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Abstract

Background

Various diabetes risk scores composed of non-laboratory parameters have been devel-

oped, but only a few studies performed cross-validation of these scores and a comparison

with laboratory parameters. We evaluated the performance of diabetes risk scores com-

posed of non-laboratory parameters, including a recently published Korean risk score

(KRS), and compared them with laboratory parameters.

Methods

The data of 26,675 individuals who visited the Seoul National University Hospital Health-

care System Gangnam Center for a health screening program were reviewed for cross-sec-

tional validation. The data of 3,029 individuals with a mean of 6.2 years of follow-up were

reviewed for longitudinal validation. The KRS and 16 other risk scores were evaluated and

compared with a laboratory prediction model developed by logistic regression analysis.

Results

For the screening of undiagnosed diabetes, the KRS exhibited a sensitivity of 81%, a speci-

ficity of 58%, and an area under the receiver operating characteristic curve (AROC) of

0.754. Other scores showed AROCs that ranged from 0.697 to 0.782. For the prediction of

future diabetes, the KRS exhibited a sensitivity of 74%, a specificity of 54%, and an AROC

of 0.696. Other scores had AROCs ranging from 0.630 to 0.721. The laboratory prediction

model composed of fasting plasma glucose and hemoglobin A1c levels showed a signifi-

cantly higher AROC (0.838, P < 0.001) than the KRS. The addition of the KRS to the
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laboratory prediction model increased the AROC (0.849, P = 0.016) without a significant

improvement in the risk classification (net reclassification index: 4.6%, P = 0.264).

Conclusions

The non-laboratory risk scores, including KRS, are useful to estimate the risk of undiag-

nosed diabetes but are inferior to the laboratory parameters for predicting future diabetes.

Introduction
The prevalence of diabetes mellitus is increasing worldwide. The International Federation of
Diabetes estimates that 382 million people globally have diabetes as of 2013, and this number
will increase by 55% until 2035 [1]. The pathogenesis of diabetes mellitus is very complex,
which encompasses pancreatic beta-cell dysfunction, decreased glucose uptake by skeletal mus-
cle, increased hepatic glucose production, increased lipolysis, chronic low-grade inflammation,
and so on [2, 3]. Although tremendous efforts have been made to find the cure for diabetes [4],
no successful treatment to reverse diabetes exists as of yet. Therefore, prevention is the most
important strategy to solve the global epidemic of diabetes. Several large randomized controlled
trials demonstrated that early interventions in the form of lifestyle modifications or medica-
tions can delay or prevent type 2 diabetes [5, 6]. Therefore, identifying individuals who are
undiagnosed or who are at high risk of developing diabetes is of paramount importance to
fight the global epidemic of diabetes. However, a significant proportion of diabetes patients are
unaware of their condition and leave it untreated. It is estimated that 27.8% of diabetes patients
in the United States [7] and 27.3% in Korea are undiagnosed [8]. An effective screening pro-
gram is essential to identify this population with potentially preventable health outcomes.

Various risk scores have been developed for diabetes screening [9–11]. Each risk score was
designed to identify undiagnosed diabetes, incident diabetes, or both. Scores were developed
based on various populations with distinct ethnic and clinical backgrounds [9–11]. Established
risk factors for diabetes, such as central obesity, a family history of diabetes, and old age were
included in the majority of the risk scores [10]. However, other potential risk factors, such as
steroid use, the intake of red meat, and alcohol consumption were only included in a subset of
the risk scores [10]. The differences in the primary end points of the risk scores, the population
that the risk score was derived from, and the risk predictors included in the risk score led to
considerable heterogeneity between the risk scores. The risk scores should be used with caution
before applying them to different populations.

The risk scores also vary if they are solely based on non-laboratory parameters or include
laboratory parameters [9]. The two types of risk scores, those based on only non-laboratory
parameters and those based on both non-laboratory and laboratory parameters, require differ-
ent amounts of resources and have different ranges of applicability. The scores with non-labo-
ratory parameters are inexpensive and ready to use by a layperson. Therefore, they are more
suitable for whole population–based screening. The scores using laboratory parameters gener-
ally have better discrimination than the non-laboratory scores, but the additional cost and time
requirements limit their use in population-based screening [12]. To justify the use of laboratory
parameters in diabetes risk prediction, risk prediction improvement using laboratory parame-
ters needs to be thoroughly evaluated.

