AMP
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molecules are attracted to targets by the electrostatic interaction between the cationic residues
and anionic phospholipids in target membranes and adopt an amphipathic structure, with the
hydrophobic face interacting with the hydrophobic lipid bilayers and the hydrophilic face
interacting with the anionic head groups of phospholipids. Unlike antibiotics, which can
induce the development of resistance in microbes within a short application period and cause
potential threats to public health [3], the electrostatic interaction between cationic AMPs and
anionic target membranes reduces the development of resistance while preserving the efficacy
of antimicrobial effects. Therefore, AMPs are candidates for the development of new antimi-
crobial drugs.

Human granulysin and porcine NK-lysin are AMPs secreted from cytotoxic T and NK cells
[4, 5]. Both molecules and their derivatives are active against a broad spectrum of microorgan-
isms including bacteria, fungi, viruses and also cancer cells [6-9]. One of the most interesting
of their antimicrobial activities is their capacity to directly kill extracellular Mycobacterium
tuberculosis, which is particularly resistant to the human immune response [10, 11]. They also
exhibit potent effects on intracellular Mycobacterium tuberculosis following permeation of the
cellular membrane by the pore-forming protein perforin [12]. We previously reported that a
single copy of the NK-lysin gene in many mammals has expanded to create a gene family with
four expressed members in cattle, NK1, NK2A, NK2B and NK2C [13]. NK2A, NK2B and NK2C
arose by tandem segmental duplication and share high sequence identity with each other,
while NK1 is more diverged. Four synthetic peptides spanning helices 2 and 3 of each gene
product display antimicrobial activities against both gram-positive Staphylococcus aureus and
gram-negative Escherichia coli. Three of the bovine NK-lysins are highly expressed in intestinal
Peyer’s patch, which is consistent with the expression of its human and pig orthologs. However,
NK2C exhibits a distinct expression profile, being most highly expressed in lung which indi-
cates that it may potentially have a novel function in the bovine respiratory system.

Bovine respiratory disease (BRD) or shipping fever is the most common infectious disease
affecting both the upper and lower respiratory tracts of cattle and is a major cause of economic
loss in North America through treatment costs, reduced performance and mortalities [14-16].
BRD is multi-factorial with a variety of stressors, including host factors (age, genetics and host
immunity) [17-19], environmental factors (temperature, transport, commingling and ventila-
tion) [20-22] and pathogens (bacteria and viruses) leading to disease. Several microorganisms
have been implicated in the pathogenesis of BRD including bacterial agents, such as Mannhei-
mia haemolytica 23, 24], Pasteurella multocida [23], Mycoplasma bovis [25] and Histophilus
somni [26], and viral agents, such as bovine viral diarrhea virus (BVDV) [25], bovine respira-
tory syncytial virus (BRSV) [27], bovine herpesvirus-1 (BHV-1 or IBR) [27] and bovine parain-
fluenza-3 virus (P1-3) [28]. Interactions between environmental stressors and infectious agents
are critical to the development of BRD. Environmental factors (such as transport or weaning)
weaken the host’s immune system and predispose animals to viral infections, which then facili-
tate secondary infections by bacterial pathogens, which lead to the onset of BRD. Many strate-
gies have been proposed to prevent and treat BRD, including feedlot management to reduce
environmental stresses, vaccination of animals to improve immune responses, breeding of cat-
tle that are resistant to BRD pathogens [29] and anti-microbial agents (antibiotics and sulfas)
to treat infected cattle.

The identification of genes that influence the host’s response to pathogens is an important
step towards identifying the specific genetic variants which could be used in breeding cattle
with an increased resistance to infections. The aim of this study was to investigate the potential
roles of four bovine NK-lysin genes in host response to BRD associated pathogens. By compar-
ing the read depths of each NK-Iysin family member from whole transcriptome sequencing
data, we found that the expression of NK2C in lung was elevated in animals that had been
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challenged with multiple pathogens associated with BRD. All four peptides synthesized in the
previous study not only exhibited disruptive effects on negatively charged model membranes,
but also showed antimicrobial activities against P. multocida and M. haemolytica. These results
suggest that the bovine NK-Iysin genes, especially NK2C, are potentially important in the host’s
immune response to the pathogens contributing to respiratory diseases. Further studies will be
beneficial in identifying genetic variants in the NK-lysin gene family that might be associated
with differential disease susceptibility.

Results
Elevated Expression of Bovine NK2C in Pathogen Challenged Animals

To investigate the potential contributions of the bovine NK-Iysins to host resistance to BRD
associated pathogens, we compared RNA-seq FPKM values for each NK-lysin gene in both
bronchial lymph node and lung lesion tissues from healthy animals and animals challenged
with a set of BRD-related pathogens [30, 31]. Generally, the expression of NK1 was very low in
these tissues while NK2C exhibited relatively high expression in both tissues. Furthermore,
expression of NK2C in the lungs of most of the challenged animals was significantly higher
than for the other three genes (Fig 1). When animals were challenged with the IBR virus, the
expression of NK2A, NK2B and NK2C was significantly elevated in bronchial lymph nodes,
and an increased expression of NK2B and NK2C in bronchial lymph nodes was also observed
in most of the animals challenged with other pathogens (Fig 1). Overall, an elevated expression
of NK2A and NK2C was observed in most of the pathogen challenged animals. In contrast to
the similar expression levels in the four healthy control animals, the expression of NK2C was
elevated by > 20-fold in two of the experimentally challenged animals.

