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Abstract
Traditional forecasting models fit a function approximation from dependent invariables to

independent variables. However, they usually get into trouble when date are presented in

various formats, such as text, voice and image. This study proposes a novel image-

encoded forecasting method that input and output binary digital two-dimensional (2D)

images are transformed from decimal data. Omitting any data analysis or cleansing steps

for simplicity, all raw variables were selected and converted to binary digital images as the

input of a deep learning model, convolutional neural network (CNN). Using shared weights,

pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate

the nexus among variations in local binary digital images. Due to the computing capability

that was originally developed for binary digital bitmap manipulation, this model has signifi-

cant potential for forecasting with vast volume of data. The model was validated by a power

loads predicting dataset from the Global Energy Forecasting Competition 2012.

Introduction
Forecasting is critical for the social and engineering sciences. Future trends can usually be
predicted by a numerical model given available information[1]. The majority of conventional
forecasting models (usually refers to regression models), including statistical models and
machine learning models, are designed to approximate the functional relationships among
variables. Quantitative variables, which are usually expressed in decimal format, are effi-
ciently addressed in these models, whereas categorical data are seldom involved in the mod-
els. However the rapid development of information and communications technology has
increased the availability of new information in various formats other than only quantitative
variables, such as text, voice and image[2]. The data in these new forms contain information
that is increasingly important for forecasting, nevertheless they are hard to be analysed by
functional approximation that used in the conventional regression models. Thus, the com-
plete and successful exploitation of the data in these formats is a major challenge for conven-
tional forecasting models.
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In fact, all these data are stored and processed in a uniform binary digital format in comput-
ers. If we can directly model variables in binary digital format to find their relationship instead
of decimal format, discrepancies among data formats will cause fewer problems.

One consideration in this approach is the efficient processing of binary digital data. Progress
in image processing techniques has provided an abundance of high-performance algorithms
that can run on fast graphics processing units (GPUs) and highly optimized implementations
of two-dimensional (2D) convolutions[3–5]. Thus, we need to translate the data to binary digit
format (if they are in decimal or other formats) and represent the data using 2D images for
computer processing. This approach enables even a micro-change of a variable, whether cate-
gorical or quantitative, to be detected based on the disparity among binary images. To con-
struct forecasting models with complex relationships among the variables, we can construct a
network using convolutional computing and scaling calculation techniques that are extensively
applied in the field of image recognition to mine the local connection of binary digits from
dependent variables to independent variables.

Deep learning (DL) neural networks exhibit striking capabilities in the field of image recog-
nition[6–11]. Using multi-layer hierarchical network structures, DLs automatically extract
meaningful features of data from layer to layer, significantly improving the classification per-
formance of machine learning applications[12]. These techniques remove the limitations of
conventional artificial intelligence applications that are substantially dependent on domain
expertise to select the proper input and parameters. A convolutional neural network (CNN),
which is a specific type of DL model, abstracts local and basic features from lower layers to
higher layers to complete a classification task via pooling and convolutional computing[13]. A
CNN distinguishes itself from conventional machine learning models by exhibiting dramatic
improvements in recognition applications[14]. However, CNNs have been primarily applied to
classification tasks.

We propose to employ CNNs for forecasting as an alternate to regression techniques. The
advantages of using a CNN-based forecasting model with binary digital image input are as
follows:

1. When represented in binary digital form, all inputs and outputs, including categorical vari-
ables and/or any other variable formats such as images, can be easily processed by the
model;

2. Instead of mining the relationships between the variables using an approximation function,
which is employed in conventional forecasting, it mines the relationships between the origi-
nal variables in binary digit form from local viewpoints; and

3. Binary digital information can be efficiently processed using high-performance GPUs and
2D convolutions that have been successfully adopted in image recognition.

In this paper, we apply CNNs to an experiment that involves power load forecasting, as this
is a common problem in the forecasting field[15–19]. The fluctuation in power loads correlates
to a variety of factors, including historical loads, time-dependent variables such as weekdays
and holidays, and weather conditions such as temperature[20]. Historical loads and tempera-
ture are quantitative data that can be easily addressed; however, calendar variables that provide
time-dependent information about historical loads and temperatures are categorical informa-
tion that poses challenges for traditional forecasting techniques.

