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Abstract
A higher protein intake has been recommended for endurance athletes compared with

healthy non-exercising individuals based primarily on nitrogen balance methodology. The

aim of this study was to determine the estimated average protein requirement and recom-

mended protein intake in endurance athletes during an acute 3-d controlled training period

using the indicator amino acid oxidation method. After 2-d of controlled diet (1.4 g protein/

kg/d) and training (10 and 5km/d, respectively), six male endurance-trained adults (28±4 y of

age; Body weight, 64.5±10.0 kg; VO2peak, 60.3±6.7 ml�kg-1�min-1; means±SD) performed

an acute bout of endurance exercise (20 km treadmill run) prior to consuming test diets pro-

viding variable amounts of protein (0.2–2.8 g�kg-1�d-1) and sufficient energy. Protein was pro-

vided as a crystalline amino acid mixture based on the composition of egg protein with

[1-13C]phenylalanine provided to determine whole body phenylalanine flux, 13CO2 excretion,

and phenylalanine oxidation. The estimated average protein requirement was determined as

the breakpoint after biphasic linear regression analysis with a recommended protein intake

defined as the upper 95% confidence interval. Phenylalanine flux (68.8±8.5 μmol�kg-1�h-1)
was not affected by protein intake. 13CO2 excretion displayed a robust bi-phase linear rela-

tionship (R2 = 0.86) that resulted in an estimated average requirement and a recommended

protein intake of 1.65 and 1.83 g protein�kg-1�d-1, respectively, which was similar to values

based on phenylalanine oxidation (1.53 and 1.70 g�kg-1�d-1, respectively). We report a rec-

ommended protein intake that is greater than the RDA (0.8 g�kg-1�d-1) and current recom-

mendations for endurance athletes (1.2–1.4 g�kg-1�d-1). Our results suggest that the

metabolic demand for protein in endurance-trained adults on a higher volume training day is

greater than their sedentary peers and current recommendations for athletes based primarily

on nitrogen balance methodology.

Trial Registration: ClinicalTrial.gov NCT02478801

PLOSONE | DOI:10.1371/journal.pone.0157406 June 20, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Kato H, Suzuki K, Bannai M, Moore DR
(2016) Protein Requirements Are Elevated in
Endurance Athletes after Exercise as Determined by
the Indicator Amino Acid Oxidation Method. PLoS
ONE 11(6): e0157406. doi:10.1371/journal.
pone.0157406

Editor: Gordon Fisher, University of Alabama at
Birmingham, UNITED STATES

Received: February 29, 2016

Accepted: May 26, 2016

Published: June 20, 2016

Copyright: © 2016 Kato et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This study was funded by Ajinomoto Co.,
Inc. The funder provided support in the form of
salaries for authors [HK, SK, MB], but did not have
any additional role in the study design, data collection
and analysis, decision to publish, or preparation of
the manuscript. The specific roles of these authors
are articulated in the 'author contributions' section.

Competing Interests: HK, SK, MB are employed by
Ajinomoto Co. Inc. This study was funded by

https://clinicaltrials.gov/ct2/show/NCT02478801
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0157406&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
It has been recommended that highly active and trained individuals should consume protein
intakes greater than the current recommended daily allowance (RDA; 0.8 g/kg/d), the latter
of which was developed in healthy non-exercising populations. For instance, the protein
intake for endurance-trained athletes is recommended to be 1.2–1.4 g protein �kg-1�d-1 [1],
which is reflected in many sports science consensus statements [1–3] and may be related in
part to the associated increase in amino acid oxidation during endurance exercise [4]. The
protein requirements and recommended protein intake in endurance-trained individuals
have been investigated primarily through the nitrogen balance (NBAL) technique. However,
this method has been suggested to have limitations (e.g. see [5]) including a general predispo-
sition to overestimate nitrogen intake and underestimate nitrogen excretion [6], which
collectively would result in an underestimation of true protein requirements [7]. Given the
importance of dietary protein for the repair and remodeling of body proteins in active popu-
lations, there is a need to re-evaluate current protein recommendations for endurance athletes
with alternative methodologies to provide collective evidence as to the true protein require-
ments in this population.

