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Abstract
Although reinforcement learning (RL) is suitable for highly uncertain systems, the applicabil-

ity of this class of algorithms to medical treatment may be limited by the patient variability

which dictates individualised tuning for their usually multiple algorithmic parameters. This

study explores the feasibility of RL in the framework of artificial pancreas development for

type 1 diabetes (T1D). In this approach, an Actor-Critic (AC) learning algorithm is designed

and developed for the optimisation of insulin infusion for personalised glucose regulation.

AC optimises the daily basal insulin rate and insulin:carbohydrate ratio for each patient, on

the basis of his/her measured glucose profile. Automatic, personalised tuning of AC is

based on the estimation of information transfer (IT) from insulin to glucose signals. Insulin-

to-glucose IT is linked to patient-specific characteristics related to total daily insulin needs

and insulin sensitivity (SI). The AC algorithm is evaluated using an FDA-accepted T1D sim-

ulator on a large patient database under a complex meal protocol, meal uncertainty and

diurnal SI variation. The results showed that 95.66% of time was spent in normoglycaemia

in the presence of meal uncertainty and 93.02% when meal uncertainty and SI variation

were simultaneously considered. The time spent in hypoglycaemia was 0.27% in both

cases. The novel tuning method reduced the risk of severe hypoglycaemia, especially in

patients with low SI.

Introduction
Type 1 diabetes (T1D) is a metabolic disease characterised by uncontrolled blood glucose lev-
els, due to the absence or malfunction of insulin. The Artificial Pancreas (AP) system aims to
simulate the function of the physiological pancreas and serve as an external automatic glucose
regulation system. AP combines a continuous glucose monitor (CGM), a continuous subcuta-
neous insulin infusion (CSII) pump and a control algorithm which closes the loop between the
two devices and optimises the insulin infusion rate.

An important challenge in the design of efficient control algorithms for AP is the use of the
subcutaneous route both for glucose measurement and insulin infusion (sc-sc route); this
introduces delays of up to 30 minutes for sc glucose measurement and up to 20 minutes for
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insulin absorption. Thus, a total delay of almost one hour restricts both monitoring and inter-
vention in real time. Moreover, glucose is affected by multiple factors, which may be genetic,
lifestyle and environmental. With the improvement in sensor technology, more information
can be provided to the control algorithm (e.g. more accurate glucose readings and physical
activity levels); however, the level of uncertainty remains very high. Last but not least, one of
the most important challenges emerges from the high inter- and intra-patient variability,
which dictate personalised insulin treatment.

Along with hardware improvements, the challenges of the AP are gradually being addressed
with the development of advanced algorithmic strategies; the strategies most investigated clini-
cally are the Proportional Integral Derivative (PID) [1], the Model Predictive Controller
(MPC) [2]-[7] and fuzzy logic (e.g. MD-Logic) algorithms [8]-[9]. A recent development has
been the bi-hormonal AP [10]-[11], which uses both insulin and glucagon. Comprehensive
reviews of the latest advancements and current challenges in AP can be found in [12]-[15]. The
increasing number of clinical trials has led to extensive in-hospital and, more recently, at-home
evaluation of the feasibility of AP outside the controlled hospital environment. Most studies
are restricted to the algorithmic evaluation of a patient cohort under uncertain conditions,
such as erroneous meal intake and insulin sensitivity (SI) changes (e.g. physical activity).

In spite of these promising results, none of the currently proposed control strategies is
intrinsically designed to handle uncertainties and personalisation. PID is designed for linear
systems, MPC solves an open-loop optimisation problem which has proved sub-optimal in the
presence of uncertainty [16] and MD-Logic is a rule-based approach directly subjected to the
experience of the designer. In the view of patient variability, the algorithms have been
enhanced with adaptive components, which are mainly based on the personalised identifica-
tion of models involved [12] or correlation of algorithmic parameters with one or multiple
patient-specific characteristics, such as body weight, correction factor or SI [10], [17], [18].
Nevertheless, the successful performance of the state-of-the-art AP algorithms proves that AP
development is both feasible and viable and paves the path to a new era of more advanced algo-
rithmic research towards robust and personalised insulin treatment.

Reinforcement learning (RL) is a branch of machine learning (ML) and is an intensively
active research field which embraces algorithms that are able to learn from data and perform
optimisation within uncertain environments. The field of RL falls between supervised and
unsupervised learning and includes problems where an agent attempts to improve its perfor-
mance at a given task over time by continual interaction with its environment [19]. RL began
to develop as an independent branch in the early 1980s and was inspired by animal psychology
and the idea of learning through trial-and-error. It was quickly adopted by the field of optimal
control as a very efficient way to solve dynamic programming problems for which Bellman’s
“curse of dimensionality” restricted an analytical solution. An extensive review of algorithms
for RL has been presented in [20]. RL is field with an extensively investigated theoretical back-
ground, which is now finding its way towards practical application, due to modern advances in
computational capacity [21]-[24]. In this view, the application in real life problems is
highlighted as one of the current trends of RL. In medicine, RL is mainly investigated for prog-
nosis, classification and diagnosis by means of big/heterogeneous data collection, fusion and
analysis [25]-[29], with fewer reports on treatment studies [30], [31]. The advantages of ML
and RL illustrate a promising path towards the resolution of the AP challenges, as has been
recently recognised and reported [32], [33]. An online policy learning algorithm was presented
in [34] and performed efficiently. To evaluate the algorithm, a deterministic gluco-regulatory
model was used, but augmented with uncertainty to simulate patient variability. This process
may not be representative of actual patient variability and limits the strength of the adaptive
capability presented.
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One factor that complicates the use of RL in medicine is the high number of constant and
adaptive parameters which need to be tuned or initialised. Choosing the optimal values for
these parameters is a challenging task and is usually performed manually, on the basis of prob-
lem-specific characteristics. However, in the face of inter-individual variability, this manual
process may be unreliable or even unfeasible. Yet another criticism of RL is the difficulty in
generalisation or qualitative explanation of both the learning process and the final solution
(black box).

