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Abstract
Staphylococcus aureus produces numerous factors that facilitate survival in the human host.

S. aureus coagulase (Coa) and vonWillebrand factor-binding protein (vWbp) are known to

clot plasma through activation of prothrombin and conversion of fibrinogen to fibrin. In addi-

tion, S. aureus clumping factor A (ClfA) binds fibrinogen and contributes to platelet aggrega-

tion via a fibrinogen- or complement-dependent mechanism. Here, we evaluated the

contribution of Coa, vWbp and ClfA to S. aureus pathogenesis in a rabbit model of skin and

soft tissue infection. Compared to skin abscesses caused by the Newman wild-type strain,

those caused by isogenic coa, vwb, or clfA deletion strains, or a strain deficient in coa and
vwb, were significantly smaller following subcutaneous inoculation in rabbits. Unexpectedly,

we found that fibrin deposition and abscess capsule formation appear to be independent of

S. aureus coagulase activity in the rabbit infection model. Similarities notwithstanding, S.
aureus strains deficient in coa and vwb elicited reduced levels of several proinflammatory

molecules in human blood in vitro. Although a specific mechanism remains to be determined,

we conclude that S. aureusCoa, vWbp and ClfA contribute to abscess formation in rabbits.

Introduction
Staphylococcus aureus remains one of the most prominent human bacterial pathogens world-
wide [1, 2]. These Gram-positive cocci cause a wide clinical spectrum of disease and/or syn-
dromes, including endocarditis, bacteremia, pneumonia, toxic shock syndrome, osteomyelitis,
and skin and soft tissue infections (SSTIs) [3–5]. The remarkable success of S. aureus as a
human pathogen is facilitated by its vast arsenal of virulence factors and an ability to acquire
antibiotic resistance readily [5, 6].
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Coagulase (Coa) is one of the earliest described virulence factors of S. aureus [7], and is rou-
tinely used as a diagnostic tool to differentiate between two major species of Staphylococcus,
i.e., coagulase-positive (S. aureus) and coagulase-negative (e.g., S. epidermidis) organisms. Rela-
tively recently, a second S. aureus coagulase was discovered and named von Willebrand factor-
binding protein (vWbp) [8]. Coa and vWbp display sequence and structure homology, particu-
larly at the N-terminus [9]. Both proteins insert N-terminal residues into the prothrombin
zymogen cleft, which triggers non-proteolytic activation by conformational transformation
and formation of a staphylothrombin complex [10, 11]. The C-terminal domain (substrate rec-
ognition domain) of coagulase binds fibrinogen, which is transformed into fibrin and subse-
quently forms a fibrin clot.

Fibrin deposition is a process critical to abscess formation and thereby contributes to host
defense against invading S. aureus [12]. The S. aureus coagulases have been linked previously
to abscess development in murine systemic [13] and subcutaneous models of infection [14].
Clumping factor A (ClfA), although not a coagulase, is a fibrinogen binding protein that can
promote fibrinogen-dependent platelet aggregation and adherence of S. aureus to fibrin [15,
16]. Similar to the coagulases, a role for ClfA in S. aureus abscess formation has been demon-
strated in murine models of S. aureus virulence [17–19].

Rabbit models of S. aureus infection were used historically to investigate virulence and host-
pathogen interactions, but were replaced largely by mouse infection models. Although neither
mouse nor rabbit innate immune systems faithfully recapitulate that of humans, there are char-
acteristics of the rabbit innate immune system—especially those of granulocytes—that seem
more closely aligned with those of humans by comparison. A role for coagulases and ClfA has
not been reported in a rabbit model of S. aureus SSTI. To that end, we evaluated the role of S.
aureus coa, vwb, and clfA in a rabbit skin abscess model.

Materials and Methods

Ethics statement
All animal studies and procedures were approved by the Animal Care and Use Committee at
Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID)
under protocols 2011–92 and 2012–027, and conformed to the guidelines of the National Insti-
tutes of Health (NIH).

Human venous blood was obtained from healthy donors according to a protocol approved
by the Institutional Review Board for Human Subjects, NIAID, NIH. Studies were conducted
according to the policies provided in the Declaration of Helsinki, and each volunteer provided
written informed consent prior to participation in the study.