The minimally-invasive indicator amino acid oxidation (IAAO) method was developed as
an alternative to the traditional NBAL technique as a means to assess the individual amino
acid and protein recommendations in a variety of populations [8, 9]. The limited dietary adap-
tation period required for the IAAO method relative to NBAL technique (e.g. 1 vs. 5–7 days,
respectively) allows for a greater number of test protein intakes to be performed within a
given participant [10, 11]; this allows for bi-phase modeling of the data that has been sug-
gested to be more robust compared with linear modeling [7]. As such, the IAAO method has
been applied in a variety of human studies to determine the recommended intake of protein
and individual amino acid [7, 12–14]. However, the IAAO method has yet to be applied in
active individuals, let alone endurance-trained athletes. Therefore, the aim of the present
study was to apply the IAAO method to determine the estimated average protein requirement
and recommended protein intakes in endurance trained individuals. We hypothesized that
the IAAO method would result in a recommended protein intake in our endurance-trained
population that would be greater than the current RDA of 0.8 g�kg-1�d-1 as well as the recom-
mended protein intake of 1.2–1.4 g�kg-1�d-1 in similarly trained athletes [1] as determined by
NBAL.

Methods

Ethics Statement
All participants were informed of the purpose of the study, the experimental procedures, and
all the potential risks involved before obtaining written consent. This study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the research
ethics board of the University of Toronto on 17th March, 2015 and the institutional review
board of Ajinomoto Co., Inc. on 24th December 2014. Informed written consent was obtained
from all the participants. This trial was registered at clinicaltrial.gov as NCT02478801 after the
recruitment had begun due to an unfortunate oversight. The authors confirm that all ongoing
and related trials for this intervention are registered. The participants were recruited from 24th

March 2015 to 5th Jun. 2015. The study was conducted from 25th March. 2015 to 25th Jul. 2015.
A detailed flow of the trials is described in Fig 1. The protocol for this trial and a CONSORT
checklist are available as (S1 CONSORT Checklist and S1 Protocol).
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Study protocol
Before beginning the studies, each participant visited the Goldring Centre for high perfor-
mance sport after an overnight fast (~7 h) to have their body composition [Fat mass (FM) and
Fat-Free Mass (FFM)] determined by Bodpod (Cosmed USA Inc., Chicago, IL). Following
the body composition, participants sat comfortably in a darkened room to determine their rest-
ing energy expenditure (REE) for 25 min by continuous, open-circuit indirect calorimetry
(MOXUS metabolic cart; AEI technologies Inc., Bastrop, TX) and application of the abbrevi-
ated Weir equation [15]. Participant’s aerobic fitness was assessed by measurement of respira-
tory gas exchange throughout a ramp protocol exercise test to determine their maximal oxygen
consumption (VO2peak), as previously described [16]. Briefly, participants began running on a
treadmill a light pace after which the work rate increased at a constant, linearly rate. The test
was completed in ~12min after participants reached a point in which they could no longer con-
tinue (volitional fatigue).

Each randomly assigned level of protein was studied over a 3-d period, which included 2
adaptation days followed by a metabolic trial day. During the 2 adaptation days, participants
performed pre-set standardized exercise, which involved a 10-km run on the first day and a
5-km run on the second day at a self-selected running pace to ensure each participant performed
similar physical activity prior to the metabolic trial day. The combination of the 2-d controlled
training with the trial day exercise stimulus of 20 km (see below) resulted in a total training vol-
ume of 35 km over 3 days, which was within the general habitual training volume of the partici-
pants.(i.e. self-reported at ~45–130 km/wk). During the 2 adaptation days, participants
consumed adaptation diets that included commercially available, pre-packed or frozen foods.
The energy content of the controlled diet was estimated as 1.6 times REE plus the exercise-
induced energy expenditure (EEE) estimated from the pre-set standardized exercise as 1
kcal�kg-1�km-1 [17]; this energy expenditure estimate was selected to be sufficient to offset the
actual energy cost of the exercise given that our participants performed the exercise on a level
treadmill (see below) that is metabolically more efficient than running on a road [18]. The adap-
tation diet supplied a moderate 1.4 g protein�kg-1�d-1 in accordance with the current recom-
mended protein intake for endurance-trained athletes [1] in order to standardize the protein
intake and minimize metabolic variability on the trial day [19]. The adaptation diet also pro-
vided 8.0 g carbohydrate�kg-1�d-1, which is consistent with current consensus recommendations

Fig 1. Flowchart of the trials.

doi:10.1371/journal.pone.0157406.g001
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for endurance athletes training 1–3 h�d-1 [20]. On the 3rd day, after overnight fasting (~7 h), par-
ticipants completed the metabolic trial (see below for details). Each trial was separated by at
least 4 days with all trials for a given participant completed within 4 months.

