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Abstract
An epigenome-wide association study (EWAS) is a large-scale study of human disease-

associated epigenetic variation, specifically variation in DNA methylation. High throughput

technologies enable simultaneous epigenetic profiling of DNA methylation at hundreds of

thousands of CpGs across the genome. The clustering of correlated DNA methylation at

CpGs is reportedly similar to that of linkage-disequilibrium (LD) correlation in genetic single

nucleotide polymorphisms (SNP) variation. However, current analysis methods, such as

the t-test and rank-sum test, may be underpowered to detect differentially methylated mark-

ers. We propose to test the association between the outcome (e.g case or control) and a set

of CpG sites jointly. Here, we compared the performance of five CpG set analysis

approaches: principal component analysis (PCA), supervised principal component analysis

(SPCA), kernel principal component analysis (KPCA), sequence kernel association test

(SKAT), and sliced inverse regression (SIR) with Hotelling’s T2 test and t-test using Bonfer-

roni correction. The simulation results revealed that the first six methods can control the

type I error at the significance level, while the t-test is conservative. SPCA and SKAT per-

formed better than other approaches when the correlation among CpG sites was strong.

For illustration, these methods were also applied to a real methylation dataset.

Introduction
DNA polymorphisms explain only a small proportion of inheritance patterns in many complex
diseases [1]. Some of the missing heritability might be explained by epigenetic variation, espe-
cially DNAmethylation [2]. Indeed, the DNA methylation state, rather than DNA sequence, is
more determinative of gene expression levels [3]. Further, levels of DNA methylation may
“record” an individual’s environmental exposures, and thus methylation is a potential bio-
marker for disease diagnosis and risk stratification [4,5]. Because of the reversibility of DNA
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methylation, it may provide a potential therapeutic target for complex diseases, especially can-
cer [6,7].

Global DNA methylation status can now be profiled to determine its involvement with dis-
ease, via epigenome-wide association studies (EWASs). As an example, the HumanMethyla-
tion450 array from Illumina can assess methylation levels at more than 485,000 CpG markers
[8]. The estimated proportion of DNA methylation (β-value) varies between 0 (unmethylated)
and 1 (completely methylated). The aim of the analysis of EWAS data from case-control stud-
ies is to detect differentially methylated positions (DMPs), namely, CpGs that show a signifi-
cant change in methylation between cases and controls [9]. Among the existing methods for
DMP detection, the t-test and rank-sum test are the most commonly used [10]. Several
advanced methods, such as mixture models, logistic M values, and generalized exponential tilt
model, have been proposed recently [11–13].

Liu et al. have shown that the clustering of correlated DNAmethylation at CpGs is similar
to that of linkage disequilibrium (LD) correlation in genetic SNP variation but for a much
shorter distance—the correlation is reduced by half for CpGs within 500bp, and it is weak for
CpGs within 2kb [14]. Some clustering of methylated CpGs appears to be genetically driven,
thus, they call these sets of correlated CpGs “GeMes”, for genetically controlled methylation
clusters. Similar to LD blocks in GWASs, this type of correlated methylation structure can be a
useful tool for guiding custom array design, efficient statistical approaches, and interpretation
of EWASs [15].

Considering the correlation structure among CpG sites, the above methods for DMP detec-
tion, which are based on single-locus analysis, may be underpowered to detect associations.
We hypothesized that an association test on a set of biologically related CpG sites may improve
the power in EWAS analysis. This improvement may result from two characteristics: First, the
number of tests is reduced if CpG sites are tested by set [16]. Second, a joint test can fully utilize
information contained among the multiple loci.

In this study, we sought to identify joint testing methods that may offer improved power to
detect associations and tested the association between disease outcome and CpG levels using
several set-based methods: PCA, SPCA, KPCA, SKAT, and SIR (briefly described below). We
then used simulated datasets to compare the performance of these five CpG set analysis
approaches with Hotelling’s T2 test and t-test with Bonferroni correction. Additionally, we ana-
lyzed publicly available DNA methylation data from a rheumatoid arthritis (RA) dataset [17]
for practical application of the methods.