Recently, a Korean diabetes risk score composed of non-laboratory parameters was devel-
oped based on the results from the Korean National Health and Nutrition Examination Survey
(KNHANES) [13]. The Korean Risk Score (KRS) includes age, family history of diabetes and
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hypertension, waist circumference, smoking status, and alcohol intake as the risk factors for
undiagnosed diabetes [13]. Although the KRS was validated in the national survey data, it has
not been validated in other population data or evaluated for use in the prediction of incident
diabetes. To assess the performance of the KRS and compare it with other previously published
risk scores, we performed a comprehensive validation of the KRS in a large independent cohort
and compared it with various other risk scores for both undiagnosed and incident diabetes.
Further, we evaluated the improvement of the risk prediction model after incorporating labora-
tory parameters into the KRS.

Methods

Subjects and study design
Subjects were recruited at Seoul National University Hospital Healthcare System Gangnam
Center. The participants in the health screening program were asked to provide their results
for clinical research, and the database was constructed after the encryption of personal infor-
mation. The written informed consent was obtained for all study participants. This study was
approved by the Institutional Review Board of Seoul National University Hospital (IRB No.
1308-004-507) and conducted according to the Declaration of Helsinki.

Cross-sectional validation for the screening of undiagnosed diabetes. Among the indi-
viduals who visited the healthcare center from January 1, 2011, to September 31, 2012, a total
28,857 individuals completed the health screening program, including measurements of fasting
plasma glucose (FPG) and hemoglobin A1c (HbA1c) levels. We excluded 75 individuals under
the age of 20, 564 individuals with missing data on waist circumference or body weight, and
1,543 individuals who reported having known diabetes. Consequently, 26,675 individuals
formed the study population for the cross-sectional validation. In cases of individuals who had
multiple visits during the study period, only the data from the first visit were used.

Longitudinal validation for the prediction of incident diabetes. For the longitudinal val-
idation, we constructed a retrospective cohort with a baseline visit during the period from Feb-
ruary 1, 2004, to December 31, 2005, and a follow-up visit during the period from January 1,
2011, to September 31, 2012. Totally, 4,147 individuals had both baseline and follow-up visits
and completed the health screening program. From this eligible population, 75 individuals
under the age of 20, 13 individuals with missing data on waist circumference or body weight,
and 781 individuals with incomplete follow-up data were excluded. The 144 individuals with
previously diagnosed diabetes and 105 individuals with newly diagnosed diabetes at the base-
line visit were also excluded. As a result, 3,029 individuals formed the study population for the
longitudinal validation, with a mean follow-up duration of 6.2 years.

Clinical and laboratory evaluation
A questionnaire was used to gather information on medical history, family history, health-
related habits, and physical activity. The medical history included current medications and any
previous diagnosis of diabetes, hypertension, or dyslipidemia. Individuals who reported having
hypertension or were taking antihypertensive medication or whose blood pressure was�140/
90 mmHg were defined as having hypertension. A family history of diabetes was confined to
first-degree relatives. Smoking status was classified as current smokers, ex-smokers (not cur-
rently smoking but had smoked at least 5 packs of cigarettes in their lifetime), and never-smok-
ers. Alcohol consumption was calculated as an average daily number of drinks based on the
frequency of drinking per week and the amount of alcoholic beverage consumed. Subjects were
classified as physically active if they performed regular exercise more than once per week. The
blood samples were collected after a 12-hour overnight fast. Plasma glucose, HbA1c, total

Prediction of Current and Future Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0156155 May 23, 2016 3 / 14



cholesterol, HDL cholesterol, and triglyceride levels were measured. The plasma glucose level
(intra-assay and inter-assay coefficient of variation [CV]<2.0%) was determined with the
hexokinase method using an Architect ci8200 analyzer (Abbott Laboratories, Abbott Park, IL,
USA). Total cholesterol, HDL cholesterol, and triglyceride levels (intra-assay and inter-assay
CV<1.5% for total cholesterol;<2.5% for HDL cholesterol;<1.5% for triglyceride) were
determined with enzymatic kits using the Architect ci8200 analyzer. HbA1c levels (intra-assay
and inter-assay CV<2.0%) were determined with an immunoturbidimetric assay using Cobas
Integra 400 (Roche Diagnostics GmbH, Mannheim, Germany).