Metabolic trial
The metabolic trial protocol was similar to those previously used to estimate protein require-
ments in non-exercising populations [7, 12] with the exception that the present study included
an exercise stimulus. On the metabolic trial day, participants arrived at the laboratory after an
overnight fast and consumed a protein-free liquid carbohydrate beverage [1.2 g carbohydra-
te�kg-1�d-1 as a 1:1 ratio of maltodextrin (Polycal1; Nutricia, Amsterdam, Netherlands) and
sports drink powder (Gatorade1 Endurance Formula; PepsiCo, Purchase, NY)] 1h prior to the
exercise to help to replenish liver glycogen and provide some exogenous carbohydrate energy
to fuel the 20-km run [20]. Participants then completed a 20-km run at a self-selected race pace
on a motorized treadmill while wearing a heart rate (HR) monitor sensor strap (Polar Electro,
Kempele, Finland) on their chest in order to estimate the exercise-induced energy expenditure
according to Crouter’s equation [21]. During the exercise participants were provided with their
accumulated mileage, HR, and running pace.

Immediately following exercise, participants received the study diet containing a randomly
assigned protein intake (0.20 ~ 2.8 g protein �kg-1�d-1; Table 1) as 8 isocaloric and isonitrogenous
hourly meals that each provided one-twelfth of the participant’s total daily energy requirement.
The study diet was provided in the form of protein-free cookies [22] and test drinks, the latter of
which contained protein-free powder (PFD-1; Mead Johnson, Evansville, IN), flavoring crystals
(Tang; Kraft, DonMills, Canada), grape seed oil, maltodextrin (Polycal1), and a crystalline
amino acid mixture (Ajinomoto North America, Inc., Raleigh, NC). The amino acid pattern of
the test protein intake was modeled on the basis of egg protein (Table 2) with the exception of
phenylalanine and tyrosine, which were held constant at an intake of 30.5 and 40.0 mg�kg-1�d-1,
respectively. The inclusion of excess tyrosine is to ensure metabolic partitioning of the carboxyl
carbon of phenylalanine towards protein synthesis or oxidation during stable isotope ingestion
[23, 24]. The study diet and the protein-free liquid carbohydrate beverage provided sufficient
energy (i.e. 1.6 � REE plus EEE estimated from 20-km run as 1 kcal�kg-1�km-1 [17]) and carbo-
hydrate, the latter of which, when combined with the pre-exercise beverage, would result in ~9.0
g�kg-1 carbohydrate�d-1. As such, by providing sufficient energy intake during the IAAO study
we would ultimately minimize amino acid oxidation and subsequently determine a minimum
protein intake in our population. A priming dose of NaH13CO3 (0.176 mg�kg-1; CIL Canada,
Inc., Montreal, Canada) and L-[1-13C]phenylalanine (1.86 mg�kg-1; CIL Canada, Inc., Montreal,
Canada) was ingested in the 5th test drink [7, 13, 14]. All subsequent test drinks during the meta-
bolic trial included 1.20 mg�kg-1 of L-[1-13C]phenylalanine as part of the total intake to maintain
isotopic steady state until the end of the metabolic trials.

Table 1. Protein intakes used in individual subjects. Participants consumed each protein intake which
ranged from 0.2 to 2.8 g�kg-1�d-1, for a total of 34 trials.