Secondary Structural Changes of Bovine NK-Lysin Peptides upon
Liposome Binding

To investigate the interactions between bovine NK-Iysin peptides and bio-membranes in target
microorganisms, we employed circular dichroism (CD) spectroscopy to study the potential
conformational changes of these peptides upon their interaction with anionic liposome mim-
icking bacterial membranes. The CD spectrum of each of the peptides in buffer presented a sin-
gle negative band at 200 nm, which indicated an unordered structure (random coil) (Fig 2A).
However, two negative bands at 208 nm and 222 nm along with a positive band at 192 nm
were exhibited when mixed with the negatively charged liposome (35% POPE + 50% POPG

+ 15% Cardiolipin), suggesting the conformational transition of the peptides from random
coils to a more ordered structure (Fig 2B). The proportional contents of the alpha-helix, beta-
sheet and beta-turn of each peptide in both lipid-free and lipid-bound states were also com-
pared (Fig 2C and 2D). The proportions of the total ordered secondary structures, especially
the alpha helices, were enhanced in the presence of liposome for all peptides. The fractions of
each secondary structure for NK2A, NK2B and NK2C were comparable upon interaction with
liposome, while those for NK1 were different with a lower degree of helicity and a higher pro-
portion of beta-sheet in the lipid-bound state. This result was consistent with the behavior of
most cationic AMPs, which exhibit an unordered structure in aqueous solution but adopt a
more helical conformation upon interaction with anionic phospholipid membranes [32].

Bovine NK-Lysin Peptides Disrupt Model Membranes

A liposome leakage assay was performed to investigate the influence of the synthetic bovine
NK-lysin peptides on a model membrane. The peptides began to disrupt the liposome at a
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Fig 1. Expression of four bovine NK-lysin genes in bronchial lymph node (BLN, left panel) and lung
(LNG, right panel) among healthy animals and animals challenged with P.multocida, M.bovis, M.
haemolytica, BRSV, BVDV and IBR. The Y axis shows the FPKM value, and each black dot represents the
FPKM value of an individual. Three or four individuals were included in each control and challenged group.

doi:10.1371/journal.pone.0158882.g001

concentration of 0.5 M, resulting in the release of entrapped fluorescent dye (Fig 3). As the
concentrations were increased to 1 uM and subsequently to 2 uM, the released fluorescence
intensities were correspondingly elevated and the leakage of entrapped dye caused by NKI pep-
tide was remarkably greater than that caused by the other peptides. However, the leakage
detected by fluorescence for the four peptides was comparable at concentrations of 5 pM, and
was maintained at this level when the concentration was increased to 10 uM, indicating the
complete disruption of the vesicles at a peptide concentration of 5 uM.

Bovine NK-Lysin Peptides Exhibit Antimicrobial Effects on BRD-Causing
Bacteria P. multocida and M. haemolytica

The antimicrobial activities of bovine NK-lysin peptides were tested against two P. multocida
bacterial strains (ATCC 43019 and ATCC 43137) and two M. haemolytica bacterial strains
(ATCC BAA-410 and ATCC 33396). Overall, the P. multocida strains were less susceptible to
the peptides (Fig 4A and 4B). Significant cell number losses were not observed until the peptide
concentration was increased to 10 uM for NKI and NK2A when an approximately 50-fold
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Fig 2. Secondary structural changes of the four synthetic bovine NK-lysin peptides upon liposome
binding. CD spectra of NK-lysin peptides in lipid-free (A) and lipid-bound states (B) are compared. Estimated
secondary structural contents, including alpha-helices, beta-sheet, beta-turn and the total secondary
structure in lipid-free and lipid-bound states are shown in (C) and (D), respectively.

doi:10.1371/journal.pone.0158882.9002

decrease in viable cells was produced. The NK2B and NK2C peptides did not display obvious
killing abilities. In contrast, the NK2A and NK2C peptides displayed potent antimicrobial activ-
ities against both M. haemolytica strains in a dose-dependent manner (Fig 4C and 4D). An
approximately 5-fold decrease in cell numbers resulted from incubation with 1 uM of NK2A
for 1 h, and the complete elimination of M. haemolytica cells was achieved with 5 uM of NK2A
or 10 uM of NK2C. NK1 and NK2B peptides exhibited weaker killing abilities against M. hae-
molytica and achieved an approximately 50-fold cell loss at the highest concentration of

10 uM. Surprisingly, M. haemolytica cells were susceptible to the NK2A peptide but resistant to

25

= = N
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o
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Fig 3. Intensities of released fluorescent dye from liposome plotted against concentration of bovine
NK-lysin peptides.

doi:10.1371/journal.pone.0158882.9003
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Fig 4. Antimicrobial effects of bovine NK-lysin peptides on BRD-causing pathogens P. multocida
strains ATCC 43019 (A) and ATCC 43137 (B), M. haemolytica strains ATCC BAA-410 (C) and ATCC
33396 (D). Surviving cell numbers after peptide treatment are shown on the Y axis. Error bars represent the
standard deviations calculated from four biological replications.

doi:10.1371/journal.pone.0158882.9004

the NK1, which was the most potent peptide against P. multocida as well as E. coli and S. aureus
in our previous study.