Definition of diabetes mellitus
The subjects who answered “yes” to the question “Have you ever been diagnosed with diabetes
by a physician?” or who were taking antidiabetic medications were defined as having “known
diabetes.” The subjects who were first diagnosed with type 2 diabetes based on the result of the
fasting blood test at the health screening program were classified as “undiagnosed diabetes.”
Among the subjects who did not have diabetes at the baseline visit, the subjects who were diag-
nosed with diabetes or had undiagnosed diabetes at the follow-up visit were classified as “inci-
dent diabetes.” Diabetes was diagnosed in subjects with FPG� 126 mg/dl or HbA1c� 6.5%
according to the 2010 revision of the diagnostic criteria of diabetes by American Diabetes Asso-
ciation (ADA) [14].

Risk scores
We adopted risk scores from 3 recently published systematic reviews on risk prediction models
for type 2 diabetes [9–11]. According to the standard methodology for systematic reviews, each
systematic review searched published articles that reported risk prediction models for type 2
diabetes. The timings of the searches in the 3 reviews were January 2011 [11], February 2011
[9], and May 2011 [10]. We further searched other studies reporting risk scores published from
January 2011 to May 2013 on PubMed and Google Scholar using the following search string:
((“diabetes” OR “type 2 diabetes”) AND (“score”OR “model”OR “prediction”)). Among the
identified risk scores, the scores using only non-laboratory parameters were included. A total
of 16 risk scores were included in the comparative analysis with the KRS (S1 Table). When the
definition of each variable was not identical with our study, we tried to use the best available
variable. Two variables, current use of corticosteroid and history of gestational diabetes, were
omitted because those conditions were not evaluated in our study.

Statistical analysis
We classified subjects according to diabetes status for descriptive statistics. Continuous vari-
ables are expressed as the means ± SD, and categorical variables are presented as percentages.
The difference between each group was analyzed by the one-way ANOVA with Tukey’s post
hoc test or t test for continuous variables and a chi-square test for categorical variables. To vali-
date and compare various risk scores, we calculated the proportion of high-risk individuals,
sensitivity, specificity, positive predictive value, negative predictive value, and Youden index
(sensitivity + specificity -1) for each model. The area under the receiver operating characteristic
curve (AROC) was also calculated as a discrimination index. In the study population for cross-
sectional validation, we applied risk prediction models to detect undiagnosed diabetes. In the
study population for longitudinal validation, we calculated risk scores based on the values at
baseline visit to predict incident diabetes at a follow-up visit.

To compare the performance of the non-laboratory risk score and laboratory parameters
for the prediction of incident diabetes, we developed risk prediction models composed of

Prediction of Current and Future Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0156155 May 23, 2016 4 / 14



laboratory parameters in the study population for longitudinal validation with multivariate
logistic regression analysis. Laboratory parameters were selected in the multivariate logistic
regression analysis with a backward stepwise methods (the cutoff of P values was<0.05).
Aforementioned measures including AROC were calculated for these risk prediction models of
laboratory parameters. The net reclassification index (NRI) and integrated discrimination
improvement (IDI) [15] of each parameter and the combined laboratory parameters were also
calculated in comparison with the KRS. Additionally, to assess the effectiveness of the risk
scores as a diabetes screening program, we simulated the application of the KRS and combined
risk prediction model of the KRS and laboratory parameters (CRPM) to the baseline data of
the longitudinal study with a total of 3,134 individuals without known diabetes at the baseline
visit, which were 3,029 normal individuals plus 105 undiagnosed diabetes at baseline. A P value
<0.05 was considered to be statistically significant. All statistical analyses were performed
using SPSS v18.0 (SPSS Inc. Chicago, IL, USA) or R v3.0.1 (R Foundation for Statistical Com-
puting, Vienna, Austria).