In the present study, an RL-based algorithm is proposed for personalised insulin infusion
and glucose regulation in T1D. A model-free Actor-Critic (AC) algorithm is developed and
evaluated in silico for its ability to maintain normoglycaemia within a large patient cohort and
under variable environmental uncertainties. The scope of the study is two-fold: i) to investigate
the applicability of RL in the context of a personalised AP and ii) to achieve an AC design that
can be generalised and directly translated to medical experience. In order to overcome the tun-
ing constraint discussed previously, the AC algorithm is enhanced with a novel method for
automatic and personalised tuning, based on the estimation of information transfer (IT) from
insulin to glucose signals.

Early-stage work in AC algorithms has already been presented, together with preliminary
evaluation results [35], [36]. In the present study, the algorithmic and evaluation of the AC
controller have been significantly improved. The control policy has been augmented by an
exploratory policy, in order to increase the search space of the algorithm. Moreover, a supervi-
sory control policy has been incorporated to enhance the algorithm’s safety. An important
aspect of the current work is that the AC design is directly linked to physiological parameters
and/or actions drawn from medical experience. In this approach, the automatic tuning method
has been extended and associated to patient-specific characteristics. The estimation of IT has
been further investigated in relation to the data used and the necessary data-length. For evalua-
tion, the assessment of AC has been significantly extended to include multiple and more chal-
lenging protocols, with simultaneous meal uncertainty and diurnal SI variation.

In summary, the added value of this study on state-of-the-art algorithms for AP lies in the
introduction of a novel control scheme able to meet the following challenges:

• Inter-/intra-patient variability and personalisation of insulin treatment through the use of a
real-time adaptive learning algorithm

• Robustness from using a control algorithm which is suitable for optimisation under
uncertainty

• Easy transfer to practice in hospital and at home since it is

• based on limited a priori assumptions that counteract the high inter-patient variability

• initialised on the basis of physiological parameters

The structure of this paper is as follows: Section 2 presents an analysis of AC algorithms. In
Section 3, the design and development of AC for glucose regulation is presented, while the tun-
ing of AC is discussed in Section 4. The results of the study are demonstrated in Section 5 and
Section 6 summarises the final conclusions.

The Actor-Critic Algorithm
The AC algorithm belongs to the class of RL and is characterised by the separation of the agent
into two complementary parts: the Critic, responsible for evaluating the control policy and the
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Actor, responsible for improving control policy [37]. Within the RL family, the AC algorithms
differ from actor-only or critic-only methods in that they possess better convergence proper-
ties. Moreover, their computational cost is lower, as they intrinsically estimate low variance
gradients and parameterise policy to allow continuous time optimisation [38].

In AC learning, the agent follows a specific control policy and performs transitions between
states within an uncertain environment. A schematic view of a system controlled by an AC
algorithm is shown in Fig 1.

In the case of stochastic systems, the control policy is a conditional probability function μ
(u|x,θ) from which control actions u are withdrawn, given current states of x. The aim of the
agent is to find an optimal control policy, in order to minimise the expected cost throughout
its path. Transition between states x and y depends on the chosen control action u and follows
a transition probability distribution p(y|x,u). A local cost c(x,u) is associated with each state
and action. In an average reward setting, the aim of the AC algorithm is to find an optimal
control policy in order to minimise the average expected cost per state over all states. This is
defined as:

�aðyÞ ¼
X

x2X;u2U
cðx; uÞZyðx; uÞ ð1Þ

where ηθ(x,u) is the stationary probability of the Markov chain {Xk,Uk}.

The Critic
The Critic agent is responsible for the evaluation of the current control policy on the basis of
approximation of an associated expected cost. One of the most powerful methods used for this
purpose is temporal difference (TD) learning [39], in which the total expected cost of a process
that starts at state x, takes as first action u and follows policy μ(u|x,θ) that is defined through

Fig 1. Schema of AC.

doi:10.1371/journal.pone.0158722.g001
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the value and action-value functions Vθ(x) and Qθ(x,u), respectively:

VyðxÞ ¼ E½
X1
k¼0

gkcðxk; ukÞjx0 ¼ x� ð2Þ

Qyðx; uÞ ¼ E½
X1
k¼0

gkcðxk; ukÞjx0 ¼ x; u0 ¼ u� ð3Þ

The value and action-value functions satisfy the following equations:

Qyðx; uÞ ¼ cðx; uÞ þ g
X
y

pðyjx; uÞVyðyÞ ð4Þ

Vyðx; uÞ ¼
X
u

mðujx; yÞ½cðx; uÞ þ g
X
y

pðyjx; uÞVyðyÞ� ðBellman EquationÞ ð5Þ

For the given observed states, x = xk−1, y = xk and action u = uk−1, and the Bellman Eq(5)
reduces to:

VyðxÞ ¼ cðx; uÞ þ gVyðyÞ ð6Þ

The Bellman’s curse of dimensionality restricts the analytical solution of Eq (6) in high
dimensional spaces and requires the use of approximation methods. In the TD framework, the
value function V(x) is approximated by a parameterised function Vw(x) with w2RK. The most
commonly used architecture for the parameterised function is the linear approximation [40]
defined as:

~Vw
y ðxÞ ¼

XK
i¼1

wigiyðxÞ ¼ wTgyðxÞ ð7Þ

where gθ(x) is a vector of basis functions of dimension K. Notation wT denotes transpose. The
approximation of the value function is performed via the estimation of the TD error d defined

as the deviation of the approximated value function ~VwðxÞ from its subsequent estimation
~VwðyÞ:

d ¼ cðx; uÞ þ g~Vw
y ðyÞ � ~Vw

y ðxÞ ð8Þ

On the basis of the TD error, the parameter vector w is updated according to the formula:

wkþ1 ¼ wk þ akdk
Xk

n¼0

lk�nrw
~Vw

y ðxÞ ¼ wk þ akdkzk ð9Þ

where αk is a positive non-increasing learning rate sequence, 0< λ< 1 is constant and zk is the
eligibility vector defined as:

zk ¼
Xk

n¼0

lk�ngyðxnÞ ð10Þ

and are updated according to the following formula:

zkþ1 ¼ lzk þ gyðxkþ1Þ ð11Þ
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A similar process may be followed for the approximation of the action-value function
Qθ(x,u):

~Qr
yðx; uÞ ¼

XL
i¼1

riφi
yðx; uÞ ¼ rTφyðx; uÞ ð12Þ

where φθ(x,u) is the vector of basis functions and r 2 RL is the respective parameter vector. A
commonly used choice of the basis functions is φθ(x,u) = ψθ(x,u), where ψθ(x,u) =rθ ln μ(u|x,θ)
is the likelihood ratio derivative of the control policy [37].

The Actor
The aim of the Actor is to optimise the control policy over time towards minimisation of the
average expected cost per state �aðyÞ. Policy gradient methods are usually employed for the
minimisation, which involve the estimation of the gradientry�aðyÞ with respect to the policy
parameter vector θ. The general policy update function has the following form:

ykþ1 ¼ yk � bkry�aðyÞ ð13Þ

where βk is a positive sequence of learning rates. Various versions of Actor have been proposed,
mainly distinguished by the approximation strategy for the gradientry�aðyÞ [41]-[44]. In this
study, the Actor update of [43] has been used in which:

ry�aðyÞ ¼
X
x;y

Zyðx; uÞdtcyðx; uÞ ð14Þ

Glucose Regulation in T1D Based on an AC Algorithm
The AC algorithm is designed to optimise the insulin regime for each T1D patient. The insulin
regime is defined as the combination of insulin basal rate (BR) and insulin:carbohydrate (IC)
ratio. This choice was taken in order to be consistent with the medical practice; however, other
insulin regime profiles may be used. The IC ratio is used for the calculation of the bolus dose
(Ibolus) according to the known carbohydrate (CHO) size of the upcoming meal as:

IC ¼Ibolus=CHO ð15Þ

Prior to the design of the Critic and Actor agents, two important parameters of the algo-
rithm need to be defined, i) the learning window, which corresponds to the update rate of the
algorithm and ii) the state of the system. These are discussed in the following paragraphs.

Learning window
The learning window is defined here as the period provided for data collection prior to an
update of the insulin profile. There are several considerations that influence this decision. The
learning window cannot be comparable to the loop delay introduced by the CGM and the sc
insulin absorption. Moreover, the trade-off between fast and slow learning should be consid-
ered. Frequent updates may effectively follow the rapid glucose dynamics, but miss the “big pic-
ture” which carries more basic or generic information about the patient’s characteristics.
Taking these into account, the optimisation window was chosen to be one day (24 hours). This
choice also considers the 24-hour circle of the human body, which carries adequate
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information about the patient’s general glycaemic status. As a result, the insulin policy is evalu-
ated and updated once per day as based on the respective daily glucose profile.

System state
The dynamics of the glucoregulatory system are represented as a Markov decision process,
where the state xk is the status of the system in terms of hypo- and hyperglycaemia for day k.
Define the glucose error EG at each time t as:

EGðtÞ ¼
GðtÞ � Gh if G � Gh

GðtÞ � Gl if G � Gl

0 else

ð16Þ

8><>:
where G(t) is the glucose value at time t and Gh = 180mg/dl, Gl = 70mg/dl are the hyper- and
hypoglycaemia bounds, respectively. The glycaemic profile of day k is described by two features
related to the hyper- and hypoglycaemic status of that day and more specifically to the average
daily hypoglycaemia and hyperglycaemia error:

x1k ¼
1

N1

X
t 2 day k

HðEGðtÞÞ ð17aÞ

x2k ¼
1

N2

X
t 2 day k

Hð�EGðtÞÞ ð17bÞ

whereH(�) is the Heaviside function and Ni is the number of time samples above the hypergly-
caemia (i = 1) or below the hypoglycaemia (i = 2) threshold. Firstly, the features are normalised

in [0 1]. The normalised features formulate the state xk ¼ x1k x
2
k

� �T
of day k.