Methods
Let i denote the ith individual. For a CpG set, we used Gi1,Gi2,. . .,Gip to denote DNAmethyla-
tion proportions at the p CpG sites from the ith individual. When the outcome variables are
dichotomous (e.g., y = 1/0 for case or control):

Logit Pðyi ¼ 1Þ ¼ α0 þ α0 Xi þ β0 Gi;

where Xi = (Xi1, Xi2,. . ., Xim) denotes the covariates.

PCA
Principal component analysis (PCA) is a classical multivariate method for the analysis of non-
independent variables. When the p explanatory variables are correlated, it is possible to use a
few (k<<p) top principal components (PCs) to replace the explanatory variables in the
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regression analysis [18–21]. In our analysis, we used the first k PCs instead of p CpGs to test
the association with the disease outcome, in which k is the number of PCs that explain more
than 80% percent of the total variation. A k-df likelihood ratio test can be used to test the signif-
icance of the CpG set.

SPCA
SPCA (supervised principal component analysis) is a supervised dimension reduction
approach [22–24]. The SPCA model is:

Logit Pðyi ¼ 1Þ ¼ β0 þ β1PC1 þ εj:

Compared to traditional PCA, which uses all CpGs in a set to extract the PCs, only those
CpGs with the strongest correlation with the outcome are used to perform SPCA, and PC1 is

the first principal component. After variable selection, the test statistic T ¼ β̂1=s:e:ðβ̂1Þ is no
longer approximated well by a t-distribution, so we used the distribution proposed by Chen
et al. for the hypothesis testing [25].

KPCA
Kernel principal component analysis (KPCA) is a nonlinear extension of traditional PCA that
has been studied intensively recently in the field of machine learning [26–29]. Given the obser-
vations, we first map the data nonlinearly into a higher-dimensional feature space F by

F : RM!F

x ! X
;

where ϕ is a nonlinear function. Then, a kernel matrix K is formed using the inner products of
new feature vectors. A standard PCA is performed on the centralized K, which is the estimate
of the covariance matrix of the new feature vector in F1. Such a nonlinear PCA from the origi-
nal data may be constructed to a linear PCA from the kernel matrix K.

Commonly used kernel functions include linear kernel, polynomial kernel, radial basis func-
tion (RBF) kernel, IBS kernel, and weighted IBS kernel [30]. In particular, KPCA with linear
kernel is standard linear PCA. In this study, we chose the RBF kernel due to its flexibility in
choosing the associated parameter. The parameter σ is set to 0.01 and the threshold is set to
80%.

SKAT
The sequence kernel association test (SKAT) is a supervised, flexible, computationally efficient
regression method. It has been used to test for the association between a set of genetic variants
and a continuous or dichotomous trait [31]. Considering the correlation among the CpG
markers, we used SKAT to test the association between the trait and a set of CpGs.

To increase power, SKAT tests H0 by assuming each βj follows an arbitrary distribution
with a mean of zero and a variance of wjτ, where τ is a variance component and wj is a prespec-
ified weight for variant j. H0: β = 0 is equivalent to testing H0: τ = 0, which can be conveniently
tested with a variance-component score test in the corresponding mixed model. The variance-
component score statistic is

Q ¼ ðy � μ̂Þ0 Kðy � μ̂Þ;
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where K = GWWG’, G is an n×pmatrix with the (i, j)-th element being the genotype of variant
j of subject i, andW = diag(w1, w2,. . .,wp) contains the weights of the p variants. In this study,
the matrix G is quantitative and denotes the methylation values. We set wj = 1; that is, all vari-
ants are weighted equally.

SIR
Sliced inverse regression (SIR) is a novel data-analytic tool for reducing the dimension of the
input variable G [32]. Instead of regressing y against G directly, SIR regresses G against y
(inverse regression) by fitting η(y) = E(G|y).