Results

Characteristics of the study populations
The characteristics of the study population for the cross-sectional validation according to dia-
betes status are summarized in Table 1. The prevalence of the diabetes was 8.4%, including
undiagnosed diabetes (2.9%). As expected, known risk factors of diabetes, including old age,
higher BMI, waist circumference, hypertension, a family history of diabetes, and smoking, were
associated with diabetes. The modifiable risk factors of diabetes (obesity, physical inactivity,
and alcohol intake) were less prevalent in known diabetes than undiagnosed diabetes. Known
diabetes patients had lower BMI (24.6 ± 3.0 vs. 25.6 ± 3.2 kg/m2, P< 0.001), performed more
regular exercise (81.3% vs. 69.7%, P< 0.001), and had less alcohol intake (1.6 ± 1.9 vs. 1.9 ± 2.1
glasses/day, P = 0.014) than those with undiagnosed diabetes.

The baseline characteristics of the study population for the longitudinal validation accord-
ing to diabetes status are summarized in Table 1. Of the subjects who were normoglycemic at
baseline, 4.5% developed incident diabetes between the baseline and follow-up visits. The mini-
mum, maximum, and mean durations of follow-up were 5.0, 7.9, and 6.2 years, respectively.
Among the various parameters, old age, high BMI, waist circumference, hypertension, and a
family history of diabetes were associated with incident diabetes. The proportion of current
smokers and the amount of daily alcohol intake were not significantly different between those
without diabetes and those with incident diabetes at follow-up.

Cross-sectional validation for screening of undiagnosed diabetes
We evaluated the performance of different risk scores for the screening of undiagnosed diabe-
tes according to each model’s original cutoff value and new cutoff value (the cutoff value show-
ing the highest Youden index) (Table 2). The KRS demonstrated an AROC of 0.754 (95% CI:
0.740–0.769), a sensitivity of 91%, and a specificity of 40% with the original cutoff value. The
sensitivity and specificity of the KRS were 81% and 58%, respectively, with the new cutoff
value. The other 16 risk scores exhibited AROCs ranging from 0.697 to 0.782. The 15 models,
including the KRS, needed a readjustment of the cutoff values for our study population. With
these new cutoff values, the sensitivities of the scores varied from 68% to 85% and the specifici-
ties from 42% to 72%. The scores classified an average 37.3% (minimum 29%, maximum 59%)
of the subjects as being at high risk for having undiagnosed diabetes. When we analyzed men
and women separately, the AROCs of risk scores were higher in women than in men in the
cross-sectional validation (S2 Table).
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Table 2. Performance of risk scores in cross-sectional validation for the screening of undiagnosed diabetes.

Risk score Cutoff Patients at high
risk (%)

AROC
(95% CI)

Sensitivity (%) Specificity (%) Youden Index PPV (%) NPV (%) P value*

Korean Risk Score
(KRS) [13]

�6 43 0.754 (0.740–0.769) 81 58 40 5.8 99 N/A

- �5 61 - 91 40 32 4.6 99 N/A

Australian score
(AUSDRISK study)

[16]

�13 29 0.782 (0.769–0.796) 70 72 43 7.4 99 <0.001

- �12 35 - 75 66 41 6.6 99 -

Danish score [17] �25 36 0.777 (0.763–0.792) 77 65 43 6.6 99 0.001

- �31 20 - 55 81 36 8.4 98 -

ADA questionnaire [18] �3 36 0.776 (0.762–0.790) 78 65 44 6.6 99 0.004

- �5 6 - 21 95 16 11.5 97 -

Japanese score
(TOPICS-10 study)

[19]

�8† 32 0.774 (0.760–0.788) 71 70 41 6.9 99 0.002

The Leicester Risk
Assessment score [20]

�17 30 0.773 (0.759–0.788) 71 71 42 7.2 99 0.007

- �16 38 - 78 64 42 6.3 99 -

Thai score [21] �8 34 0.763 (0.749–0.778) 72 68 39 6.5 99 0.114

- �7 46 - 83 55 38 5.5 99 -

Finnish score
(DETECT-2 study) [22]

�5 38 0.759 (0.744–0.774) 75 63 38 6.0 99 0.491

- �7 19 - 50 82 32 8.2 98 -

Brazilian score [23] �11 46 0.751 (0.737–0.766) 85 55 40 5.7 99 0.723

- �18 16 - 42 85 27 8.1 98 -

Indian score [24] �18 35 0.751 (0.736–0.766) 74 66 40 6.5 99 0.617

- �17 39 - 77 63 39 6.1 99 -

Japanese score (Doi
et al.) [25]