Design of the Critic
The mathematical formulation of the Critic was given in Section 2. At the end of day k, the glu-
cose profile of the day is collected and the state xk is calculated. On the basis of the state, a local
cost c(xk) is assigned, defined as:

cðxkÞ ¼ ahx
1
k þ alx

2
k ð18Þ

The weights ah and al are used for scaling the hypo- and hyperglycaemia components and
are chosen as ah = 1 and al = 10 [35]. The action-value function is linearly approximated as
described in Eq (12). The basis functions φ(�) are set equal to the likelihood ratio derivative
(LRD) [37] of the control policy which will be derived in a later phase. For the Critic update,
the constants γ and λ are chosen as γ = 0.9 and λ = 0.5 for all patients. The Critic’s learning rate
is set ack ¼ 0:5 for all patients. These values were found experimentally. The initial parameters
r0 are set to random values in [–1 1] and the initial parameters z0 to zero values for all patients.

Design of the Actor
The Actor implements a dual stochastic control policy μ(uk|xk,θk) for the daily optimisation of
the BR and IC ratio starting from an initial BR (IC ratio) value. In order to dissociate the action
from the absolute level of the current insulin regime, the control action uk is defined as the rate
of change of BR (IC ratio) from day k-1 to day k. The benefit of this choice will be revealed
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later. Thus, the BR (IC ratio) is updated as follows:

Sk ¼ Sk�1 þ PS
kSk�1 ð19Þ

PS
k ¼ uS

k � mðuS
kjxk; ySkÞ ð20Þ

where S = {BR, IC} and PS
k is the control action i.e. the rate of change of Sk from day k-1 to day

k. The final applied control action PS
k is withdrawn from the probability distribution mðuS

kjxk; ySkÞ
of the control policy based on the current state xk and policy parameter vector yS

k. For the design
of the probability distribution, a three-step process is followed, based on the generation of three
different types of control actions: i) linear deterministic, ii) supervisory and iii) exploratory
action. Hereafter, the notations k and S are omitted for clarity purposes. The procedure is
exactly the same for BR and the IC ratio.

The linear deterministic control action Pa is defined as the linear combination of the current
state and policy parameter vector:

Pa ¼ xTy ð21Þ

In other words, this control action associates the daily hypo- and hyperglycaemic status to
the needed percentage of BR (IC ratio) change for the next day.

The supervisory control action Ps is a conservative rule-based advice to the algorithm and
mainly serves as guidance of the direction of change to be followed and as a safety module
against extreme insulin changes by the algorithm [45]. The supervisory action is defined as:

Ps ¼
0 if x1 ¼ x2 ¼ 0

�0:1x1 if x1 � 0 and x2 ¼ 0

	0:1x2 if x2 � 0

ð22Þ

8><>:
where the upper sign refers to BR and the lower sign to IC ratio.

The weighted sum of the two previous actions defines the total deterministic control action
Pd:

Pd ¼ hPa þ ð1� hÞPs ð23Þ

where h is a factor that allows us to scale the contribution of each part to the final output. In
this study, the weighting factor has been chosen as h = 0.5 and thus assigns equal contributions
to the two actions.

The exploratory control action Pe occurs by adding white noise to the final deterministic
policy as below:

Pe ¼ Pd þ Nð0; sÞ ð24Þ

where N(0, σ) is white Gaussian noise with zero mean and standard deviation σ. The aim of the
exploration process is to widen the search space of the algorithm in order to optimise the per-
formance and the convergence rate. The result of the exploration process is the final control
action to be applied.
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Based on the previous analysis, we are now ready to derive the control policy μ(u|x,θ) as the
probability distribution from which the final control action u = Pe is withdrawn:

mðujx; yÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

u� PdðxÞ
s

� �2
 !

ð25Þ

The control policy is a Gaussian probability distribution with mean equal to the total deter-
ministic action Pd(x) and standard deviation σ. Finally, the LRD ψθ(x,u) has to be derived. Tak-
ing the gradient of the control policy with respect to θ we have:

rymðujx; yÞ ¼ mðujx; yÞ u� PdðxÞ
s2

ryPdðxÞ ð26Þ

From Eqs (25) and (26), LRD becomes:

cyðx; uÞ ¼ ry ln mðujx; yÞ ¼
u� PdðxÞ

s2
ryPdðxÞ ð27Þ

and the policy parameter update of the Actor is defined as follows:

ykþ1 ¼ yk � bkdkcyk
ðxk; myk

ðukjxkÞÞ ¼ yk � bkdk
u� PdðxÞ

s2
ryPdðxÞ ð28Þ

It can be seen in Eq (28) that the update of the policy parameter vector depends on the dif-
ference between the total deterministic and the exploratory policy, i.e. on the noise variance σ2.
When an optimal policy has been found, which results in a state xk ~0, we would like to reduce
the exploration, as this may lead the system away from the solution found. To this end, the var-
iance σ2 is defined as a function of the state xk:

s2 ¼ KSkxk2k ð29Þ

The larger the state xk, the greater the time spent in hypo-/hyperglycaemia on day k, i.e. the
larger the exploration space for a better control policy. The constant KS is set manually to 0.05
following a trial-and-error process. The Actor learning rate βk is set equal to the variance σ

2

using the same reasoning. In this way, the AC algorithm is all-time learning, in order to com-
pensate for temporal or permanent changes in the gluco-regulatory system of each patient.