Subject No. Test protein intakes, g�kg-1�d-1

1 0.2, 0.9, 1.3, 1.65, 1.8, 2.3, 2.8

2 0.8, 1.15

3 0.4, 1.0, 1.6, 2.0, 2.65

4 0.45, 0.7, 1.05, 1.45, 1.7, 2.35, 2.5

5 0.5, 0.6, 1.4, 1.95, 2.25, 2.6

6 0.25, 0.85, 1.2, 1.5, 1.75, 2.15, 2.75

doi:10.1371/journal.pone.0157406.t001
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Sample collection and analysis
Three baseline breath samples (45, 30, and 15 min) and 2 baseline urine samples were (45 and
15 min) before the participants consumed the 5th test drink containing the indicator amino
acid. Six plateau breath samples were collected every 15 min and three plateau urine samples
were collected every 30 min beginning 2.5h after the 5th test drink. Steady state CO2 production
(VCO2) was measured for 20 min ~30 min after the 5th or 6th test drink by indirect calorimetry
(MetaMax 3B, CORTEX Biophysik GmbH, Leipzig, Germany). These time points of breath
sampling were selected according to pilot testing that confirmed background 13CO2 enrich-
ment from the diet (in the absence of tracer ingestion) and VCO2 were both constant, indicat-
ing stable background isotopic and metabolic steady state was achieved (S1 Text). Breath
samples were collected in disposable Extainer tubes (Labco, Ltd., Ceredigion, UK) with a collec-
tion system (Easy-Sampler; QuinTron Instrument Company, Inc., Milwaukee, WI) that per-
mitted the removal of dead-space air. Breath samples were stored at room temperature prior to
measurement of 13CO2 enrichment by a continuous-flow isotope ratio mass spectrometry
(CF-IRMS 20/20 isotope analyzer; PDZ Europa Ltd, Cheshire, UK). Urine samples were stored
at -20°C prior to [1-13C]phenylalanine enrichment determined by API 4000 triple quadrupole
mass spectrometer (Applied Biosystems, Foster City, CA) in positive electrospray ionization
mode, as previously described [12, 25].

Table 2. Amino acid composition of reference protein and selected test protein intakes1.

Reference
protein2, mg�g-1"

0.2 g
protein�kg-1�d-1

0.7 g
protein�kg-1�d-1

1.2 g
protein�kg-1�d-1

1.7 g
protein�kg-1�d-1

2.2 g
protein�kg-1�d-1

2.8 g
protein�kg-1�d-1

L-Alanine 61.5 12.3 43.1 73.8 104.6 135.3 172.2

L-arginine
HCL3

75.1 15.0 52.6 90.1 127.7 165.2 210.3

L-Asparagine 33.3 6.7 23.3 40.0 56.6 73.3 93.2

L-Aspartic acid 33.3 6.7 23.3 40.0 56.6 73.3 93.2

L-Cysteine 22.1 4.4 15.5 26.5 37.6 48.6 61.9

L-Glutamine 56.6 11.3 39.6 67.9 96.2 124.5 158.5

L-Glutamic acid 56.6 11.3 39.6 67.9 96.2 124.5 158.5

L-Glycine 33.3 6.7 23.3 40.0 56.6 73.3 93.2

L-Histidine 22.7 4.5 15.9 27.2 38.6 49.9 63.6

L-Isoleucine 62.8 12.6 44.0 75.4 106.8 138.2 175.8

L-leucine 83.3 16.7 58.3 100.0 141.6 183.3 233.2

L-Lysine HCL2 75.7 15.1 53.0 90.8 128.7 166.5 212.0

L-Methionine 29.6 5.9 20.7 35.5 50.3 65.1 82.9

L-Phenylalanie3 54.7 30.5 30.5 30.5 30.5 30.5 30.5

L-Proline 41.9 8.4 29.3 50.3 71.2 92.2 117.3

L-serine 83.9 16.8 58.7 100.7 142.6 184.6 234.9

L-threonine 47.1 9.4 33.0 56.5 80.1 103.6 131.9

L-tryptophan4 15.6 3.1 10.9 18.7 26.5 34.3 43.7

L-Tyrsoine5 40.7 40.0 40.0 40.0 40.0 40.0 40.0

L-Valine 70.3 14.1 49.2 84.4 119.5 154.7 196.8

1 Participants consumed a single protein intake that ranged from 0.2 to 2.8 g�kg-1�min-1, on each metabolic trial.
2 Represents egg protein composition.
3 Actual concentration of amino acid in HCl form in amino acid mixture; arginine, 62.1 mg�g-1; and lysine 60.6 mg�g-1.
4 Phenylalanine intake was held constant at 30.5 mg�kg-1�d-1 for all protein intakes.
5 Tyrosine intake was held constant at 40.0 mg�kg-1�d-1 for all protein intakes