To perform a SIR analysis, we first standardized the explanatory variable G to

Z ¼
X�1=2

GG
½G� EðGÞ�; where ∑GG is the sample covariance matrix of G. Second, we sliced the

range of the response variable y into H intervals, I1,. . .,Ih, and partitioned the whole dataset
into several slices according to the y value. Let the proportion of the yi that falls in the slice h be

denoted as p̂h ¼ ð1=nÞ
Xn

i¼1
dhðyiÞ. The value of δh(yi) is 0 or 1 depending on whether yi falls

into the hth slice or not. Third, we calculated the sample mean of Z within each slice, denoted

as m̂h ¼ ð1=np̂hÞ
X

yi2Ik
zi. A principal component analysis was then applied to m̂h, extracting

the most important K-dimensional affine subspace for tracking the inverse regression curve E
(G|y). Finally, we output SIR after retransforming these components back to the original scale.

Simulations
We performed simulations to evaluate the type I error and power of the five CpG set analysis
approaches, in comparison to a t-test using Bonferroni correction and Hotelling’s T2 test. For
the t-test, we extracted the minimum P-value as the whole P-value of the CpG sites (the P value
of a CpG set). We generated the simulated datasets by using a disease model

Logit PðDi ¼ 1Þ ¼ β0 þ
XC

j�1
βjG

ij
;

in which C is the number of causal CpGs. We used the program RandGen, a free program for
generating random numbers, to generate the correlated CpGs [33]. Users can specify sample
size, the number of variables, distributions, and correlations through the RandGen input file. If
we specify the correlations between variables using the Pearson correlation parameter, then
RandGen conducts a possibly time-consuming search to find the necessary copula correlation
(RhoController) values to produce those desired correlations.

Simulations based on virtual datasets
Each simulated dataset contained 1,000 cases and 1,000 controls. For each individual, we first
generated methylation values using RandGen. Correlation coefficients for any pairs of CpGs
were set from 0.2 to 0.8 by 0.2 increments. Here, we assumed that the CpG set contained 10
CpGs. Two scenarios were simulated; they differed by whether or not the distributions of each
CpG site were the same.

Scenario 1 (same distribution): In each situation, the mean of the corresponding distribu-
tion was 0.2/0.4/0.6 or 0.8.

Scenario 2 (different distributions): The means of each CpG site were 0.2, 0.2, 0.3, 0.4, 0.5,
0.5, 0.6, 0.7, 0.8, and 0.8, respectively.

The outcome for each individual was determined by the above disease model. We set C = 0
(no causal CpG site in the set) to evaluate type I error, which was defined as the proportion of
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“falsely” rejected H0 in the 5,000 replications. To evaluate the power of the seven methods, we
assumed C = 1 and C = 2. For each parameter setting, we generated 1,000 simulated datasets to
calculate the power at the significance level of 0.05. Parameters of simulations are described in
Table 1.

Simulations based on real DNA methylation datasets
We also simulated the CpG sets in a more realistic scenario by using a real DNA methylation
dataset as the template. We used data from the Gene Expression Omnibus (GEO) generated
from the Illumina HumanMethylation450 array data on whole blood (accession number
GSE42861). This study examined methylation differences between RA patients (n = 354) and
healthy controls (n = 335). We selected protein tyrosine phosphatase, receptor type, D
(PTPRD) and mutL homolog 1 (MLH1) gene regions to generate the simulated methylation
data. PTPRD is located on Chr 9 andMLH1 is located on Chr 3. The CpG sites we chose are
located within 1Kb of PTPRD andMLH1 genes. Six CpGs on PTPRD (IlmnID: cg08719869,
cg09371281, cg09781601, cg13723825, cg14080967, cg14458619) and nine onMLH1 (IlmnID:
cg02103401, cg04726821, cg04841293, cg05670953, cg10990993, cg11291081, cg18320188,
cg21109167, cg24607398) were considered. Respectively, the correlation coefficient matrices of
the two CpG sets are

R1 ¼

1

0:264 1

0:469 0:257 1

0:778 0:224 0:458 1

0:890 0:248 0:410 0:819 1

0:374 0:894 0:286 0:315 0:364 1

2
66666666664

3
77777777775

Table 1. Parameter settings of virtual datasets.