Personalised Tuning of the AC Algorithm
The design of the AC algorithm, as described in the previous section, involves various parame-
ters that need to be tuned. Taking into account the patient variability, personalised tuning
might be required for some of the parameters. Manual tuning for each patient is infeasible or
might compromise the patients’ safety, so automatic methods need to be investigated.

On the basis of preliminary simulations and under different tuning configurations, the AC
parameters were first split into two classes, as robust (R) or sensitive (S). The parameters
included in the R class were associated with low sensitivity to patient variability and were man-
ually tuned by empirical methods, with common values for all patients given in the previous
section. The S class included the parameters which were found to be sensitive to patient-spe-
cific characteristics. The parameters identified in this class were the initial values of the BR and
IC ratio and the Actor’s initial policy parameter vector θ0. For the first two parameters, univer-
sal tuning is not possible, as the insulin requirements naturally differ between different diabetic
patients. It will be shown that the policy parameter vector θ is tightly related to patient-specific
characteristics and its initial tuning affects both the performance and convergence rate of the
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algorithm. Thus, automatic, individualised tuning procedures were followed for the S class
parameters. Table 1 summarizes the parameters of the AC algorithm along with their descrip-
tion, values and tuning class.

Initialisation of BR and IC ratio
In order to guarantee safety, the initial values for the BR and IC ratio should be specific and
appropriate for each patient. Clinical experience in treating diabetes has developed a number
of empirical rules for the estimation of BR profiles and IC ratios for patients under CSII pump
therapy, as based on their body weight, SI and lifestyle factors [46]. These rules provide an
open-loop insulin regime which may not be optimal but ensures primary glucose regulation.
Thus, when applied in clinical practice, the BR and IC ratio of the AC algorithm can be initia-
lised using the patient’s individual values as optimised by his/her physician. This practice has
the additional advantage that the transition of a patient from CSII to AP can be smoother both
for him/herself and the physician.

Initialisation of policy parameter vector θ
Initialisation of the policy parameter vector θ was based on investigation of its natural repre-
sentation within the designed insulin infusion control algorithm. The optimal values of the pol-
icy parameter vector θ answers the question: “How much should we change BR and IC ratio
based on the observed daily hyper-/hypoglycaemia?” The answer is directly related to the
patient’s SI and depends on his/her body mass index (BMI), total daily insulin (TDI) needs,
lifestyle and genetic factors. Estimation of SI is currently performed in a clinical environment
using clamp or intravenous glucose tolerance tests, which are time consuming and costly. In
recent years, there have been efforts to achieve online estimation of SI to be incorporated into
AP algorithms, using CGM and insulin pump data and based on the inverse solution of a dia-
betes physiological model [12], [47].

Often in practice, SI is directly related to a patient’s TDI, as this information is easily accessi-
ble. However, even for two patients with the same TDI and BMI, the impact of 1 U of insulin
may be different. In this study, we capture this difference through the IT from insulin to glu-
cose signals. The insulin-to-glucose IT was measured using the notion of transfer entropy
(TE), a very powerful method for the estimation of IT in non-linear random processes [48]. TE
estimates the IT from a cause signal Y (insulin) to an effect signal X (glucose). This value is
independent of the magnitude of the two signals, i.e. the amount of insulin and the glucose

Table 1. Parameters of the AC algorithm.

Parameter Description Value Class

ah Local cost hyperglycemia weight 1 R

al Local cost hyporglycemia weight 1 R

γ Discount factor long-term cost 0.9 R

λ TD learning constant 0.5 R

aC
k Critic learning rate 0.5 R

aA
k Actor learning rate 1 R

r0 Critic initial parameter vector Random in [–1 1] R

z0 Critic initial eligibility vector Zero R

σ Standard deviation exploration action 0.05 R

S0 Actor initial BR/IC ratio patient-specific S

θ0 Actor initial parameter vector patient-specific S

doi:10.1371/journal.pone.0158722.t001
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concentration. For two patients with the same TE, higher TDI corresponds to lower SI. Simi-
larly, if two patients have the same TDI, higher TE can be translated to lower SI. Following this
reasoning, information about a patient’s SI was estimated as:

~SI ¼ c1
TE
TDI

ð30Þ

where c1 is a positive constant. Given the definition of SI, if a patient wants to reduce his/her
glucose levels by ΔG, the necessary amount of insulin should be:

IDG ¼ DG
SI

ð31Þ

Substituting SI with its estimation eSI given in Eq (30), we have:

IDG ¼ c
DG
TE

TDI ð32Þ

where c = 1/c1. In the case of the AC algorithm, the aim is to find the optimal change in the BR
and IC ratio in order to eliminate daily hypo- and hyperglycaemia. This can be seen as a paral-
lel to Eq (32):

DSi ¼ c0
xi

TE
TDI ð33Þ

where xi is the hyperglycaemia (i = 1) or hypoglycaemia (i = 2) feature, i.e. the average daily
hypo-/ hyperglycaemic error as defined in (29a, b), ΔSi is the change in BR or IC ratio based on
the respective feature and c' a positive constant. Considering that TDI is directly reflected in
the daily BR and IC ratio, Eq (33) can be rewritten as:

DSi ¼ c0
xi

TE
S ð34Þ

If we set yi ¼ c0

TE
, Eq (34) becomes:

DSi ¼ yixiS ð35Þ

and the total change in BR or IC ratio based on both hypo- and hyperglycaemia features is the
linear combination of their respective contributions as:

DS ¼ DS1 þ DS2 ¼ y1x2Sþ y2x2S ¼ ðy1x1 þ y2x2ÞS ¼ yTxS ð36Þ

where θ = [θ1 θ2]
T and x = [x1 x2]

T is the feature vector. Finally, if we set Ps = θT x then Eq (35)
becomes:

DS ¼ PSS ð37Þ

where PS is the percentage of change of S and represents AC deterministic control action as
previously defined in Eq (33).