Bovine NK-Lysin Peptide Lyses Cell Membranes

The impacts of bovine NK-Iysin peptides on the cell morphology and membrane integrity of P.
multocida cells were examined by transmission electron microscopy (TEM) (Fig 5). The
untreated cells displayed intact outer and inner membranes with a clear periplasmic space, and
the cytoplasm was homogeneously filled with electron dense material (Fig 5A). Although the
cell morphology was maintained, severe cellular damage with large clear zones in the cytoplasm
indicating the leakage of cytoplasmic contents was observed when cells were treated with

20 uM of NK1 peptide for 30 mins (Fig 5B). In addition, cytoplasmic constituents were coagu-
lated into non-membrane-enclosed bodies within the areas near membranes. NK1 peptide
treatment also caused rupture of the cytoplasmic membrane (Fig 5C arrows a & b) that resulted
in leakage of the cytoplasmic contents and the release of intracellular material that attached in
aggregates on the exterior of the cell (Fig 5C arrows ¢ & d). Statistical analysis revealed that the
overall electron density of an untreated P. multocida cell was significantly higher than that of a
cell treated with bovine NKI peptide for 30 mins, suggesting the leakage of cytoplasmic con-
tents in NKI-treated cells. Therefore, bovine NK1 peptides were shown to cause the release of
cytoplasmic material from a P. multocida cell by damaging its cell membrane, eventually lead-
ing to cell death and the appearance of empty “shells” (ghost cells).

Materials and Methods
RNA-Seq Analysis

RNA-seq data were generated and analyzed at the University of Missouri. Computations were
performed on the HPC resources at the University of Missouri Bioinformatics Consortium
(UMBC). Animal challenge and whole transcriptome sequencing protocols were previously
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Fig 5. Influence of 20 uM of bovine NK1 peptide on the cell membrane of P. multocida (ATCC 43019)
examined by transmission electron microscopy. (A) Control cells. (B) and (C) Cells treated with 20 uM NK7
peptide for 30 mins. (D) Statistical analysis of the average electron intensity of control cells versus NK7-treated
cells. Thirty cells from each group were used for statistical analysis.

doi:10.1371/journal.pone.0158882.g005

described [30, 31]. The study was carried out in strict accordance with the NIH Guide for the
Care and Use of Laboratory Animals as described in protocol #16424, approved by the Univer-
sity of California, Davis Institutional Animal Care and Use Committee. Briefly, the steers were
produced by mating Angus sires to advanced generation Angus-Hereford crossbred dams at
the University of California Davis Sierra Field Station located in Brown's Valley, CA. Blood
was collected and steers seronegative, or with the lowest titers against each bacterial and viral
pathogen, were selected and the steers had not been vaccinated against any BRD pathogens.
The six to eight month old steers were transported to the University of California, Davis, where
they were maintained in pens, fed a 65% concentrate starter diet and water were provided ad
libitum. The challenge studies were performed sequentially starting with the control animals
and with animals housed in groups by control or pathogen challenge. In this study, we analyzed
the bovine NK-Iysin expression in both the lung lesion and bronchial lymph node tissues [31]
collected from the same individual. Since the four bovine NK-Iysins share high sequence iden-
tity, especially NK2A, NK2B and NK2C, protocols were designed with extra care to remap the
short (2 x 50 bp) reads specifically to each gene. Basically, all short reads from each sample
were mapped allowing no mismatches to an index built with the mRNA sequences of all four
NK-lysins using Bowtie 2 [33]. The mapping quality which measures the degree of confidence
in the mapping of a read to a specific single locus was used to assess whether the reads were
uniquely mapped to one of the four genes, and the number of these uniquely mapped reads
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was counted for each NK-lysin gene. Quality trimmed reads with a size of < 25 bp were
excluded from this analysis.

Peptide Synthesis

Four 30-aa peptides corresponding to the functional region helices 2 and 3 of each gene prod-
uct were synthesized with > 95% purity by Peptide 2.0 Inc (Chantilly, VA). Lyophilized pep-
tides were dissolved and aliquoted in phosphate-buffered saline (PBS) (pH 7.4) and stored at
—20°C before use. Concentrations of the stock peptides were determined by amino acid assay
in the Texas A & M University Protein Chemistry Lab.