We employ a dataset that is provided by Global Energy Forecasting Competition 2012
(GEFCom 2012)[15] to demonstrate our approach. This dataset provides hourly loads for 20
different zones and hourly temperatures for 11 weather stations from Jan. 1, 2004, to June 20,
2008. However, history loads of eight specific weeks are missing and are set to be backcasted,
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and the hourly loads for the first seven days of July 2008 are expected to be forecasted even
though the temperatures for those days are unknown.

Methods

CNN for Classification and Regression
A CNN is a biologically inspired network with alternating convolutional and subsampling lay-
ers that are employed to draw local information from lower levels to higher levels. A CNN has
a fully connected layer that is employed to generate outputs. Using local connections, shared
weights, subsampling, and sparse connectivity, a CNN can be trained to achieve remarkable
performance levels in many applications[14]. The objective of both regression and classifica-
tion is to determine a mapping relationship between dependent variables and independent var-
iables[21]. This study proposes a method to bridge the gap between classification and
regression by transforming maximum probability labelling to a weighted sum. The basic input
units for an image recognition task are pixels, which are easily represented by binary vectors.
For a conventional forecasting task, however, the input variables are in decimal format and
cannot be represented in pixels for local connection computing. If we reorganize the original
variables via multiple independent units (e.g., binary digits), in which each unit represents
local information of the original real variables—similar to pixels in image recognition tasks—
we can obtain a 2D digital image, which is the same input/output form that is employed for
CNN image recognition models. After obtaining the binary digital outputs of a CNN, we can
perform the forecasting by reconverting these outputs to decimal form.

Data
The data applied to demonstrate the methodology are obtained from GEFCom 2012[15]. This
dataset includes the historical loads of 20 zones (Fig 1) and historical temperatures from 11
associated weather stations. Loads in the different zones significantly vary; therefore, we sepa-
rately model the load for each zone. As the load consistently shows strong hourly fluctuations
[22], 24 models are constructed; one model is constructed for every hour. A total of 480 models
are constructed for the forecasting task. We employ the forecasting model “at Hour h for Zone
i” as an example to demonstrate the modelling process.

The load data from Jan. 1, 2004, to June 30, 2008 (with the exception of the eight weeks of
missing data that was previously mentioned) are applied to train the models. The missing loads
for the eight weeks are to be backcasted, whereas the loads from July 1, 2008, to July 7, 2008,
are to be forecasted. The temperatures for the eight backcasted weeks are available, whereas the
temperatures for the hours to be forecasted in July are unknown.

Input for Modelling
We employ the forecasting model “at Hour h for Zone i” as an example to demonstrate the
modelling process. All calendar variables are selected as the first components of the input (i.e.,
11 binary digit bits, which represent the four original variables). The temperature at each of the
11 stations at the forecasting hour and the temperature of the same hour of the same weekday
from the previous two weeks are employed as the second components of the input (i.e., 231
binary digit bits represent the 33 original variables). Historical loads at the same hour of the
same weekdays from the previous two weeks are employed as the last component of the input
(i.e., 28 binary digit bits represent the two original variables). A total of 270 binary digit bits,
which represent 39 original variables, are employed for the model input.
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Temperature Forecasting
As the current temperature is employed as part of the input, we have to replenish unknown
temperatures when forecasting the load for the days (07/01/2008–07/07/2008). We employ his-
torical temperatures as substitutes for the unknown temperatures. By comparing the tempera-
ture in June 2008 with the temperature of previous years, we discover that the temperature are
similar to the temperature of 2005 for Station 1, Station 2, Station 4, Station 7, Station 9, and
Station 11. Therefore, we employ the same temperature from 2005 to substitute for the
unknown temperature of these stations. For the remaining stations, the temperature are
assumed to be the same temperatures from 2007.

Data Pre-Processing
All the input/output data must be presented in binary image format for the CNN forecasting
modelling. The input variables include calendar information (year, month, day and holiday),
the historical hourly loads of the Zone i, and the historical temperatures of 11 stations that
encompass the 20 zones. The output is the load of that need to be forecasted at Hour h for
Zone i. The main task in this part is to convert data from the decimal format to binary digit for-
mat then finally to binary image. Eight steps consist of the converting. Here we take the con-
verting of the input as an example, and the output can be processed in the same way.

Step 1: Sort every variable with a certain sequence, even if it is a category type variable.

Step 2: If numerical variable, scale it to [0, 1], otherwise skip this step.

Step 3: For every variable, determine the number of bits ni of variable vi according to its relative
importance in the input.