doi:10.1371/journal.pone.0157406.t002
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Tracer kinetics
Phenylalanine flux (PheRa, μmol�kg-1�h-1), the rate of appearance of 13CO2 in breath (F13CO2;
μmol�kg-1�h-1), and phenylalanine oxidation (PheOx; μmol�kg-1�h-1) were calculated according
to the stochastic model of Matthews et. al.[26] as follows:

PheRa ¼ i � Ei

Eu

� �
� I

Where i is the rate of L-[1-13C] phenylalanine ingested (μmol�kg-1�h-1), I is the rate of L-phe-
nylalanine ingested (μmol�kg-1�h-1), Ei and Eu are the isotopic enrichments as mole fractions
(APE) of the test drink and urinary phenylalanine, respectively, at isotopic plateau.

F13CO2 ¼ ðVCO2
Þ � ðECO2

Þ � ð44:6Þ � ð60Þ � BW�1 � ð0:82Þ � ð100Þ

Where VCO2 is the CO2 production rate (mL�min-1); ECO2 is the
13CO2 enrichment in expired

breath at isotopic steady state (APE); BW is the body weight (kg) and FFM is the fat-free mass
(kg) of the participants, as needed. The constants 44.6 (μmol�mL-1) and 60 (min�h-1) were used
to convert FCO2 to μmol�h-1. The factor 0.82 is the correction for CO2 retained in the bicarbon-
ate pool of the body in the fed state [27]. PheOx was calculated using Eu as an estimate of intra-
cellular enrichment [28] as:

PheOx ¼ F13CO2 �
1

Eu
� 1

Ei

� ��1

� 100

Statistical analysis
Unless indicated otherwise, all results are expressed as means ±standard deviation (SD). Pro-
tein or specific amino acid requirements determined by the IAAO method have previously
been reported in non-exercising populations with 35–56 trials [7, 13, 25, 29]. Given that pro-
viding a range of test intakes provides a better modeling fit than 7 discrete intakes [7, 25] and
that there is no difference between the goodness of fit between 35 and 43 trials using this
approach (i.e. R2 = 0.60 and 0.63, respectively), we aimed to complete a target of n = 35 meta-
bolic trials in the present study.

A mixed linear model with the subject as a random variable by using Proc Mixed program
(SAS university version; SAS Institute Japan, Tokyo, Japan) was used to analyze the effects of
protein intake on F13CO2, phenylalanine flux, and phenylalanine oxidation. A biphasic linear
regression crossover analysis was performed on F13CO2 to determine the average protein
requirement and recommended protein intakes in agreement with previous studies [7, 25, 30].
Protein intake at the breakpoint represented the average protein requirement, and recom-
mended protein intake was estimated as the upper limit of 95% CI of the breakpoint. The 95%
CI was calculated with use of Filler’s Theorem, as previously described [30].

Results

Participant’s characteristics
Nine participants who regularly run at least 40 km/week were recruited to participate. How-
ever, two participants discontinued due to personal reasons and one participant who only com-
pleted a single metabolic trial was excluded from data analysis. Therefore, the data from six
participants were used for analysis with the participant characteristics summarized in Table 3
and the exercise stimulus summarized in Table 4.
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Phenylalanine flux
Phenylalanine flux was not affected by protein intake (Fig 2, P = 0.11, average phenylalanine
flux = 68.8±8.5 μmol�kg-1�h-1) and was stable within each participant (Table 5). This indicated
that the phenylalanine pool for the IAAO did not change in response to increasing test protein
intakes, which would suggest that the change in phenylalanine oxidation reflect whole-body
protein synthesis [13].