The aforementioned analysis illustrates that defining the control action as the rate of insulin
change permitted tuning of AC, using the insulin to glucose IT and without the need to esti-
mate SI, which would be a more cumbersome process. The analysis is approximate and may
only be used as a draft estimate of the necessary BR or IC update. However, the scope is to pro-
vide a better starting point to AC in order to enhance the optimisation process. The initial
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values of the policy parameter vector for patient p are set as:

yS0ðpÞ ¼
Wh

TEðpÞ
Wl

TEðpÞ
� �

ð38Þ

whereWh andWl are weights related to the hyper- and hypoglycaemia features, respectively,
set manually asWh = 0.1 andWl = −0.2 for all patients. Again, a higher value is assigned to the
hypoglycaemic weight, as avoiding hypoglycaemia has higher priority.

Estimation of insulin-to-glucose TE
Insulin-to-glucose TE is estimated on the basis of CGM and insulin pump data for four days
collected from each patient. In order to choose the appropriate data size, datasets of different
durations were used and the correlation between the respective TE values was computed for
successive data lengths (Fig 2). It was observed that data of four days or more gave highly cor-
related TE values (>99%).

The estimation of TE was based on the following formula:

TEIA!G ¼
X

t

pðGt;Gt�1; IAt�dÞlog
pðGtjGt�1; IAt�dÞ

pðGtjGt�1Þ
ð39Þ

where Gt, IAt are the glucose and active insulin at time t and d is the insulin time-delay set here
as d = 20 minutes, according to the average physiological insulin absorption delay for rapid-
acting insulin analogues. Active insulin was estimated as the sum of insulin on board (IOB)
related to the bolus doses and basal insulin infusion:

IAðtÞ ¼ IOBðtÞ þ IbasalðtÞ ð40Þ

Estimation of IOB was based on [49]. For the estimation of the probability distributions, the
fixed data partitioning method was used, in which the time-series are partitioned into equal
sized bins and the probability distributions are approximated as histograms [50]. The size of
the partition bins for glucose and insulin was chosen as Gbin = 10 mg/dl and IAbin = 1 U,
respectively.

Results and Discussion
The AC algorithm was evaluated in silico in a series of experiments designed in order to capture
realistic conditions of every-day living with T1D. The evaluation criteria were the time spent in
normoglycaemia (70
G
180 mg/dl), mild hypoglycaemia (50
G<70 mg/dl), severe

Fig 2. Correlation of TE values for successive pairs of data lengths.

doi:10.1371/journal.pone.0158722.g002
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hypoglycaemia (G<50 mg/dl), mild hyperglycaemia (180<G
300 mg/dl) and severe hypergly-
caemia (G>300 mg/dl) as well as the Low Blood Glucose Index (LBGI) defined in [51].

Experimental protocol
Simulation environment. In all experiments, the FDA accepted UVA/Padova T1DM sim-

ulator was used [52], [53]. All experiments were first tested on the 30-patient cohort of the edu-
cational version. Of the 30 patients, 2 children presented excessive glucose fluctuations and
were excluded as outliers. Similar observations have been reported by other teams [54]. In
order to enhance the validity of the results, the most representative experiments were subse-
quently tested on the 100 FDA accepted adult population of the full version of the simulator.
The simulator provides optimised BR and IC ratio values which can be assumed to be the stan-
dard treatment of the patients defined by their physician.

Meal protocol. The meal protocol used is described in detail in [55]. The meals were
announced to the controller 30 minutes prior to intake. In order to simulate the common
errors of diabetic patients in CHO counting, a random meal uncertainty was introduced in all
experiments; this was uniformly distributed between -50% and +50%.

SI variation. A scenario of varying SI was designed in order to simulate physiological diur-
nal (intra-day) SI variations. Two cases of SI variation were simulated, i) the dawn phenome-
non and ii) physical activity. More specifically, every day of the trial, SI drops between 04:00
and 08:00 to -25% of its nominal value. SI ramps up or down within a time-frame of 30 min-
utes. Furthermore, three days per week, the patients perform physical activity between 18:00
and 20:00, which results in an increase in SI up to 33% of its nominal value. SI ramps up within
30 minutes and ramps back down at the end of the physical activity within four hours.

Experiments
A total of six experiments were conducted as described below. The same meal protocol was
used in all experiments.

E1: The optimised BR and IC ratio provided by the simulator were applied fixed in an open-
loop (OL) approach simulating standard treatment. SI was steady throughout the trial with no
variations. The trial lasted four days.

E2: The same as E1 including SI variation.
E3: The AC algorithm was applied without the automatic TE-based tuning. The initial

parameter vector θ0 as set to zero values for all patients. SI was steady throughout the trial with
no variations. The trial lasted 14 days. The first four days OL glucose control was applied as in
E1. Closed loop (CL) control with AC started on day 5. The next first five days were considered
as the training phase of the AC algorithm and the rest were used for evaluation.