Fig 1. Historical loads in the 20 zones. The loads in the majority of the zones are approximately measured at the 100,000 kW level; however, some
zones have loads near the 10,000 kW level, such as Zone 1, Zone 13 and Zone 14. Zone 4 has the lowest load of less than 1,000 kW. Large
differences in the load fluctuations of these 20 zones are observed.

doi:10.1371/journal.pone.0157028.g001
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Step 4: Map all values of variable vi to the range of [1, 2^ ni -1], the first value in the sequence is
set to 1, and the last value in the sequence is set to 2^ ni -1.

Step 5: Convert the mapping values of variable (in decimal format) to binary format.

Step 6: Reorganize the input (consists of the decimal variables) as a binary vector that obtained
in Step 5.

Step 7: Reshape the binary input vector to a certain data matrix.

Step 8: Represent the data matrix with black-white image (black for 1 and white for 0, similar
to Quick Response Code in information process field).

The outline of converting original decimal input/output to binary digit format is shown in
Table 1. The year variable is converted to binary format using three bits; e.g., 2004 becomes
001, and 2005 becomes 010. The month is converted to binary format using four bits; e.g., Jan.
becomes 0001, and Dec. becomes 1100. We use weekday information rather than day of the
month. Three binary bits are used to depict the weekday variable, where Monday is 001. One
binary bit is used to indicate holidays, i.e., 1 for holidays and 0 for non-holidays. The load val-
ues are converted to 14 binary bits. They are scaled to the integers fall in the range of [1,
214−1], and then transformed to binary format using 14 bits. In this manner, the minimum
load corresponds to digits of 00000000000001, and the maximum load corresponds to
1111111111111. The temperature values are converted to seven binary bits, where the lowest
temperature corresponds to 0000001 and the highest temperature corresponds to 1111111.

Parameters in the CNN
Table 2 lists the major parameters of the CNNmodelling.

Results

Input Pre-Processing
Fig 2 shows the input and output in binary format for modelling the power load at 1:00 from
Jan. 1, 2007, to Jan. 7, 2004, for Zone 1. Fig 3 shows the same input and output in the form of
binary digit images.

Training Error
A total of 1,460 samples are available to train each model, and 730 samples are employed for
training in each batch; thus, the model is trained twice for every epoch. We train the model for

Table 1. Variables and their binary representations.

Variable Original range Binary digit range Binary bits

Year 2004–2008 [001, 101] 3

Month Jan.- Dec. [0001, 1100] 4

Weekday Mon.—Sun. [001, 111] 3

Holiday {Yes; No} {1; 0} 1

Load [Minimum, Maximum] [00000000000001, 11111111111111] 14

Temperature [Minimum, Maximum] [0000001, 1111111] 7

The original variable values are represented in binary format for modelling. And in CNN forecasting modelling, the input/output are represented in binary

image format.

doi:10.1371/journal.pone.0157028.t001
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500 iterations for a total of 250 training epochs. The training root-mean-square error (RMSE)
is applied to evaluate the performance of the model training, as measured in kW.

Training error plots for all 24-hour models for the 20 zones are shown in Fig 4. We can see
that all errors rapidly decrease over the first 200 iterations and become relatively stable after
approximately 400 iterations. Therefore, 400 iterations are sufficient for training the models in
this task.

Backcasting and Forecasting
The modelled loads (backcasted for the missing eight weeks and forecasted for the forthcoming
week in July) of the 20 zones and the total loads are displayed in Fig 5. The loads are predicted
with high accuracy. However, the backcasted loads for all zones after hour 1,000 are substan-
tially lower than the actual loads. The actual loads and temperatures for May 25, 2006, to May
31, 2006, are substantially higher than the actual loads of the previous week, which likely
explains why the models fail to accurately backcast the loads during this period. The perfor-
mance of Zone 9 is not satisfactory due to irregular load fluctuations.

Forecasting Evaluation
Weighted root-mean-square errors (WRMSEs) are employed to evaluate the performance of
the submitted models in GEFCom 2012

WRSME ¼
X

i
wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ðwiAi � PiÞ2

�
X

i
wi

vuut ð1Þ

where wi is the weight of the zone, Ai is the actual load, and Pi is the forecasting load.

Table 2. Parameters in CNNmodelling.