Bacterial strains and growth conditions
S. aureus Newman wild-type and isogenic coa (Δcoa), vwb (Δvwb), and coa/vwb (Δcoa/Δvwb)
deletion strains, and a clfA transposon mutant strain (ΔclfA), were described previously [13, 20,
21]. Briefly, the pKOR1 allelic replacement system was used to create the S. aureus Δcoa, Δvwb
and Δcoa/Δvwb deletion strains [13, 22], and the mariner-based bursa aurealis transposon sys-
tem was used to construct the ΔclfA strain [21]. All S. aureus strains used for these studies have
been phenotypically evaluated for their ability to clot whole blood [13]. We used S. aureus
strains Newman, Δcoa, Δvwb, and Δcoa/Δvwb since they were readily available and used previ-
ously in murine models of S. aureus abscess formation [13, 21]. Bacteria were cultured in tryp-
ticase soy broth (TSB; Difco, Detroit, MI) at 37°C with constant shaking at 225 rpm. Overnight
cultures were diluted 1:200 into fresh TSB and grown to early stationary (OD600 ~ 2.0) growth
phase prior to use in assays.
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Rabbit skin and soft tissue infection model
Animal experiments were performed as described [23]. Briefly, bacteria were cultured to early
stationary phase of growth and then pelleted by centrifugation. Cells were washed twice with
Dulbecco’s phosphate-buffered saline (DPBS; Sigma-Aldrich, St. Louis, MO) and suspended in
sterile DPBS at 5 × 109 colony-forming units (CFU)/ml. The S. aureus dose used in this study
was determined empirically in rabbits and results in reproducible abscesses that are easily eval-
uated by gross morphology [23]. S. aureus inocula were verified by enumeration of CFUs on
trypticase soy agar plates. Five rabbits (NZW, strain Cr1c:KBL; Western Oregon Rabbit Com-
pany, Philomath, OR) were used for each group and each group was infected with a different S.
aureus strain. Rabbits were anesthetized and subsequently inoculated with 100 μl of bacterial
suspension into the left and right flank (5 rabbits for each strain and thus 10 abscesses per
strain), and 100 μl of DPBS was injected into lower right flank for use as a sham infection con-
trol. Animals were monitored daily and allowed food and water ad libitum. S. aureus inflam-
matory lesions were measured daily for 14 days with a caliper as described previously [23].
Experiments were repeated twice using an additional set of two animals per strain to assess S.
aureus abscess CFUs on day 2 post infection, and one animal per strain/day was used for histo-
pathology analysis. Animals were humanely euthanized prior to tissue excision in accordance
with protocol approved by the Institutional Animal Care and Use Committee.

Histopathology analysis
Abscesses with margins of surrounding tissue were excised and fixed in 10% neutral-buffered
formalin for at least 48 hours and processed as described [24]. Tissues sections were stained
with hematoxylin-eosin, Masson’s trichrome stain for capsule or Mallory’s phosphotungstic
acid-hematoxylin for fibrin visualization [25]. Images of tissue sections were captured using an
Olympus model BX-51 microscope and Olympus cellSens Dimension 1.13 software (Olympus,
Center Valley, PA).

Quantitative analysis of molecules produced in human whole blood in
response to S. aureus
Bacteria at mid-logarithmic growth phase were pelleted by centrifugation, washed twice with
Dulbecco’s phosphate-buffered saline (DPBS; Gibco/Life Technologies, Grand Island, NY) and
suspended in sterile RPMI 1640 medium buffered with 10 mMHEPES (RPMI/H; Invitrogen/
Life Technologies, Grand Island, NY). Bacteria were added to heparinized human blood at a
final concentration of 1 × 106 CFU/ml. A 1-ml sample of blood culture was taken immediately
to serve as a time zero control and the remaining samples were incubated for 2 h at 37°C with
gentle rotation. The blood-bacteria mixture was centrifuged at 1300 × g for 10 min at 25°C to
collect plasma for analysis of inflammation molecules. Samples were stored at -80°C until
shipped for analysis (Multi-Analyte Profiling (MAP) technology platform (HumanMap1

v.2.0; Myriad RBM, Inc., Austin, TX). Data sets were analyzed using a one-way ANOVA and
Tukey’s post-test. The complete results of the HumanMap analysis are provided in S1 Table.