E4: The same as E3 including SI variation
E5: The same as E3 but the AC policy parameter vector θ0 was individually initialised based

on the TE approach.
E6: The same as E5 including SI variation.
All experiments were tested on the educational version of the UVA/Padova T1DM simula-

tor, while experiments E5 and E6 were further tested on the full version as well.

28-subject cohort
The performance of the AC algorithm is presented in Table 2 for the three age groups of
patients and all experiments. The results of E3-E6 refer to the last five days (evaluation period)
of the closed loop session. The CL insulin infusion results in improved glycaemic control for all
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patients, especially in a reduction in the time spent in the hypoglycaemic range while preserv-
ing an extensive period in the target range.

Compared to OL (E1, E2), AC reduced the time spent in mild hypoglycaemia by at least 79%
in adults, 62% in adolescents and 78% in children while its contribution in severe hypoglycaemia
was even higher, with 100% reduction in adults, over 99% in adolescents and 96% in children.
The contribution of AC is mostly significant in children who, during OL, presented unaccept-
ably long periods spent in mild and severe hypoglycaemia. Even in the presence of SI variation,
where the OL control could not prevent incidents of severe hypoglycaemia, AC was able to
reduce the hypoglycaemic events and maintain very long periods spent in the target range.

Through these results, it is important, also, to investigate the internal performance of the
AC algorithm. Fig 3 illustrates the evolution of the AC adaptive parameters for one in silico
child during experiment E6. The child starts with insulin regime higher than required resulting

Table 2. Percentage of time spent in the target range, mild hypoglycaemia, severe hypoglycaemia, mild hyperglycaemia and severe hyperglycae-
mia for each age group and the six experiments.

Glucose Levels E1 E2 E3 E4 E5 E6

Adults

70–180 mg/dl 97.18 94.43 96.92 96.30 96.28 94.96

50–70 mg/dl 1.47 2.18 0.31 0.20 0.16 0.09

< 50 mg/dl 0.31 1.04 0.00 0.00 0.00 0.00

180–300 mg/dl 1.03 2.35 2.76 3.50 3.56 4.96

> 300 mg/dl 0.00 0.00 0.00 0.00 0.00 0.00

Adolescents

70–180 mg/dl 86.44 82.73 81.72 79.59 81.64 77.81

50–70 mg/dl 2.39 3.23 0.75 0.98 0.77 1.38

< 50 mg/dl 0.01 1.64 0.00 0.01 0.00 0.05

180–300 mg/dl 11.07 12.30 17.08 19.13 17.12 20.55

> 300 mg/dl 0.10 0.10 0.45 0.29 0.47 0.21

Children

70–180 mg/dl 74.77 75.82 79.30 80.52 79.24 77.36

50–70 mg/dl 14.63 12.21 2.19 2.72 1.27 1.35

< 50 mg/dl 6.15 7.33 0.20 0.33 0.06 0.05

180–300 mg/dl 4.37 4.56 16.74 16.17 18.81 20.86

> 300 mg/dl 0.08 0.08 1.58 0.27 0.61 0.38

doi:10.1371/journal.pone.0158722.t002

Fig 3. Evolution of the AC adaptive parameters for one in silico child under an extended E6 for 30
days.

doi:10.1371/journal.pone.0158722.g003
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in long hypoglycemic events. The AC parameters are gradually adapted leading to the reduc-
tion of BR and IC ratio and the efficient regulation of the glucose profile. For clarity only one
of Critic’s parameters r and one of Actor’s parameters θ is shown along with the BR and the IC
ratio, all normalized in [0, 1]. In order to demonstrate the convergence of the AC, the E6 exper-
iment was extended to 30 days. From Fig 3 can be seen that after the 14th day the parameters
remain mostly stable.

Manual vs. automatic AC tuning. From Table 2, it can be seen that the automatic TE-
based AC (E5, E6) resulted in lower time spent in mild and severe hypoglycaemia for adults
and children, while for adolescents the manual-based AC seems to perform better in these
terms. Performance of a Student’s t test showed that manual and TE-based initialisation in
hypoglycaemia prevention (in terms of time spent in this region and LBGI) were statistically
different in both adults and children (p values<0.05), but not in adolescents. In all cases,
though, the absolute differences between the two methods were small.

It is important to mention that the contribution of automatic initialisation may not be of
equal importance for all patients. Patients with high TE, which (as discussed earlier) can be
attributed to an aspect of SI, did not show significant improvement with automatic initialisa-
tion. These patients are expected to need small insulin updates (meaning here the percentage
of change from the current insulin BR or IC ratio); thus the initial AC parameter vector θ0 will
be close to zero. However, for patients with lower TE, the contribution was important during
both the training and the evaluation period. This is not a surprise, given that patients with low
TE will require larger updates of their insulin regime in order to improve their glucose profile.
An example of such a case is illustrated in Fig 4, where the LBGI progress of one in silico child
with TE below the average is presented for E4 and E6.

SI variation. When OL control is applied, introduction of SI variation resulted in
increased time spent in both mild and severe hypoglycaemia. The effect of SI variation is
mostly significant in adolescents, but it is observable in all age groups. However, during closed
loop glucose control based on the AC algorithm, no significant difference is observed between
E3-E4 and E5-E6, as shown in Table 2. This fact reveals that AC is robust against system uncer-
tainties, and is able to account for them and optimise its performance respectively.