Circular Dichroism Assay

Phospholipids POPE, POPG and Cardiolipin were purchased from Avanti Polar Lipids (Ala-
baster, AL). Lyophilized lipids were dissolved in chloroform to a concentration of 20 mg/mL
and stored at —20°C before use. To prepare the negatively charged liposome containing 35%
POPE, 50% POPG and 15% cardiolipin, the appropriate amounts of the lipid stock solutions
were mixed and the chloroform was evaporated under N, with constant rotation and the solu-
tion was further dried in a vacuum environment overnight. The dried mixture was re-sus-
pended in potassium phosphate buffer (10 mM, pH 7.4) to a concentration of 10 mM, bath-
sonicated for fifteen mins and subjected to five freeze-thaw cycles. The solution was subse-
quently extruded through a polycarbonate membrane (100 nm), back and forth, twenty times
and stored at 4°C before use. The CD spectrum was obtained in the same phosphate buffer
containing 20 uM of each peptide with or without liposome at a working concentration of 1
mM at room temperature with a JASCO J-815 CD Spectrometer (JASCO, Easton, MD). Each
sample was scanned five times at wavelengths ranging from 190 to 250 nm with the step resolu-
tion of 1 nm. All data were expressed as the mean molar ellipticity (deg.cm®dmol ™), back-
ground (buffer or liposome only) subtracted and the content of each secondary structure
including alpha-helix, beta-sheet and beta-turn was estimated with the analysis software pro-
vided by the manufacturer of the CD spectrometer using CONTIN with SDP48 as the reference
set.

Liposome Leakage Assay (Fluorescence Quenching Assay)

Liposome containing 35% POPE, 50% POPG and 15% cardiolipin and the entrapped fluoro-
phore/quencher (ANTS/DPX) dye pair were prepared by a method similar to that described
above, except that the potassium phosphate buffer was replaced by a dye-containing Pipes
buffer (5 mM ANTS/50 mM DPX/20 mM Pipes/27.5 mM NaCl, pH 7.4) to suspend the dried
lipids. The liposome with entrapped ANTS/DPX was subjected to a G-50 Sephadex chroma-
tography column to eliminate the free dye, and the total lipid concentration of the collected
dye-free fractions was determined by a phosphorus assay [34]. Dye-free liposome was mixed
with or without peptides in a Pipes buffer (20 mM Pipes/ 85 mM NaCl, pH 7.4) to a final lipid
concentration of 300 uM and peptides at a serial dilutions of 0.5, 1, 2, 5 and 10 uM. The fluores-
cence intensity was measured using a BioTek Synergy 2 microplate reader, with excitation filter
330/80, emission filter 540/35. Fluorescence intensity was measured before and after the addi-
tion of peptides.

Antimicrobial Killing Assay

Overnight cultures of four pathogenic bacterial strains (P. multocida ATCC 43019, ATCC
43137 and M. haemolytica ATCC BAA-410, ATCC 33396) were sub-cultured in brain-heart
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infusion medium at 37°C for an additional 2.5 hours to mid-exponential phase, washed and re-
suspended in PBS (pH 7.4) to a cell concentration of 5x10° CFU/ml. A 100-ul aliquot of cells
was incubated with 20 pl PBS buffer or buffer plus each NK-Iysin peptide prepared in the same
buffer to the final working concentrations of 1, 2, 5 and 10 uM at 37°C for 1 h. After the 1 h
incubation, a 100-pl aliquot of each mixture was diluted in PBS buffer to an approximate cell
concentration of 3x10° CFU/ml, from which another 100-pl aliquot was plated on trypticase
soy agar plates supplemented with 5% sheep blood. Colonies of the surviving cells were manu-
ally counted after overnight incubation at 37°C in a 5% carbon dioxide atmosphere. Experi-
ments were performed with four biological replicates and repeated twice. Data provided are
from a single experiment.

Transmission Electron Microscopy

50-pl overnight culture of P. multocida ATCC 43019 was sub-cultured in 5 ml BHI medium
for 2 h. Four ml of the culture were subsequently washed and re-suspended into PBS bufter,
and incubated with 20 uM NK1 peptide or an equal volume of PBS buffer for 30 mins at 37°C.
The mixture was fixed with an equal volume of 3% glutaraldehyde and samples for TEM exam-
ination were prepared following the previously described protocol [13]. Briefly, the samples
were osmicated, en bloc stained with uranyl acetate, dehydrated in ethanol, and embedded in
epoxy resin. Thin sections were prepared and EM images of the cells were recorded with a
Morgagni 268 TEM (FEL Hillsboro, OR). Student t-test (paired, two-tailed, unequal variances)
was performed to compare the mean electron intensities of thirty cells from both the control
and NK-lysin-treated groups.

Discussion

Several factors have been suggested to influence the antimicrobial capacities of AMPs, includ-
ing the net positive charge, hydrophobicity and amphipathicity. Increased positive charge and
hydrophobicity are major contributors to the enhancement of the antimicrobial effects of
AMPs [35, 36]. The net charges (pH = 7) and hydrophobicities (pH = 6.8) differ among the
functional regions of the four examined NK-Iysin peptides, with NKI possessing the highest
hydrophobicity and largest hydrophobic face with the least positive charge and NK2A being
the most positively charged peptide. Bacterial killing assays revealed that NKI exhibited the
highest antimicrobial effects on E. coli, S. aureus and P. multocida while NK2A was the most
potent peptide against M. haemolytica. During gene family expansion, each paralog has evolved
to encode a peptide with specific antimicrobial properties, which has enabled the activity of the
bovine NK-lysin family against a broad range of microbes.