Simulations Number of causal CpGs Location of causal CpGs Correlation coefficient (r) Values of βj

Scenario 1

1.1 0 - 0.2/0.4/0.6/0.8 -

1.2 1 1 0.2/0.4/0.6/0.8 0.5/0.6/0.7/0.8/0.9/1.0

1.3 2 1 and 2 0.2/0.4/0.6/0.8 0.1/0.2/0.3/0.4/0.5

Scenario 2

2.1 0 - 0.2/0.4/0.6/0.8 -

2.2 1 1 0.2/0.4/0.6/0.8 0.5/0.6/0.7/0.8/0.9/1.0

2.3 1 5 0.2/0.4/0.6/0.8 0.5/0.6/0.7/0.8/0.9/1.0

2.4 1 10 0.2/0.4/0.6/0.8 0.5/0.6/0.7/0.8/0.9/1.0

2.5 2 1 and 5 0.2/0.4/0.6/0.8 0.1/0.2/0.3/0.4/0.5

2.6 2 1 and 10 0.2/0.4/0.6/0.8 0.1/0.2/0.3/0.4/0.5

2.7 2 5 and 10 0.2/0.4/0.6/0.8 0.1/0.2/0.3/0.4/0.5

doi:10.1371/journal.pone.0156895.t001
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and

R2 ¼

1

0:432 1

0:138 0:303 1

0:331 0:709 0:292 1

0:679 0:576 0:146 0:440 1

0:272 0:600 0:268 0:660 0:308 1

0:311 0:421 0:538 0:518 0:307 0:443 1

0:113 0:585 0:453 0:668 0:262 0:417 0:449 1

0:610 0:498 0:065 0:378 0:710 0:299 0:210 0:160 1

2
6666666666666666664

3
7777777777777777775

:

We simulated 100 individuals with half as cases and half as controls. We set C = 0 to evalu-
ate type I error and C = 1 to evaluate power, with 5,000 datasets produced to calculate the type
I error rate, and 1,000 datasets generated for the evaluation of power. The first CpG site of each
gene was defined as the causal CpG. Details of parameter settings are shown in Table 2.

Applications
The seven methods under comparison were applied to an RA DNAmethylation dataset
(described above). Original analysis of the dataset showed that the effect of genotype on RA
risk appears to be mediated by DNA methylation changes in five genes: GSTA2, PBX2,
C6orf10, HLA-DQB2, and GPSM3 [17]. We restricted our analysis to GSTA2 and PBX2, which
are about 13.4 kb and 5.9 kb in length and include 6 CpGs and 51CpGs, respectively. The anal-
yses were performed using R packages (version 3.0.2). The “superpc”, “kernlab”, “SKAT”, “dr”,
and “Hotelling” packages were used to perform SPCA, KPCA, SKAT, SIR, and T2 analyses,
respectively.

Results

Results of simulations based on virtual datasets
Type I error. Type I error rates of PCA, SPCA, KPCA, SKAT, SIR, T2, and t-test based on

10 CpGs are presented in Table 3 and Tables A-C in S1 File. Whether or not the CpGs were
from the same distribution, the five set-based methods, as well as the T2 test, could control the
type I error at the 0.05 significance level, while the t-test became increasingly conservative as
the correlation among CpGs increased.

Power. Estimated power from scenarios 1.2 and 2.3 is presented in Fig 1. The powers of
PCA, SPCA, KPCA, and SKAT increased as the correlation among CpGs increased, but there
were no apparent trends for SIR, T2, and t-test. When correlation was strong (r = 0.6, r = 0.8),
SKAT and SPCA were more powerful than the t-test. However, if there was weak correlation,
there were no apparent differences among the three methods. We also found that the power
was lower for SIR and T2 than for other methods, in general.

Table 2. Parameter settings based on real methylation datasets.

Simulations Number of causal CpGs Location of causal CpGs Values of βj

1 0 - -

2 1 1 4.0/5.0

doi:10.1371/journal.pone.0156895.t002
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Results from the simulations in scenarios 1.3 and 2.5 are presented in Fig 2. Power for all
seven methods increased when the correlations became stronger. When the distributions of
each CpG were the same, both SKAT and SPCA were more powerful than the other methods,
independent of correlation strength. In contrast, when the distributions of each CpG were dif-
ferent, the powers of SKAT and SPCA were higher than t-test when the correlation was strong.

Considering that the average number of CpGs per gene on the HM450K array is ~17, we
simulated a CpG set with 20 CpGs. Figure A in S1 File shows that SKAT and SPCA remained
more powerful than other methods when the correlation was strong.