Fig 4. LBGI progress of one in silico child during experiments E4 and E6.

doi:10.1371/journal.pone.0158722.g004
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100-adult cohort
The AC algorithm was further evaluated using the 100 FDA-accepted adult population with
the UVA/Padova T1DM simulator. The purpose of this evaluation was two-fold. On the one
hand, it enhances the validity of the results, due to the use of a very large patient database. On
the other hand, it offers the chance to comparatively assess the performance of AC against
state-of-the-art glucose control algorithms which have been evaluated using the same simulator
and patient database. The performance of AC for the 100-adult cohort during experiments E5
and E6 is presented in Table 3.

When SI variation was introduced (E6), two of the 100 adult patients exhibited problematic
performance. Both patients reached glucose levels below 40 mg/dl during the open loop period.
It was not possible for the AC algorithm to bring these patients back during closed loop and
certainly this is beyond the scope of any glucose control algorithm. As would have been the
case in a real clinical study, these two patients have been excluded from the evaluation. Thus,
the results of E6 refer to 98 adults. From Table 3, it can be seen that the AC algorithm performs
excellently with very long periods spent in the target range and very few hypo- and hypergly-
caemic events. During OL (first 4 days), introduction of SI variation increased the time spent
in mild hypoglycaemia by 44% and in severe hypoglycaemia by 770%. During CL with the AC
algorithm, the time spent in hypoglycaemia was the same in E5 and E6 and was preserved at
very low levels in both cases. This can be further illustrated in Fig 5, which presents the daily
LBGI progress for the whole duration of E5 and E6. These results support the previously dis-
cussed performance of the AC algorithm based on the training version of the simulator. They

Table 3. Percentage of time spent in target range, hypoglycaemia and hyperglycaemia for AC evalu-
ated in the 100-adult cohort under E5 and E6.

Glucose Levels E5 E6

70–180 mg/dl 95.66 93.02

< 70 mg/dl 0.27 0.27

> 180 mg/dl 4.07 6.71

doi:10.1371/journal.pone.0158722.t003

Fig 5. Daily LBGI of the total experiment duration for the 100 adult patients and experiments E5-E6.

doi:10.1371/journal.pone.0158722.g005
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further demonstrate that AC can provide personalised insulin treatment and achieve tight glu-
cose regulation even under high patient variability and other uncertainties.

The results of this study demonstrate that adaptive control methods can be a valuable tool
in personalization and optimization of insulin treatment in T1D. Moreover, the study illus-
trates the challenges in the application of such algorithmic approaches and proposes strategies
to address them. It is, however, very important to note that the role of the physician is not
supressed by an AP system, not even if the AP has self-learning capabilities. In the development
of AP algorithms it is important to take this fact into account and leave room for the vivid
interaction of the system with the physician [56].

Conclusions
An AC learning algorithm, chosen from the family of RL, was proposed for the design and
development of a personalised AP in T1D. The AC algorithm was evaluated in silico using the
FDA-accepted T1D simulator under a complex meal protocol and diurnal SI variation. The
results of the study illustrate that AC was able to learn in real-time patient-specific characteris-
tics captured in the daily glucose profile and provide individualised insulin treatment. The
algorithm achieved very high time spent in the target range, with effective limitation of hypo-
glycaemia under uncertainty in the CHO content and diurnal SI. The novel automatic and per-
sonalised tuning method contributed in the optimisation of the algorithm’s performance.
Compared to other in silico tested control strategies for glucose regulation, AC was evaluated
under more complex experimental protocol and presented comparable or superior results.
However, due to the differences in the evaluation scenarios, a direct comparison with solid con-
clusions cannot be performed.

The AC design took into account the characteristics of medical practice in an effort to pres-
ent a comprehensive and easily adaptable structure. The feasibility of personalised tuning
through link to physiological parameters was illustrated. This fact releases the applicability of
RL algorithms in T1D from a very important constraint.

It is worth noting that the design of the AC algorithm permits its direct use by the patient
without initial clinical preparation by the physician as it is self-adaptive and relies on the
patient’s current standard treatment as a starting operation point. During the first four opera-
tion days, AC provides the patient’s standard treatment as defined by his/her physician and, in
parallel, collects his/her CGM and insulin pump data. At the end of this period, the algorithm
automatically estimates the TE and initialises the policy parameters. In sequence, AC continues
the personalisation of insulin treatment with daily adaptation of BR and IC ratio. For all
involved calculations, AC needs minimal computational time and can run smoothly on a
mobile device.

In the present configuration, the AC algorithm is designed to follow and learn the slow glu-
cose dynamics captured in the daily glucose profile. Different learning configurations may be
investigated with shorter update windows and different cost functions, bearing in mind the
trade-off between fast and slow learning. Alternatively, AC could be combined with existing
control strategies, independently of the used algorithm, which provide short-term insulin
updates, in order to build a control system able to capture both the fast and the slow glucose
dynamics. Moreover, AC could have an additional medical impact as a personalised advisory
system for the physicians.

The aforementioned potentialities of AC will be investigated in the near future. The next
steps also include the extensive investigation of insulin to glucose IT and its correlation with SI
and TDI. Alternative patient-specific characteristics will be examined for the automatic AC
initialisation. Moreover, the AC algorithm will be enhanced with additional systems for the
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estimation of the precise CHO content of meals [57] as well as physical activity. As soon as the
final algorithmic version is established, extensive clinical evaluation will follow, both at hospital
and at home, according to the evaluation guidelines defined by FDA.
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