Several studies have been undertaken to search for genes and associated genetic variants
that contribute to host resistance to respiratory pathogens or responses to vaccines, and candi-
date genes or genomic regions now include the MHC region, TLRs, PVRLI and DST [29, 37].
With the application of high density SNP genotyping technology, genome-wide association
studies have become a preferred method for identifying genetic markers linked to phenotypic
variation in host response [29, 38, 39]. Another effective approach to the identification of
genetic variants that could be beneficial to animal breeding is a candidate gene approach based
on the known biological functions of gene products. Since innate immunity is not only an
essential component of the host’s immune response but also affects subsequent acquired
immunity, genes that are expressed in the innate immune system are strong candidates for
their effects on host resistance to infectious agents. Human NK-lysin is an effector molecule in
the innate immune system, and its expression is induced by antigenic stimulation indicating its
potential role in host responses to antigens [40]. Despite the existence of large individual
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variation in expression within individuals challenged with the same BRD-associated pathogen,
the expression of bovine NK-Iysin genes, especially NK2C, in both the bronchial lymph node
and lung were elevated in most of the challenged animals. The synthetic peptides correspond-
ing to the functional helices 2 and 3 of each gene product also exhibited antimicrobial effects
on the BRD-associated bacterial microbes, P. multocida and M. haemolytica, and antimycobac-
terial activity has also previously been reported with other derived bovine NK-lysin peptides
[41]. All of these findings suggest that the bovine NK-Iysins are potentially important in host
resistance to respiratory infections.

The inevitable large animal-to-animal variation within animals challenged with the same
pathogen in the challenge study may be attributed to individual immunity, which at least partly
results from genetic variation, such as gene copy number variations, single nucleotide variants
and insertions and deletions. It will be important to investigate variation within members of
the bovine NK-Iysin gene family and their regulatory regions to identify potential associations
with host disease phenotypes. For example, the absence of the bovine NK2B gene in some Hol-
stein cattle has been revealed in an ongoing study (unpublished data). It will be important to
test whether this deletion affects host responses to specific pathogens. Copy number variation
of other NK-Iysin genes should also be tested within and between breeds of cattle. Further stud-
ies are also suggested to investigate point mutations especially the nonsynonymous substitu-
tions in the region coding for the functional helices 2 and 3. The extent of genetic variation in
the bovine NK-lysin gene family is still unknown but its evolutionary history and diversification
of function make it an excellent candidate source of variation for application to breeding
protocols.

Acknowledgments

We thank Gregory G Martin and Avery L McIntosh for providing assistance with the Circular
Dichroism assay.

Author Contributions

Conceived and designed the experiments: JC SDL FS JET JEW. Performed the experiments: JC
CY PCT HP. Analyzed the data: JC HH MOL. Contributed reagents/materials/analysis tools:
SDL FF. Wrote the paper: JC JEW.

References

1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870):389-95. Epub
2002/01/25. doi: 10.1038/415389a PMID: 11807545.

2. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro-
biol. 2005; 3(3):238-50. Epub 2005/02/11. doi: 10.1038/nrmicro1098 PMID: 15703760.

3. Norrby SR, Nord CE, Finch R. Lack of development of new antimicrobial drugs: a potential serious
threat to public health. Lancet Infect Dis. 2005; 5(2):115-9. Epub 2005/02/01. doi: 10.1016/s1473-3099
(05)01283-1 PMID: 15680781.

4. Pena SV, Hanson DA, Carr BA, Goralski TJ, Krensky AM. Processing, subcellular localization, and
function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, gran-
ule proteins. Journal of immunology (Baltimore, Md: 1950). 1997; 158(6):2680-8. Epub 1997/03/15.
PMID: 9058801.

5. Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Sillard R, et al. NK-lysin, a novel effector
peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by inter-
leukin 2, antibacterial and antitumour activity. The EMBO journal. 1995; 14(8):1615-25. Epub 1995/04/
18. PMID: 7737114; PubMed Central PMCID: PMCPmc398254.

6. Linde CM, Grundstrom S, Nordling E, Refai E, Brennan PJ, Andersson M. Conserved structure and
function in the granulysin and NK-lysin peptide family. Infect Immun. 2005; 73(10):6332-9. Epub 2005/

PLOS ONE | DOI:10.1371/journal.pone.0158882 July 13,2016 10/12


http://dx.doi.org/10.1038/415389a
http://www.ncbi.nlm.nih.gov/pubmed/11807545
http://dx.doi.org/10.1038/nrmicro1098
http://www.ncbi.nlm.nih.gov/pubmed/15703760
http://dx.doi.org/10.1016/s1473-3099(05)01283-1
http://dx.doi.org/10.1016/s1473-3099(05)01283-1
http://www.ncbi.nlm.nih.gov/pubmed/15680781
http://www.ncbi.nlm.nih.gov/pubmed/9058801
http://www.ncbi.nlm.nih.gov/pubmed/7737114

@’PLOS ‘ ONE

Bovine NK-Lysin Gene Family

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

09/24. doi: 10.1128/iai.73.10.6332-6339.2005 PMID: 16177304; PubMed Central PMCID:
PMCPMC1230960.