Statistical analysis
All statistical analyses were performed using GraphPad Prism version 6.0 (GraphPad Software
Inc., San Diego, CA). Data for abscess size were evaluated with a one-way ANOVA and Dun-
nett’s post-test to correct for multiple comparisons.
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Results
SSTIs are among the most common manifestations of S. aureus disease. We previously devel-
oped a rabbit SSTI model to assess the relative contribution of USA300 virulence determinants
to CA-MRSA pathogenesis [23]. Inasmuch as the S. aureus coagulases and ClfA contribute to
fibrin deposition and are linked to abscess formation in murine infection models, we compared
the ability of S. aureus Newman wild-type, Δcoa, Δvwb, Δcoa/Δvwb, and ΔclfA strains to cause
abscesses in our rabbit SSTI model. Rabbits were infected by subcutaneous inoculation of S.
aureus strains and abscess development (lesion size and assessment of gross morphology) was
monitored daily for 14 days. All S. aureus strains tested caused formation of typical skin
abscesses, as determined by gross morphology [23]. However, there were strain-dependent dif-
ferences in abscess size (Fig 1A and 1B and S1 Fig). For example, abscesses caused by the New-
man wild-type strain were significantly larger than those caused by Δcoa, Δvwb, or Δcoa/Δvwb
strains on days 1, 2, 3, and 5 post-infection (P< 0.05, Fig 1A). Although abscesses caused by
the ΔclfA strain were smaller than those caused by the wild-type strain (P< 0.05 on day 5), the
difference was less pronounced compared to that of the coagulase negative strains (Fig 1A).

To determine if abscess size is associated with (or linked directly to) bacterial burden, we
performed a second set of experiments to evaluate S. aureus CFUs in rabbit abscesses on day 2
following subcutaneous inoculation with each strain (Fig 1C and 1D). Unexpectedly, we found
that CFUs per abscess were similar in all strains tested, indicating that the decreased abscess
size (relative to wild-type) for the mutant strains was not due to a decrease in viability or more
rapid bacterial clearance in this model. These findings contrast with those reported previously
for ΔclfA [26, 27], Δvwb and Δcoa strains [13, 28] in murine abscess models of S. aureus infec-
tion. It is possible differences in animal species (mouse versus rabbit) and infection models
employed account for the differences in results with bacterial burden.

Inasmuch as S. aureus coagulases and ClfA are involved in fibrin deposition, and since there
were no apparent differences in bacterial numbers within abscesses, we next examined histo-
logical sections to ascertain differences in abscess fine structure (Fig 2 and Table 1). Abscesses
were surgically excised on days 2, 6, and 10 following s.c. inoculation with S. aureus, and histo-
pathology sections were processed and scored (Table 1). We found that all S. aureus strains
tested caused formation of structurally discrete abscesses surrounded by a fully developed
fibrous capsule by day 10, and that there were limited differences revealed by abscess histopa-
thology—regardless of the S. aureus strain used for infection (Fig 2 and Table 1). Moreover,
our data indicate that deposition of fibrin during abscess formation was mostly independent of
Coa, vWbp and ClfA activity. Nonetheless, abscesses induced by ΔclfA had relatively weak
fibrin deposition that was apparent only in abscesses excised on Day 2 and 10 (Fig 3). These
data correspond with those in the mouse SSTI model, where fibrin deposition was apparent in
abscesses induced by S. aureus when coagulase activity was blocked by dabigatran [14].

Abscesses caused by the Newman wild-type strain scored categorically highest on each day
based on histopathology features, with few exceptions (Table 1). One notable distinction was
that abscesses from rabbits infected with the ΔclfA strain had no evidence of thrombosis and
weak vascular necrosis in the majority of sections analyzed. Although present at the earlier
time points, vascular necrosis was also limited in tissue samples from abscess caused by coagu-
lase deficient strains (Fig 4 and Table 1).