�12 32 0.750 (0.734–0.767) 70 69 39 6.6 99 0.552

- �14 23 - 56 79 35 7.7 98 -

Chinese score [26] �16 40 0.733 (0.717–0.748) 72 61 33 5.5 99 0.004

- �14 62 - 92 39 32 4.6 99 -

British score [12] �4 39 0.730 (0.714–0.747) 74 62 36 5.8 99 0.002

- �6 15 - 41 86 27 8.5 98 -

Rotterdam model [27] �33.9 35 0.727 (0.710–0.743) 68 67 35 6.0 99 0.001

- �37 23 - 52 78 30 6.9 98 -

Oman score [28] �11 33 0.726 (0.710–0.742) 68 68 35 6.2 99 <0.001

- �10 36 - 70 65 35 5.9 99 -

French score (DESIR
study) [29]

�2† 59 0.705 (0.688–0.721) 88 42 29 4.5 99 <0.001

Kuwait score [30] �19 37 0.697 (0.681–0.714) 69 64 32 5.6 98 <0.001

- �32 7 - 23 93 16 9.8 97 -

Abbreviations: AROC, area under the curve of receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV,

negative predictive value; N/A, not applicable

Risk scores other than the KRS were arranged in the order of higher AROC values. The performance of different risk scores for screening for

undiagnosed diabetes was evaluated with each score’s original cutoff value and the new cutoff value showing the highest Youden index. The results in

the upper row of each score are based on the new cutoff value with the highest Youden index. The results in the bottom row of each score are based on

the original cutoff value.

*P values for the comparison of ROC curves between the KRS and other scores were calculated using DeLong’s method [31].

†The new cutoff and original cutoff were the same for Japanese scores and French scores.

doi:10.1371/journal.pone.0156155.t002
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Longitudinal validation for prediction of incident diabetes
The comparison of the performance of the different risk scores for the prediction of incident
diabetes is summarized in Table 3. All of the risk scores demonstrated lower values of AROCs
in the longitudinal validation compare to the cross-sectional validation. The KRS exhibited an
AROC of 0.696 (95% CI: 0.656–0.736). The sensitivity and specificity of the KRS were 89% and
37%, respectively, with the original cutoff value, and 74% and 54%, respectively, with the new
cutoff value. The other 16 models exhibited AROCs that ranged from 0.630 to 0.721. Fifteen
out of 17 models required a readjustment of the cutoff values. With the new cutoff values, the
models had sensitivities ranging from 51% to 86% and specificities ranging from 45% to 68%.
On average, 42.5% (minimum: 26%, maximum: 57%) of the subjects were classified as being at
high risk of developing incident diabetes by risk scores. In addition, the AROC of risk scores
were higher in women than in men in the longitudinal validation (S2 Table).

Comparison between the laboratory parameters and the Korean risk score
We performed univariate and multivariate logistic regression analysis with the laboratory param-
eters (FPG, HbA1c, total cholesterol, HDL cholesterol, triglyceride) for the prediction of incident
diabetes (S3 Table). All of the laboratory parameters showed a significant association with inci-
dent diabetes in the univariate analysis. In the multivariate analysis, only FPG and HbA1c were
significant predictors of incident diabetes. The estimated AROC of the univariate logistic model
of FPG or HbA1c and the multivariate model of FPG and HbA1c were 0.771 (95% CI: 0.729–
0.813), 0.796 (95% CI: 0.758–0.834), and 0.838 (95% CI: 0.804–0.871), respectively. All of these
models had significantly higher AROCs than the KRS in predicting incident diabetes (Table 4).

To compare the risk classification, we calculated the improvement of the risk classification
by the models of the laboratory parameters compared to the KRS by measuring the NRI and
IDI (Table 4). The NRIs based on the risk categories of<5%, 5�–<10%, 10�–<15%, and
�15% were 27.3% (95% CI: 13.9%-40.6%) for the FPG model, 27.8% (95% CI: 14.3%-41.3%)
for the HbA1c model, and 45.2% (95% CI: 31.9%-58.5%) for the multivariate model of FPG
and HbA1c. The addition of the KRS data to the CRPM increased the AROC (0.849, 95% CI:
0.818–0.880) by a small increment but did not improve the risk classification (NRI: 4.6%, 95%
CI: -3.5% to 12.7%) (Table 4).