Results of simulations based on a real DNA methylation dataset
Table 4 presents the results based on the PTPRD gene. PCA, SPCA, KPCA, SKAT, SIR, and T2

could control type I error at the significance level of 0.05, while the t-test was conservative.
Power results are presented in Fig 3(a). For both β1 = 4.0 and 5.0, SKAT and SPCA were more
powerful than the other five methods. Among the seven methods, the power was lowest for the
t-test. Results based on theMLH1 gene were similar to those from the PTPRD gene [Table 4
and Fig 3(b)].

Application to real data
We applied the seven methods to two CpG sets from an RA methylation dataset from the GEO
data repository. The P-values for the CpG sets are presented in Table 5. For the first CpG set,
the P-value of SPCA was 4.06E-05, the lowest of the seven methods. SKAT was second to
SPCA with a P-value of 5.36E-04. P-values for PCA, t-test, KPCA, T2, and SIR were 1.11E-03,
1.88E-03, 2.42E-03, 3.74E-03 and 5.39E-03, respectively. For the PBX2 gene, the result also
showed that SPCA had the best performance. The t-test was slightly superior to SKAT. All
seven approaches yielded significant results at the significance level of 0.05 and were consistent
with the original report of this dataset [17].

Discussion
The correlation structure of the DNAmethylation data enables testing of the association
between the disease outcome and a set of CpGs simultaneously. Here, we demonstrate that
analyzing DNAmethylation data using CpG set-based analysis for epigenome-wide association
studies offers superior power over individual analysis. The set-based CpG association analysis

Table 3. Empirical Type I error rates at α = 0.05 level under different scenarios.

Same distribution (mean methylation level = 0.6)

r PCA SPCA KPCA SKAT SIR T2 t-test
0.2 0.0504 0.0504 0.0546 0.0456 0.0492 0.0412 0.0486

0.4 0.0512 0.0506 0.0500 0.0490 0.0536 0.0498 0.0452

0.6 0.0472 0.0530 0.0572 0.0478 0.0438 0.0506 0.0340

0.8 0.0470 0.0514 0.0456 0.0446 0.0460 0.0468 0.0244

Different distributions

r PCA SPCA KPCA SKAT SIR T2 t-test

0.2 0.0494 0.0496 0.0518 0.0560 0.0552 0.0544 0.0450

0.4 0.0424 0.0478 0.0482 0.0504 0.0486 0.0524 0.0422

0.6 0.0476 0.0464 0.0498 0.0510 0.0454 0.0512 0.0356

0.8 0.0420 0.0538 0.0506 0.0484 0.0482 0.0514 0.0184

doi:10.1371/journal.pone.0156895.t003
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has several advantages: first, the set-based methods can “borrow” information from the corre-
lated CpG sites; second, the set-based methods decrease the number of multiple comparisons
[34–36].

In this research, we compared the performance of five CpG set analysis approaches (PCA,
SPCA, KPCA, SKAT, and SIR) with Hotelling’s T2 test and t-test using Bonferroni correction.
We found that all of these set-based methods can control the type I error at the target signifi-
cance level. The t-test with Bonferroni correction is conservative, especially when the correla-
tions between CpG sites are strong, and thus can be less powerful to identify the association
between the outcome variable and CpG set. When the CpG sites in the set have high correla-
tion with each other, SPCA and SKAT can combine their information and provide better-sim-
ulated power among the seven approaches. We suggest that SPCA and SKAT can be used for

Fig 1. (a) Simulated power at single causal CpGmodel based on 10 CpGs from the same distribution (meanmethylation
level = 0.6). The regression coefficient in the disease model, β1 = 0.7. (b) Simulated power at single causal CpGmodel based on
10 CpGs from different distributions. The 5th CpG is set as the causal CpG. The regression coefficient in the disease model, β1 =
0.7.

doi:10.1371/journal.pone.0156895.g001
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CpG set analysis and screening the association across the entire epigenome. In the RA methyla-
tion dataset, we compared the methylation differences of two CpG sets (GSTA2 and PBX2)
between patients and healthy controls. All these simulated studies and applications in real data
analysis suggest that set-based methods may be used in DNAmethylation data analysis.