The acute inflammatory response associated with S. aureus SSTI is triggered at least in part
by production of pro-inflammatory signaling molecules and rapid recruitment of immune
cells. To gain insight into the role of S. aureus coagulases and ClfA in the induction of host
inflammation, we utilized a multi-analyte profiling approach to measure immune molecule
production in human blood in response to S. aureus Newman wild-type, ΔclfA, Δcoa, Δvwb,
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Fig 1. Contribution of S. aureus coa, vwb and clfA to formation of rabbit abscesses. (A) Average
abscess volume for rabbits infected subcutaneously with S. aureusNewman wild-type (WT) or isogenic
mutant strains as indicated. The volume of 10 abscesses per bacterial strain was measured daily following
inoculation. (B) Individual abscesses plotted for selected days are depicted in panel A. (C) A separate set of 2
animals (4 abscesses/strain) was used to determine S. aureusCFU per abscess on day 2 post-infection and
(D) the volume of rabbit abscesses. Each symbol represents a data point obtained from a single abscess. P
values were calculated using a one-way ANOVA and Dunnett’s post-test.

doi:10.1371/journal.pone.0158293.g001
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and Δcoa/Δvwb. We performed the protein profiling experiments using human blood because
there is paucity of reagents available to analyze a comprehensive panel of rabbit immune medi-
ators. We also demonstrated previously that human and rabbit blood incubated with S. aureus
have similar proinflammatory cytokine gene transcription profiles [29, 30]. As anticipated, sev-
eral proinflammatory molecules were upregulated in blood samples incubated with S. aureus

Fig 2. Histopathology of rabbit skin abscess caused by S. aureus. Histopathology sections represent skin abscesses
caused by S. aureusNewmanWT (A, B), ΔclfA (C, D) or Δcoa/Δvwb (E, F) strains on day 10 post-infection. Abscess
sections were stained with standard Masson’s trichrome stain to enhance fine structure detail of muscle tissues, collagen
fibers and fibrin. (A, C and E) original magnification is 20×. (B, D, and F) 200× magnification of selected area (black
rectangle) depicted in panels A, C or E.

doi:10.1371/journal.pone.0158293.g002
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for 2 h compared to control blood lacking bacteria, including interleukin (IL)-8, myeloperoxi-
dase (MPO), tumor necrosis factor (TNFα), and vascular endothelial growth factor (VEGF)
(Fig 5 and S1 Table). There were also notable differences in levels of proinflammatory mole-
cules elicited by S. aureusmutant and wild-type strains tested. For example, there was reduced
expression of key proinflammatory mediators (IL-1β, MPO, PAI-1 and ENA-78) in human
blood incubated with the S. aureus Δcoa/Δvwb strain compared to the wild-type Newman
strain (Fig 5). If this phenomenon can be extended to host responses in tissues, it could provide

Fig 3. Fibrin deposition in rabbit skin abscess caused by S. aureusNewman.Representative sections
of rabbit skin abscesses on Day 2 (A, D, G, K, N), Day 6 (B, E, H, L, O) and Day 10 (C, F, J, M, P) post
infection. Abscesses from rabbits infected with S. aureusNewmanWT (A-C), ΔclfA (D-F), Δcoa (G-J), Δvwb
(K-M) and Δcoa/Δvwb (N-P). Tissue sections were stained with Mallory’s phosphotungstic acid-hematoxylin
stain for visualization of fibrin (black arrows). Magnification is 200×. Inset image is the abscess at 20× (black
rectangle).

doi:10.1371/journal.pone.0158293.g003
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Fig 4. Vasculitis caused by S. aureusNewmanWT. Histopathology sections of rabbit abscesses depicting
vascular necrosis caused by S. aureusNewmanWT (A), and an intact artery within a Δcoa/Δvwb induced
abscess (B) or PBS control (C) on day 10 post infection. Original magnification is 100×.

doi:10.1371/journal.pone.0158293.g004
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Fig 5. S. aureusNewman causes increased production of proinflammatory molecules in human whole blood. S.
aureuswas cultured in human heparinized blood for 2 h. Accumulation of proinflammatory molecules in plasma was
evaluated by quantitative, multiplexed immunoassays (HumanMAP v2.0; Myriad RBM) as described in Materials and
Methods section. Data represents average of 3 donors with one-way ANOVA and Tukey’s post-test used to determine
statistical significance. *P < 0.05 for the selected pairs; # p < 0.05 compared to uninfected blood sample (ctrl).

doi:10.1371/journal.pone.0158293.g005
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an explanation in part for diminished pathology caused by the mutant strains in the rabbit
SSTI model of infection, albeit this hypothesis requires further investigation.