Jacobs T, Bruhn H, Gaworski |, Fleischer B, Leippe M. NK-lysin and its shortened analog NK-2 exhibit
potent activities against Trypanosoma cruzi. Antimicrobial agents and chemotherapy. 2003; 47(2):607—
13. Epub 2003/01/25. PMID: 12543667; PubMed Central PMCID: PMCPmc151766.

Yan JX, Wang KR, Chen R, Song JJ, Zhang BZ, Dang W, et al. Membrane active antitumor activity of
NK-18, a mammalian NK-lysin-derived cationic antimicrobial peptide. Biochimie. 2012; 94(1):184-91.
Epub 2011/11/01. doi: 10.1016/j.biochi.2011.10.005 PMID: 22037375.

Wang Z, Choice E, Kaspar A, Hanson D, Okada S, Lyu SC, et al. Bactericidal and tumoricidal activities
of synthetic peptides derived from granulysin. Journal of immunology (Baltimore, Md: 1950). 2000; 165
(3):1486-90. Epub 2000/07/21. PMID: 10903754.

Krensky AM. Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer
cells. Biochem Pharmacol. 2000; 59(4):317—-20. Epub 2000/01/22. PMID: 10644038.

Andreu D, Carreno C, Linde C, Boman HG, Andersson M. Identification of an anti-mycobacterial
domain in NK-lysin and granulysin. Biochem J. 1999; 344 Pt 3:845-9. Epub 1999/12/10. PMID:
10585872; PubMed Central PMCID: PMCPMC1220707.

Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity
of cytolytic T cells mediated by granulysin. Science (New York, NY). 1998; 282(5386):121-5. Epub
1998/10/02. PMID: 9756476.

Chen J, Buckley R, Malig M, Lawhon SD, Skow L, Lee MO, et al. Bovine NK-lysin: copy number varia-
tion and functional diversification Proceedings of the National Academy of Sciences of the United
States of America. 2015. Epub In press.

Griffin D. Economic impact associated with respiratory disease in beef cattle. Vet Clin North Am Food
Anim Pract. 1997; 13(3):367—77. Epub 1997/11/22. PMID: 9368983.

Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL, Koohmaraie M, Dikeman ME. Bovine respiratory
disease in feedlot cattle: phenotypic, environmental, and genetic correlations with growth, carcass, and
longissimus muscle palatability traits. J Anim Sci. 2007; 85(8):1885-92. Epub 2007/05/17. doi: 10.
2527/jas.2007-0008 PMID: 17504959.

Garcia MD, Thallman RM, Wheeler TL, Shackelford SD, Casas E. Effect of bovine respiratory disease
and overall pathogenic disease incidence on carcass traits. J Anim Sci. 2010; 88(2):491-6. Epub 2009/
11/10. doi: 10.2527/jas.2009-1874 PMID: 19897630.

Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. The epidemiology of bovine respiratory
disease: What is the evidence for predisposing factors? Can Vet J. 2010; 51(10):1095-102. Epub
2011/01/05. PMID: 21197200; PubMed Central PMCID: PMCPMC2942046.

Muggli-Cockett NE, Cundiff LV, Gregory KE. Genetic analysis of bovine respiratory disease in beef
calves during the first year of life. J Anim Sci. 1992; 70(7):2013-9. Epub 1992/07/01. PMID: 1644673.

Neibergs H, Zanella R, Casas E, Snowder GD, Wenz J, Neibergs JS, et al. Loci on Bos taurus chromo-
some 2 and Bos taurus chromosome 26 are linked with bovine respiratory disease and associated with
persistent infection of bovine viral diarrhea virus. J Anim Sci. 2011; 89(4):907-15. Epub 2010/12/15.
doi: 10.2527/jas.2010-3330 PMID: 21148784.

Cernicchiaro N, Renter DG, White BJ, Babcock AH, Fox JT. Associations between weather conditions
during the first 45 days after feedlot arrival and daily respiratory disease risks in autumn-placed feeder
cattle in the United States. J Anim Sci. 2012; 90(4):1328-37. Epub 2011/12/08. doi: 10.2527/jas.2011-
4657 PMID: 22147486.

Cernicchiaro N, White BJ, Renter DG, Babcock AH, Kelly L, Slattery R. Associations between the dis-
tance traveled from sale barns to commercial feedlots in the United States and overall performance,
risk of respiratory disease, and cumulative mortality in feeder cattle during 1997 to 2009. J Anim Sci.
2012; 90(6):1929-39. Epub 2012/01/17. doi: 10.2527/jas.2011-4599 PMID: 22247119.

Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL. Bovine respiratory disease in feedlot cattle: envi-
ronmental, genetic, and economic factors. J Anim Sci. 2006; 84(8):1999-2008. Epub 2006/07/26. doi:
10.2527/jas.2006-046 PMID: 16864858.