Average protein requirement and recommended protein intake
Biphasic linear regression crossover analysis (R2 = 0.86) of F13CO2 revealed a breakpoint (i.e.
average protein requirement) at 1.65 g�kg-1�d-1 (Fig 3). The upper 95% CI (i.e. recommended
protein intake) was determined to be 1.83 g�kg-1�d-1. Subsequently, a biphasic linear regression
crossover analysis (R2 = 0.85) of PheOx revealed a breakpoint at 1.53 g�kg-1�d-1 (Fig 4). The
upper 95% CI was determined to be 1.70 g�kg-1�d-1. Although the average protein requirements
and recommended protein intakes were similar between the breakpoint analyses of F13CO2

and PheOx, F13CO2 data are generally considered more robust as they more closely align with
rates of phenylalanine hydroxylation determined from apolipoprotein B-100 enrichment and,
hence, is reflective of the true intracellular enrichment for protein synthesis [28, 31].

Discussion
The objective of this study was to investigate the estimated average protein requirement and
recommended protein intake in endurance-trained individuals utilizing, for the first time in an
active population, the minimally-invasive IAAOmethod. Our data revealed that within a simu-
lated controlled training program (i.e. 35 km over 3 days) and on a day in which an acute bout
of endurance exercise (i.e. 20-km run) is performed, the estimated average protein requirement

Table 3. Characteristics of participants.

Mean ± SD

Age, yr 28.3 ± 4.2

Height, cm 173.3 ± 4.0

Body weight, kg 64.5 ± 10.0

Fat-free mass, kg 56.5 ± 7.1

VO2peak, ml/kg/min 60.3 ± 6.7

REE, Kcal/day 1624.1 ± 274.3

doi:10.1371/journal.pone.0157406.t003

Table 4. Summary of the endurance exercise stimulus in individual subjects. Values are means ± SD.

Subject No. Duration (min)1 Intensity (%HR max)2 Exercise-induced energy expenditure (Kcal)3

1 96.1 ± 3.9 65.9 ± 3.5 878 ± 69

2 90.5 ± 4.9 71.3 ± 2.5 939 ± 112

3 90.8 ± 1.6 82.3 ± 3.3 1264 ± 80

4 91.4 ± 2.4 79.6 ± 1.7 1327 ± 68

5 102.2 ± 1.6 70.9 ± 3.8 1110 ± 109

6 118.3 ± 5.1 78.4 ± 2.4 1209 ± 50

1: Average time to complete 20 km on each metabolic trial.
2: %HRmax (average HR/Predicted HR max) during 20-km run.
3: Energy expenditure during endurance exercise = Maximal energy expenditure (kcal/min)* [(% HRmax) * 1.4301–47.755]*time (min)

doi:10.1371/journal.pone.0157406.t004
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and recommended protein intake (as determined by upper 95% CI) were 1.65 and 1.83
g�kg-1�d-1, respectively, in our endurance trained population; these values, which represent a
modest ~12% of total energy intake in the present study, are greater than the current RDA [1]
determined by NBAL technique [32] and IAAO method [7] in non-exercised individuals.

We provided carbohydrate intakes (~9 g/kg/d) in accordance with general sport-specific
recommendations to replenish glycogen stores in endurance athletes [20]. Although carbohy-
drates (and the associated insulin response) may reduce whole body protein breakdown after

Fig 2. Relationship between Phenylalanine Ra and protein intake after exercise stimulus. Each data point represents PheRa on
the individual metabolic trial day. The slope of regression line was not significantly different from zero (P = 0.11).

doi:10.1371/journal.pone.0157406.g002

Table 5. The effect of protein intake on phenylalanine fluxes. Values are means ± SD. No significant dif-
ferences (P > 0.05) in phenylalanine flux were observed within each participant because of various test pro-
tein intakes.

Subject No. Phenylalanine flux (μmol�kg-1�h-1)

1 65.3 ± 5.7

2 74.1 ± 6.3

3 63.5 ± 10.7

4 73.7 ± 7.2

5 74.8 ± 7.2

6 64.6 ± 7.6

doi:10.1371/journal.pone.0157406.t005
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exercise [33] and enhance nitrogen retention at rest [34], phenylalanine flux in the present
study (~69 μmol�kg-1�d-1/kg/d) was ~17% higher than that previously observed in non-exer-
cised young adults (~59 μmol�kg-1�d-1/kg/d) at rest [7] using identical methodology; this differ-
ence is attenuated slightly when data from both studies are normalized to the metabolically
active lean tissue mass (i.e. ~79 μmol�kg FFM-1�d-1 vs. ~72 μmol/�kg lean body mass(LBM)-1