Discussion
The rabbit is historically the classical animal model for studying S. aureus pathogenesis [31, 32]
and has been used to model a diversity of diseases and syndromes such as endocarditis, pneu-
monia, sepsis, and toxemia [33–37]. We recently developed a rabbit model of skin and soft tis-
sue infection [23] to study the contribution of S. aureus leukotoxins to abscess formation. In
vitro studies indicate that susceptibility of rabbit cells to several S. aureus secreted leukotoxins
and hemolysins approximates that of human cells more closely than those of murine origin
[38, 39]. For example, mouse leukocytes are less susceptible (7–10 fold) to the cytolytic effects
of PVL compared with human or rabbit leukocytes, and purified PVL has been tested directly
in a rabbit skin infection model [40].

Inasmuch as S. aureus Coa, vWbp and ClfA are linked previously to abscess formation fol-
lowing murine systemic infection, we employed the rabbit skin and soft tissue infection model
to assess the role of coagulase in development of subcutaneous abscesses. Our data indicate
that all three of these molecules contribute to the formation of S. aureus abscesses in the experi-
mental rabbit infection model. However, we found that the direct contribution of S. aureus Coa
and vWbp to capsule formation and fibrin deposition was limited (Figs 2 and 3) compared to
that reported for the S. aureusmurine kidney model [13]. There are a couple of potential expla-
nations for differences observed between the infection models. First, there are significant differ-
ences in the host proinflammatory response to invading pathogens between mice and rabbits,
and as an example, IL-8 is a factor critical for neutrophil recruitment in humans and rabbits
but is absent in mice [41, 42]. While it is evident that proinflammatory mediators play a critical
role in formation of S. aureus abscesses [43–46], it is unlikely that species-specific production
of proinflammatory molecules contribute to the differences reported for the role of coagulases
on abscess structure between the models. On the other hand, it is possible that the role of S.
aureus coagulases on abscess structure differs depending on the anatomical location of the
abscess, rather than the animal species tested. Renal abscesses form as a result of systemic infec-
tion, during which disseminated bacteria within host blood accumulate in blood filtration
organs such as the kidney or liver. S. aureus commonly accumulates in the renal arcuate arter-
ies and causes infarcts [47, 48]. The combination of bacteria and tissue damage elicits neutro-
phil and other immune cell infiltration, and facilitates formation of a mature abscess. By
contrast, invading S. aureus are recognized early during SSTI by local keratinocytes and resi-
dent skin monocytes, which initiate cytokine signaling to promote immune cell recruitment
[49]. This triggers influx of neutrophils to the infection site to initiate the process of abscess for-
mation [12, 50]. The influx of neutrophils also contributes to increased vascular permeability
at the site of inflammation [51, 52]. Since coagulases and clumping factor A function primarily
through binding or modifying fibrinogen—one of the most abundant plasma glycoproteins
[53]—it is possible that limited access to fibrinogen in subcutaneous tissue reduces the role of
coagulases and/or ClfA in formation of the SSTI abscess compared to the kidney. Indeed, con-
sistent with our findings in rabbits, a S. aureus strain deficient for coa and vwb formed smaller
subcutaneous abscesses in murine SSTI, and inhibition of the staphylothrombin complex by
dabigatran treatment did not prevent deposition of fibrin and fibrinogen within the S. aureus
wild-type abscess capsule [14]. However, in that study, abscess structure was not assessed
directly by histopathology following infection with the S. aureus Δcoa/Δvwb deletion strain.
Nevertheless, more work is needed to determine if there are variations in organ-specific
immune response and/or bacterial response that may influence abscess development.
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Collectively, the data obtained from our rabbit infection model confirm previous findings that
Coa, vWbp and ClfA are involved in the pathogenesis of S. aureus SSTI and contribute to the
host proinflammatory response to infection.

Supporting Information
S1 Fig. Rabbit abscess volume following infection with S. aureus wild type and Δcoa, Δvwb,
ΔclfA, and Δcoa/Δvwb isogenic deletion strains. Scatter plot of abscess volumes from data
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