Simulation of diabetes screening
To assess the performance of risk scores as a diabetes screening program and estimate the extent
of misclassification, we simulated the application of the KRS and CRPM. First, we applied the KRS
to the population without known diabetes at the baseline visit of the longitudinal study. Next, the
CRPMwas applied to the high-risk group classified by the KRS. Among 3,134 individuals without
known diabetes at baseline, 1,513 individuals (48.3%) were predicted as having a high risk of undi-
agnosed diabetes after applying the KRS. Among those, the laboratory tests of FPG and HbA1c
confirmed diabetes in 92 (6.1%). Among the remaining 1,421 individuals in the high-risk group,
the CRPM classified 763 (53.7%) as having a high risk of incident diabetes. Among the 763, 90
(11.8%) developed diabetes. In the first step of screening, the KRS misclassified 13 out of 105 indi-
viduals (12.4%) with undiagnosed diabetes as low risk. In the second step of screening, the CRPM
misclassified 11 out of 101 individuals (10.9%) with incident diabetes as low risk (S1 Fig).

Discussion
In this external validation of diabetes risk scores in a study population of health screening pro-
gram participants, the risk scores composed of non-laboratory parameters, including the KRS,
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Table 3. Performance of risk scores in longitudinal validation for the prediction of incident diabetes.

Risk score Cutoff Patients at
high risk(%)

AROC
(95% CI)

Sensitivity (%) Specificity (%) Youden Index PPV (%) NPV (%) P value*

Korean Risk Score
(KRS) [13]

�6 47 0.696 (0.656–0.736) 74 54 29 7.1 98 N/A

- �5 64 - 89 37 26 6.2 99 -

Australian score
(AUSDRISK study)

[16]

�11 43 0.721 (0.679–0.762) 73 58 31 7.6 98 0.121

- �12 35 - 62 66 28 7.8 97 -

Finnish score
(DETECT-2 study) [22]

�4 55 0.718 (0.678–0.758) 85 46 31 6.9 99 0.205

- �7 21 - 46 80 26 9.8 97 -

Thai score [21] �6 56 0.713 (0.675–0.752) 86 45 31 6.9 99 0.309

- �7 47 - 76 54 30 7.2 98 -

Danish score [17] �25 38 0.700 (0.658–0.742) 65 64 29 7.8 98 0.845

- �31 22 - 43 79 22 8.8 97 -

The Leicester Risk
Assessment score [20]

�13 45 0.697 (0.655–0.739) 74 57 30 7.4 98 0.967

- �16 35 - 62 66 28 8.0 97 -

Japanese score
(TOPICS-10 study)

[19]

�8† 33 0.696 (0.655–0.738) 58 68 26 7.9 97 0.976

Chinese score [26] �16 37 0.692 (0.651–0.732) 66 64 31 8.0 98 0.838

- �14 58 - 84 43 27 6.4 98 -

Indian score [24] �18 38 0.689 (0.648–0.729) 64 63 27 7.5 97 0.703

- �17 42 - 68 59 26 7.2 97 -

Japanese score (Doi
et al.) [25]

�12 39 0.688 (0.643–0.733) 69 62 31 7.9 98 0.658

- �14 28 - 57 73 30 9.0 97 -

ADA questionnaire [18] �3 38 0.688 (0.644–0.731) 66 63 29 7.8 98 0.697

- �5 5 - 17 95 12 14.7 96 -

Brazilian score [23] �12 40 0.683 (0.640–0.727) 68 61 29 7.5 98 0.554

- �18 15 - 30 86 16 9.1 96 -

Oman score [28] �9 57 0.680 (0.639–0.722) 82 45 27 6.5 98 0.479

- �10 39 - 64 62 26 7.3 97 -

British score [12] �4 44 0.670 (0.627–0.714) 69 58 27 7.1 98 0.187

- �6 16 - 32 85 17 9.0 96 -

French score (DESIR
study) [29]