Fig 2. (a) Simulated power at two causal CpGsmodel based on 10 CpGs from the same distribution (meanmethylation
level = 0.6). The regression coefficients in the disease model, β1 = β2 = 0.5. (b) Simulated power at two causal CpGsmodel based
on 10 CpGs from different distributions. 1st and 5th CpGs are set as the causal CpGs. The regression coefficients in the disease
model, β1 = β2 = 0.5.

doi:10.1371/journal.pone.0156895.g002

Table 4. Empirical Type I error rates based on a real methylation dataset.

Gene PCA SPCA KPCA SKAT SIR T2 t-test

PTPRD 0.0572 0.0578 0.0554 0.0480 0.0568 0.0584 0.0372

MLH1 0.0537 0.0556 0.0483 0.0514 0.0582 0.0518 0.0422

doi:10.1371/journal.pone.0156895.t004
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SPCA is a supervised dimension reduction approach, which only includes the disease-rele-
vant CpGs before the extraction of the principle components. Thus, this method performs bet-
ter than PCA under different situations. As the KPCA does not rule out the irrelevant CpGs,
the power of KPCA is inferior to SPCA but better than PCA in most occasions. We also find
KPCA consumes more computational resources. SKAT uses variance component testing

Fig 3. (a) Simulated power based on the PTPRD gene. (b) Simulated power based on theMLH1 gene.

doi:10.1371/journal.pone.0156895.g003

Table 5. CpG set analysis results of DNAmethylation datasets from epigenome studies.

Gene Number of CpGs P-value for the CpG set

PCA SPCA KPCA SKAT SIR T2 t-test

GSTA2 6 1.11E-03 4.06E-05 2.42E-03 5.36E-04 5.39E-03 3.74E-03 1.88E-03

PBX2 51 3.32E-06 1.03E-10 9.55E-08 1.57E-08 2.80E-02 1.23E-03 4.08E-09

doi:10.1371/journal.pone.0156895.t005
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framework to increase test power. If the CpGs in a region are highly correlated, the reduced
degree of freedom improves the statistical power. The power of SIR is almost the lowest
throughout the simulations. One possible reason is that the outcome variable is binary and can
be divided into only two slices. Although, in theory, Hotelling’s T2 test has the ability to sum-
marize the information from correlated CpGs, it is less powerful than SPCA and PCA in our
simulations. This may result from the assumptions of multiple normal distribution being vio-
lated for DNAmethylation data. Thus, SIR and Hotelling’s T2 test are not recommended for
application in CpG set analysis for EWAS studies.

In summary, we propose to use set-based method for DNAmethylation data analysis and
compare the performance of CpG set-based analysis for DNAmethylation data. We suggest
using SPCA and SKAT to improve test power. However, there remain some limitations in our
study. First, the virtual simulated datasets were generated based only on multivariate beta dis-
tribution. Other distributions such as inverse logit transformation of a multivariate normal dis-
tribution should be considered. Several recent studies have noticed that measured methylation
may exhibit different levels of variability in different groups, possibly due to batch effects [7].
Therefore, some new tests that capture differences in both mean and variance of methylation
levels, such as semiparametric tests [13], have been proposed. We will discuss the performance
of these methods in the same situation later. Second, for the methods PCA, KPCA, and SIR,
further studies should be performed to identify the effect of the number of PCs on the power.
Third, more complicated situations, such as the interactions between CpG sets and the methyl-
ation-mediated genetic risks in the genome-wide scan, are not covered here but will be consid-
ered in future studies.

Supporting Information
S1 File. Table A, Empirical Type I error rates at α = 0.05 level based on 10 CpGs from the
same distribution (mean level = 0.2). Table B, Empirical Type I error rates at α = 0.05 level
based on 10 CpGs from the same distribution (mean level = 0.4). Table C, Empirical Type I
error rates at α = 0.05 level based on 10 CpGs from the same distribution (mean level = 0.8).
Figure A, Simulated power at single causal CpG model based on 20 CpGs from the same distri-
bution (mean methylation level = 0.6). The regression coefficient in the disease model, β1 = 0.7.
(DOCX)
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