Welsh RD, Dye LB, Payton ME, Confer AW. Isolation and antimicrobial susceptibilities of bacterial path-
ogens from bovine pneumonia: 1994-2002. J Vet Diagn Invest. 2004; 16(5):426—31. Epub 2004/10/06.
PMID: 15460326.

Rice JA, Carrasco-Medina L, Hodgins DC, Shewen PE. Mannheimia haemolytica and bovine respira-
tory disease. Anim Health Res Rev. 2007; 8(2):117-28. Epub 2008/01/26. doi: 10.1017/
5$1466252307001375 PMID: 18218156.

PLOS ONE | DOI:10.1371/journal.pone.0158882 July 13,2016 11/12


http://dx.doi.org/10.1128/iai.73.10.63326339.2005
http://www.ncbi.nlm.nih.gov/pubmed/16177304
http://www.ncbi.nlm.nih.gov/pubmed/12543667
http://dx.doi.org/10.1016/j.biochi.2011.10.005
http://www.ncbi.nlm.nih.gov/pubmed/22037375
http://www.ncbi.nlm.nih.gov/pubmed/10903754
http://www.ncbi.nlm.nih.gov/pubmed/10644038
http://www.ncbi.nlm.nih.gov/pubmed/10585872
http://www.ncbi.nlm.nih.gov/pubmed/9756476
http://www.ncbi.nlm.nih.gov/pubmed/9368983
http://dx.doi.org/10.2527/jas.2007-0008
http://dx.doi.org/10.2527/jas.2007-0008
http://www.ncbi.nlm.nih.gov/pubmed/17504959
http://dx.doi.org/10.2527/jas.2009-1874
http://www.ncbi.nlm.nih.gov/pubmed/19897630
http://www.ncbi.nlm.nih.gov/pubmed/21197200
http://www.ncbi.nlm.nih.gov/pubmed/1644673
http://dx.doi.org/10.2527/jas.2010-3330
http://www.ncbi.nlm.nih.gov/pubmed/21148784
http://dx.doi.org/10.2527/jas.2011-4657
http://dx.doi.org/10.2527/jas.2011-4657
http://www.ncbi.nlm.nih.gov/pubmed/22147486
http://dx.doi.org/10.2527/jas.2011-4599
http://www.ncbi.nlm.nih.gov/pubmed/22247119
http://dx.doi.org/10.2527/jas.2006-046
http://www.ncbi.nlm.nih.gov/pubmed/16864858
http://www.ncbi.nlm.nih.gov/pubmed/15460326
http://dx.doi.org/10.1017/s1466252307001375
http://dx.doi.org/10.1017/s1466252307001375
http://www.ncbi.nlm.nih.gov/pubmed/18218156

@’PLOS ‘ ONE

Bovine NK-Lysin Gene Family

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

Shahriar FM, Clark EG, Janzen E, West K, Wobeser G. Coinfection with bovine viral diarrhea virus and
Mycoplasma bovis in feedlot cattle with chronic pneumonia. Can Vet J. 2002; 43(11):863-8. Epub
2002/12/25. PMID: 12497963; PubMed Central PMCID: PMCPMC339759.

Klima CL, Zaheer R, Cook SR, Booker CW, Hendrick S, Alexander TW, et al. Pathogens of bovine
respiratory disease in North American feedlots conferring multidrug resistance via integrative conjuga-
tive elements. J Clin Microbiol. 2014; 52(2):438—48. Epub 2014/01/31. doi: 10.1128/jcm.02485-13
PMID: 24478472; PubMed Central PMCID: PMCPMC3911356.

Gagea MI, Bateman KG, van Dreumel T, McEwen BJ, Carman S, Archambault M, et al. Diseases and
pathogens associated with mortality in Ontario beef feedlots. J Vet Diagn Invest. 2006; 18(1):18-28.
Epub 2006/03/29. PMID: 16566254.

Ellis JA. Bovine parainfluenza-3 virus. Vet Clin North Am Food Anim Pract. 2010; 26(3):575-93. Epub
2010/11/09. doi: 10.1016/j.cvfa.2010.08.002 PMID: 21056802.

Neibergs HL, Seabury CM, Wojtowicz AJ, Wang Z, Scraggs E, Kiser J, et al. Susceptibility loci revealed
for bovine respiratory disease complex in pre-weaned holstein calves. BMC genomics. 2014; 15
(1):1164. Epub 2014/12/24. doi: 10.1186/1471-2164-15-1164 PMID: 25534905.

Tizioto PC, Kim J, Seabury CM, Schnabel RD, Gershwin LJ, Van Eenennaam AL, et al. Inmunological
Response to Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex: An
RNA-Sequence Analysis of the Bronchial Lymph Node Transcriptome. PloS one. 2015; 10(6):
e0131459. Epub 2015/06/30. doi: 10.1371/journal.pone.0131459 PMID: 26121276; PubMed Central
PMCID: PMCPMC4484807.