�3† 26 0.654 (0.608–0.699) 51 75 27 8.9 97 0.006

Rotterdam model [27] �32.9 47 0.646 (0.599–0.693) 71 54 25 6.8 98 0.035

- �37 32 - 50 69 19 7.1 97 -

Kuwait score [30] �22 40 0.630 (0.587–0.674) 59 61 20 6.6 97 0.002

- �32 8 - 18 92 11 10.0 96 -

Abbreviations: AROC, area under the curve of receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV,

negative predictive value; N/A, not applicable

Risk scores other than the KRS were arranged in order of the higher AROC value. The performance of different risk scores for the prediction of incident

diabetes was evaluated with each model’s original cutoff value and new cutoff value showing the highest Youden index. The results in the upper row of

each score are based on the new cutoff value with the highest Youden index. The results in the bottom row of each score are based on the original cutoff

value.

*P values for the comparison of ROC curves between the KRS and other scores were calculated using DeLong’s methods [31].

†The new cutoff and original cutoff were the same for Japanese scores and French scores.

doi:10.1371/journal.pone.0156155.t003
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demonstrated reasonable a performance for the screening of undiagnosed diabetes but were
limited in their ability to predict incident diabetes. Comparing the KRS and laboratory parame-
ters for the prediction of incident diabetes, the risk prediction model composed of FPG and
HbA1c clearly showed a higher discrimination index, which was calculated as an AROC, and
an improved risk classification over the KRS. The addition of the KRS to the risk prediction
model of FPG and HbA1c increased the discrimination index, but only by a small increment
and with no improvement in risk classification.

There is still no universal recommendation for the use of non-laboratory risk scores for dia-
betes screening. The ADA recommends diabetes screening with FPG, HbA1c, or oral glucose
tolerance test (OGTT) for all adults over 45 years of age or younger than 45 years of age with a
diabetic risk factor [14]. However, the National Institute for Health and Care Excellence
(NICE) guidelines in the UK suggests the use of a validated risk-assessment tool prior to blood
testing for adults aged 40 to 75 years and only offers blood testing to those who are classified as
having a high risk of diabetes [32]. The Korean guideline for diabetes management recom-
mends annual screening for diabetes with FPG, HbA1c, or OGTT for all adults over 40 years of
age or over 30 years of age with a diabetic risk factor [33]. The Korean National Health Insur-
ance Program provides a biennial health screening program, including fasting plasma glucose
for all adults over the age of 40 [34]. These guidelines adopt considerably different strategies
and should be evaluated for their performance and cost-effectiveness. Nonetheless, the KRS
showed a reasonable performance and high negative predictive value both in current and previ-
ous studies [13]. The KRS was not the risk score with the highest discrimination index among
the 17 scores validated in this study. Some risk scores showed better performances than the
KRS despite being used in a different ethnicity and population from that for which they were
developed. It was reported that risk scores developed in Western countries work poorly for
Asian populations [35]. However, in this study, some risk scores developed in Western popula-
tions [16, 17, 22] showed higher discrimination indices than the Korean score. These results
suggest that same ethnicity or nationality does not guarantee the generalizability of a risk score.
External validation and recalibration of the risk scores should be performed before applying
them to different populations, even with same ethnicity.

Table 4. Comparison between the Korean Risk Score and risk predictionmodels of laboratory parameters.

Korean Risk Score (KRS) FPG model HbA1c model FPG and HbA1c model Combined risk prediction
model of KRS, FPG,
and HbA1c (CRPM)

AROC(95% CI) 0.696 (0.655–0.737) 0.771 (0.729–0.813) 0.796 (0.758–0.834) 0.838 (0.804–0.871) 0.849 (0.818–0.880)

Change in AROC*
(P value)

0.075 (0.011) 0.100 (<0.001) 0.142 (<0.001) 0.153 (<0.001)

NRI (%)* (P value) 27.3 (<0.001) 27.8 (<0.001) 45.2 (<0.001) 52.1 (<0.001)

IDI* (P value) 0.046 (<0.001) 0.058 (<0.001) 0.099 (<0.001) 0.105 (<0.001)

Change in AROC†
(P value)

0.011 (0.016)

NRI (%)† (P value) 4.6 (0.264)

IDI† (P value) 0.006 (0.176)

Abbreviations: AROC, area under the curve of receiver operating characteristic curve; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; NRI, net

reclassification index; IDI, integrative discrimination improvement.