Parameter Value

Layers of the CNN 5

Learning rate 1

Batch size in training 730

Epochs 250

Feature output maps in Layer 2 2

Kernel size in Layer 2 3

Pooling size in Layer 3 1

Feature output maps in Layer 4 2

Kernel size in Layer 4 4

Pooling size in Layer 5 1

doi:10.1371/journal.pone.0157028.t002

Fig 2. Inputs and outputs for forecasting the load at 1:00 from Jan. 1 to Jan. 7, 2004, for Zone 1 (in binary format). The top of the figure denotes the
category of the input/output of the model: Xa denotes the calendar information (year, month, holiday, and weekday), Xb denotes the temperature, Xc
denotes the historical temperature, Xd denotes the historical load, and Y denotes the output.

doi:10.1371/journal.pone.0157028.g002
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Our model outperforms all GEFCom 2012 winners that are listed on the website of Kaggle
[15] with a WRMSE of 21,709 kW for the backcast weeks and a WRMSE of 16,053 kW for the
forecast week; these values are much lower than the values for the best WRMSE in the competi-
tion, which were 61,890 and 67,215 kW[15]. Therefore, the results demonstrate the significant
potential of CNNs for forecasting tasks.

Discussion and Conclusions
A forecasting model based on a CNN that employs digital images composed of binary repre-
sentations of variables is proposed and compared with the winners of GEFCom 2012. This
model attempts to mine mapping relationships from the internal bit changes between two

Fig 3. Inputs (in binary 27 × 10 image format) and outputs (in binary 1 × 14 image format) for forecasting the load at 1:00 from Jan. 1 to Jan.
7, 2004, for Zone 1. The black-and-white images in the top row are the inputs for the CNNmodelling. These digital images represent binary matrices
(27 × 10) that are converted from 270-bit input vectors in Fig 2. The images on the bottom row that resemble black-and-white bar codes comprise the
output from the CNN and represent load output predictions in the form of 14-bit binary vectors.

doi:10.1371/journal.pone.0157028.g003

Fig 4. Training errors (RMSE) of 24-hour models for all 20 zones at different iterations. The sub-figures (labelled Zone-1 to Zone-20)
represent the RMSE for each zone for the 24 models trained over 24 hours. The training errors for the different hours (H1 to H24) are shown in
different colours. The same colours and symbol codes are applied to each zone.

doi:10.1371/journal.pone.0157028.g004
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variables using their local connections, as the variations in decimal values can be expressed as
subtle changes in binary digits.

A successful CNN forecasting model can be constructed without any domain expertise with
the proposed methodology. The implementation of the proposed modelling process is easier
than the implementation of conventional methods as minimal data analysis[23] and no data
cleansing process[18, 24] are required. The model provides excellent forecasting with all tem-
peratures that are selected as input variables from the 11 stations without analysing the correla-
tion between the station temperatures and the zone loads. The model extracts valuable
information from the variables, disregards valueless information and reduces input
redundancy.

The CNN forecasting model is more useful than conventional models when data are
unstructured, as it successfully handles all variable types, including categorical calendar vari-
ables. By transforming the original decimal values of the variables into binary digital image
form, the CNNmodel can automatically mine the relationship between the input and the out-
put using local connections between binary digits. As all information, such as text, voice, and
images that are stored and processed in computers, is in binary format, we expect that CNNs
can be extensively applied in the future forecasting fields. The proposed methodology is suc-
cessfully applied to forecast the full load electrical power output of a base load operated com-
bined cycle power plant[25] and, showing significant performance improvement from the
comparing model, which is been submitted to the same journal.

As this is the first attempt to construct a forecasting model with binary image input using a
CNN, additional research may needed. A large volume of data is needed to train the CNN
model to determine its connection weights. However, the suitable volume for training a specific
CNN is unknown. Similar to other types of neural networks, the performance of a CNN is
impacted by its parameters. Challenges such as determining the optimum set of parameters

Fig 5. Actual and backcasted/forecasted loads for the 20 zones and the total load. The sub-figures (labelled Zone-1
to Zone-21) represent Zone 1 to Zone 20 and the total load measured in kW. The actual power load and the modelled
load (including the backcasted load for the eight missing weeks and the forecasted load for one week) are shown, where
blue indicates the actual load and green indicates the modelled load. The same colours and symbol codes are applied to
each zone and to the total load (denoted by Zone 21).

doi:10.1371/journal.pone.0157028.g005
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and selecting the appropriate number of bits to assign to each input/output variable represent
interesting avenues for future research.
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