Gershwin LJ, Van Eenennaam AL, Anderson ML, McEligot HA, Shao MX, Toaff-Rosenstein R, et al.
Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex. PloS one. 2015;
10(11):e0142479. Epub 2015/11/17. doi: 10.1371/journal.pone.0142479 PMID: 26571015; PubMed
Central PMCID: PMCPMC4646450.

Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological
reviews. 2003; 55(1):27-55. Epub 2003/03/05. doi: 10.1124/pr.55.1.2 PMID: 12615953.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 9(4):357-9.
doi: 10.1038/nmeth.1923 PMID: 22388286; PubMed Central PMCID: PMCPmc3322381.

Chen PS, Toribara TY, Warner H. Microdetermination of Phosphorus. Analytical Chemistry. 1956; 28
(11):1756-8. doi: 10.1021/ac60119a033

Lee MO, Kim EH, Jang HJ, Park MN, Woo HJ, Han JY, et al. Effects of a single nucleotide polymor-
phism in the chicken NK-lysin gene on antimicrobial activity and cytotoxicity of cancer cells. Proceed-
ings of the National Academy of Sciences of the United States of America. 2012; 109(30):12087-92.
Epub 2012/07/12. doi: 10.1073/pnas.1209161109 PMID: 22783018; PubMed Central PMCID:
PMCPMC3409721.

ChenY, Guarnieri MT, Vasil Al, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the
mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother. 2007; 51
(4):1398-406. Epub 2006/12/13. doi: 10.1128/aac.00925-06 PMID: 17158938; PubMed Central
PMCID: PMCPMC1855469.

Glass EJ, Baxter R, Leach RJ, Jann OC. Genes controlling vaccine responses and disease resistance
to respiratory viral pathogens in cattle. Veterinary immunology and immunopathology. 2012; 148(1—
2):90-9. Epub 2011/05/31. doi: 10.1016/j.vetimm.2011.05.009 PMID: 21621277; PubMed Central
PMCID: PMCPMC3413884.

Casas E, Hessman BE, Keele JW, Ridpath JF. A genome-wide association study for the incidence of
persistent bovine viral diarrhea virus infection in cattle. Animal genetics. 2015; 46(1):8—-15. Epub 2014/
11/14. doi: 10.1111/age.12239 PMID: 25394207.

Bermingham ML, Bishop SC, Woolliams JA, Pong-Wong R, Allen AR, McBride SH, et al. Genome-wide
association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity
(Edinb). 2014; 112(5):543-51. Epub 2014/02/06. doi: 10.1038/hdy.2013.137 PMID: 24496092;
PubMed Central PMCID: PMCPMC3998787.

Jongstra J, Schall TJ, Dyer BJ, Clayberger C, Jorgensen J, Davis MM, et al. The isolation and
sequence of a novel gene from a human functional T cell line. J Exp Med. 1987; 165(3):601-14. Epub
1987/03/01. PMID: 2434598; PubMed Central PMCID: PMCPMC2188281.

Endsley JJ, Furrer JL, Endsley MA, Mcintosh MA, Maue AC, Waters WR, et al. Characterization of
bovine homologues of granulysin and NK-lysin. Journal of immunology (Baltimore, Md: 1950). 2004;
173(4):2607—-14. Epub 2004/08/06. PMID: 15294977.

PLOS ONE | DOI:10.1371/journal.pone.0158882 July 13,2016 12/12


http://www.ncbi.nlm.nih.gov/pubmed/12497963
http://dx.doi.org/10.1128/jcm.02485-13
http://www.ncbi.nlm.nih.gov/pubmed/24478472
http://www.ncbi.nlm.nih.gov/pubmed/16566254
http://dx.doi.org/10.1016/j.cvfa.2010.08.002
http://www.ncbi.nlm.nih.gov/pubmed/21056802
http://dx.doi.org/10.1186/1471-2164-15-1164
http://www.ncbi.nlm.nih.gov/pubmed/25534905
http://dx.doi.org/10.1371/journal.pone.0131459
http://www.ncbi.nlm.nih.gov/pubmed/26121276
http://dx.doi.org/10.1371/journal.pone.0142479
http://www.ncbi.nlm.nih.gov/pubmed/26571015
http://dx.doi.org/10.1124/pr.55.1.2
http://www.ncbi.nlm.nih.gov/pubmed/12615953
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1021/ac60119a033
http://dx.doi.org/10.1073/pnas.1209161109
http://www.ncbi.nlm.nih.gov/pubmed/22783018
http://dx.doi.org/10.1128/aac.00925-06
http://www.ncbi.nlm.nih.gov/pubmed/17158938
http://dx.doi.org/10.1016/j.vetimm.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/21621277
http://dx.doi.org/10.1111/age.12239
http://www.ncbi.nlm.nih.gov/pubmed/25394207
http://dx.doi.org/10.1038/hdy.2013.137
http://www.ncbi.nlm.nih.gov/pubmed/24496092
http://www.ncbi.nlm.nih.gov/pubmed/2434598
http://www.ncbi.nlm.nih.gov/pubmed/15294977