*Changes in AROC, NRI, and IDI were calculated for each model compared to the KRS.

†Changes in AROC, NRI and IDI were calculated to compare FPG and HbA1c models and combined risk prediction models of KRS, FPG, and HbA1c.

doi:10.1371/journal.pone.0156155.t004
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Intriguingly, both in the cross-sectional and longitudinal validation of diabetes risk scores,
the AROCs of risk scores were higher in women than in men. Previous studies on diabetes risk
scores also reported a higher AROC in women than in men [26, 29]. The reason of superior
performance of diabetes risk scores for women was not evident. Factors that were not included
in these risk scores might be responsible for the discrepant performance according to gender,
so further studies are needed.

For the screening of undiagnosed diabetes, the risk scores of the non-laboratory parameters
showed an acceptable performance. The negative predictive value was as high as 99%. This sug-
gests that the low-risk group classified by the non-laboratory risk score has a very low possibil-
ity of having undiagnosed diabetes. The risk prediction model composed of basic laboratory
parameters, including FPG and HbA1c, showed a superior performance for the prediction of
incident diabetes than the non-laboratory models. However, testing FPG and HbA1c in the
whole population as a mass-screening program has considerable costs. A two-step approach
combining non-laboratory screening and laboratory screening can be a solution to this prob-
lem [12]. The non-laboratory risk score can be applied to the whole population for the screen-
ing of undiagnosed diabetes. Then, for those who have a high risk of undiagnosed diabetes, a
simple blood test, including FPG and HbA1c, can detect or rule out diabetes. If the test results
do not meet the criteria of diabetes, the predicted risk of incident diabetes can be calculated to
determine who requires more intensive diabetes prevention programs and more frequent fol-
low-up visits. This two-step approach can prevent unnecessary blood tests for low-risk individ-
uals and reduce the cost of screening programs. Several previous studies also suggested a
stepwise approach as an efficient diabetes screening program [12, 36]. The NICE guideline in
the UK recommends a two-stage screening program [32]. In our simulation of the two-step
approach, 13/105 (12.4%) of undiagnosed diabetes and 11/101 (10.9%) of incident diabetes
were misclassified as low risk. This percentage is not negligible, but further adjustment of the
cutoff values would reduce misclassification because the current cutoff values were determined
by the highest Youden index without any clinical consideration.

Although the risk scores had high sensitivity and negative predictive value, they generally
had low specificity, ranging from 42% to 72% for undiagnosed diabetes and 45% to 75% for
incident diabetes. It should be emphasized that these risk scores are not confirmatory diagnos-
tic tools. Instead, they should be considered as a screening tool for undiagnosed or future
diabetes.

One of the limitations of this study is that the OGTT was not included in the definition of
diabetes. Because FPG and HbA1c are less sensitive than the OGTT in diagnosing diabetes
[37], the prevalence of undiagnosed diabetes could be underestimated. However, because the
OGTT requires more time and cost than a fasting blood test, it is difficult to use for a mass
screening program. The second limitation is that the risk prediction models of laboratory
parameters were not externally validated. The development and validation of the models were
not performed in independent cohorts. This could cause an overestimation of the prediction
performance compared to the risk scores of the non-laboratory parameters that were externally
validated in our cohort. The risk scores of non-laboratory parameters were not specifically
developed for our data. We omitted or adjusted several parameters that were not identical to
our data. This might lower the performance of non-laboratory risk scores. Another limitation
is that the study population may not be a good representation of the general Korean popula-
tion, because their participation in the health screening program can be affected by the individ-
ual’s socioeconomic status and health-seeking behavior. Lastly, due to the lack of information
about the time of the diagnosis of incident diabetes, we could not apply the Cox regression
model to our data.
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In conclusion, the risk scores composed of non-laboratory parameters, including the KRS,
can be useful self-assessment tools to estimate the risk of undiagnosed diabetes. However, their
performance was inferior to the laboratory parameters for the prediction of incident diabetes.
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