�d-1, respectively). While we cannot identify the potential site(s) of altered protein turnover in
our whole body model, previous studies have shown that muscle protein turnover is increased
in aerobically-trained individuals [35] and that acute exercise elevates protein breakdown [36]
after endurance exercise due to an activation of the protein degradation systems [37]. Whether
these factors may have influenced the slightly higher phenylalanine flux in the present study
relative to that previously reported in non-exercising adults is unclear [7]. Nevertheless, the
lack of effect of protein intake on phenylalanine flux permits the reliable estimation of the rec-
ommended protein intake from the F13CO2 breakpoint [7, 12, 13, 25].

According to sports nutrition consensus statements mainly based data from NBAL studies,
protein recommendations for endurance athletes have been suggested to be 1.2–1.4 g protein/
kg/d [1]; these recommendations are 50–75% greater than the current RDA of 0.8 g/kg/d. In the
present study, the recommended protein intake was determined to be 1.83 g�kg-1�d-1, which is
~31–53% greater than previous recommendations for endurance trained populations on the

Fig 3. Relationship between protein intake and F13CO2. 6 participants completed 34 metabolic trials with a range of test protein intake
(0.2–2.8 g�kg-1�d-1). The breakpoint represented the average protein requirement. The breakpoint was determined by using a biphasic
linear regression crossover analysis. The average protein requirement and recommended protein intakes were estimated to be 1.65, 1.83
g�kg-1�d-1 respectively (R2 = 0.86).

doi:10.1371/journal.pone.0157406.g003
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basis of NBAL data [1]. The differences in protein recommendations may be related to the meth-
odology employed (i.e. NBAL vs. IAAO) [38, 39] and therefore our data is perhaps more accu-
rately compared to previous studies utilizing the same methodology. In this case, our average
protein requirement and recommended protein intake are ~77 and ~53%, respectively, greater
than those previously determined by IAAOmethod in non-exercised adults [7]. Therefore,
our data are generally consistent with previous literature suggesting that endurance exercise
increases protein requirements but suggest that intakes ~120% greater than the current RDA
and at the upper end of general protein recommendations for athletes (i.e. 1.2–2 g�kg-1�d-1) [40]
may be required to maintain protein balance.

The average protein requirement during a period of controlled training (i.e. 35 km over 3
days) and after a 20-km run was determined to be 1.65 g�kg-1�d-1, which is ~77% higher than
the average protein requirement (0.93 g�kg-1�d-1) in healthy adults determined by IAAO meth-
odology [7] and represents a relative difference between physiological states of ~0.72 g�kg-1�d-1.
In the present study, participants expended ~1100 kcal during exercise. Assuming that amino
acid oxidation contributes ~5% of total energy expenditure during exercise [41], this exercise-
induced amino acid oxidation could have resulted in ~14 g or the equivalent of ~0.2 g�kg-1�d-1
of total protein be irreversibly oxidized. Furthermore, if exercise is performed under conditions

Fig 4. Relationship between protein intake and PheOx. 6 participants completed 34 metabolic trials with a range of test protein
intake (0.2–2.8 g�kg-1�d-1). The breakpoint estimated the average protein requirement. The breakpoint was determined by using a
biphasic linear regression crossover analysis. The average protein requirement and recommended protein intake were estimated to
be 1.53, 1.70 g�kg-1�d-1 respectively (R2 = 0.85).

doi:10.1371/journal.pone.0157406.g004
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of low muscle glycogen, the contribution of protein to total exercise energy expenditure may
be as high as ~10% [41]. Given that our participants were exercising at an intensity (~74%
HRmax) that would have relied heavily on muscle glycogen as a source of fuel [42, 43] and for
a duration (~99 min) that would have resulted in significant depletion of endogenous stores
[44], it is possible that the exercise-induced protein catabolism was greater than ~0.2 g�kg-1�d-1.
Therefore, oxidative protein losses may have explained at least ~31% (but likely more) of the
greater average protein intake in the present study relative to non-exercised adults [7] and, sim-
ilar to previous suggestions [4], could have contributed to the greater protein requirements in
our endurance athlete population.

In addition to the oxidative losses of body amino acids, endurance exercise is also a major
stimulus to remodel and repair a variety of body proteins. For example, endurance exercise can
enhance the degradation of skeletal muscle proteins during exercise [45] and stimulate muscle
protein synthesis for up to 24h after exercise [37, 46], the latter of which is enhanced with die-
tary protein ingestion [47]. Inasmuch as this enhanced muscle tissue remodeling may function
to repair acute muscle damage, the running modality in the present study may have provided a
greater stimulus for muscle remodeling than previous studies employing a cycling modality
[48]. In addition to enhancing the synthesis of muscle and plasma (i.e. albumin) protein syn-
thesis during recovery [49], endurance exercise (i.e. 1h of cycling) has been reported to increase
markers of intestinal damage through a potential ischemia-reperfusion mechanism [48].
Whether this exercise-induced gut damage would be greater in weight-bearing exercise (e.g.
due to acceleration/deceleration forces associated with running), result in an increased
splanchnic protein turnover, and/or require exogenous dietary amino acids to aid in the repair
is currently unknown. Therefore, endurance exercise (perhaps especially that which is weight-
bearing) may induce remodeling and/or repair of a variety of body proteins that presently have
unknown consequences on protein requirements but may have contributed to the greater aver-
age protein requirement and recommended protein intake in our trained athletes relative to
non-exercised individuals [7].

We studied participants after a 20 km training session (but within a 3-d controlled training
period) as we believe that the exercise-induced increase in amino acid oxidation and the acute
stimulation of post-exercise protein remodeling would be the factors that would most likely
increase protein requirements in this athlete population. The exercise load (20-km run) and
intensity was selected to provide a stimulus that would presumably induce elevated peroxisome
proliferator-activated receptor-gamma coactivator 1α expression/activity [50] and enhance
mitochondrial protein synthesis [50, 51] as well as be reflective of the habitual training of a
variety distance runners aiming to augment aerobic adaptations. Moreover, given the fre-
quency with which endurance athletes generally train it is likely that most (if not all) days of
the week would incorporate some sort of exercise training [52, 53], which further influenced
our decision to study athletes on a day in which they performed exercise. Inasmuch as the
greater requirements in the present study were the result of an increased oxidative disposal of
amino acids during exercise, our results could suggest that training days with greater exercise
volume (i.e. those requiring greater total oxygen consumption [54]) may require slightly
greater protein requirements with the reverse being true for lower volume training days. The
potentially greater contribution of endogenous protein to energy provision during periods of
low glycogen availability [41, 45] could suggest that contemporary periodized training
approaches featuring periods of low carbohydrate availability training to enhance metabolic
(e.g. fat oxidation) and/or aerobic (i.e. mitochondrial biogenesis) adaptations [55] may also
require greater protein intakes.

Interestingly, females have been reported to have a lower reliance on amino acid oxidation
as a fuel source due to the protective effects of estrogen [4, 56]. The protein-sparing effect of
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estrogen could suggest their protein requirements within a controlled training period and after
a similarly intense 20-km run could be lower than those determined in the present study in
males, as has been suggested previously in trained cyclists [57, 58]. Ultimately, additional work
is required to elucidate whether (and to what extent) different training volumes, intensities,
modalities (e.g. cycling vs running), and/or nutritional manipulations (e.g. high vs. low carbo-
hydrate availability, low energy availability) may influence protein requirements in different
athletic populations (e.g. males and females).

Conclusion
In conclusion, we report using the novel IAAO method that endurance-trained athletes con-
suming adequate energy and carbohydrate during a controlled training period have a greater
recommended protein intake than those previously established in endurance-trained adults by
NBAL and sedentary adults by IAAO. Our estimates of the average (1.65 g/kg/d) and recom-
mended intakes (1.83 g/kg/d) for protein are generally within the habitual intake of male (but
perhaps not female) endurance trained populations [4, 59]; however, it is unclear if these daily
protein targets are “optimal” with respect to health and/or performance outcomes for these
athletes. Therefore, our results could provide the framework from which future studies could
elucidate whether protein intakes that deviate substantially from those determined herein con-
fer any ergogenic benefits or have any ergolytic consequences.
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