@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Brunelle BW, O'Grady AM, Nicholson EM,
Seabury CM (2016) Disparate Modes of Evolution
Shaped Modern Prion (PRNP) and Prion-Related
Doppel (PRND) Variation in Domestic Cattle. PLoS
ONE 11(5): €0155924. doi:10.1371/journal.
pone.0155924

Editor: llia \V Baskakov, University of Maryland
School of Medicine, UNITED STATES

Received: March 30, 2016
Accepted: May 6, 2016
Published: May 25, 2016

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CCO public
domain dedication.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
All DNA sequences used to generate the data are
available on Genbank and the accession numbers
(JF808218-JF808446) are indicated in the text.

Funding: This work was funded in its entirety by
congressional appropriation to the USDA-ARS. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Disparate Modes of Evolution Shaped

Modern Prion (PRNP) and Prion-Related
Doppel (PRND) Variation in Domestic Cattle

Brian W. Brunelle'®, Allison M. O’Grady’, Eric M. Nicholson'*, Christopher M. Seabury?*

1 Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service,
Ames, lowa 50010, United States of America, 2 Department of Veterinary Pathobiology, College of
Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, United States of America

o Current address: Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center,
USDA, Agricultural Research Service, Ames, lowa 50010, United States of America
* Eric.Nicholson @ars.usda.gov (EMN); CSeabury @ cvm.tamu.edu (CMS)

Abstract

Previous investigations aimed at determining whether the mammalian prion protein actually
facilitates tangible molecular aspects of either a discrete or pleiotropic functional niche have
been debated, especially given the apparent absence of overt behavioral or physiological
phenotypes associated with several mammalian prion gene (PRNP) knockout experiments.
Moreover, a previous evaluation of PRNP knockout cattle concluded that they were normal,
suggesting that the bovine prion protein is physiologically dispensable. Herein, we exam-
ined the frequency and distribution of nucleotide sequence variation within the coding
regions of bovine PRNP and the adjacent Doppel (PRND) gene, a proximal paralogue to
PRNP on BTA13. Evaluation of PRND variation demonstrated that the gene does not depart
from a strictly neutral model of molecular evolution, and would therefore not be expected to
influence tests of selection within PRNP. Collectively, our analyses confirm that intense puri-
fying selection is indeed occurring directly on bovine PRNP, which is indicative of a protein
with an important role. These results suggest that the lack of observed fitness effects may
not manifest in the controlled environmental conditions used to care for and raise PRNP
knockout animals.

Introduction

Transmissible spongiform encephalopathies (TSE) are a class of fatal neurodegenerative dis-
eases that affect humans as well as livestock and wildlife in farmed and natural environments
[1]. Human TSEs, such as Creutzfeldt-Jakob disease (CJD), variant CJD, Gerstmann Strausler-
Scheinker disease, and kuru are typically identified via observed clinical signs and post-mortem
analyses [2]. Animal TSEs have largely been classified in the same manner and include trans-
missible mink encephalopathy, scrapie of sheep and goats, chronic wasting disease in free-
ranging and captive species of Cervidae, feline spongiform encephalopathy, and bovine
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spongiform encephalopathy [2]. Importantly, the most profound unifying feature of these dis-
eases is the accumulation of an infectious protease-resistant isoform (PrP*°) of the host-
encoded cellular prion protein (PrP®) within tissues of the central nervous system [1].

Notably, the prion protein gene (PRNP) is present in all vertebrate species [3], and the strik-
ing degree of amino acid conservation observed across a wide variety of highly divergent taxa
suggests an important functional role for PrP€ [4]. Nevertheless, this evolutionary observation
has been paradoxically shrouded by several knockout studies that failed to elucidate one or
more overt physiological roles for PrP© [5-7]. The implication that PrP® deficient cattle may
be considered safe mainstays for enhancing future agricultural products [8] is also in direct
conflict with a previous investigation that provided unequivocal population and phylogenetic
evidence for intense purifying selection constraining the long-term evolution of bovine PRNP
[9]. Strong levels of purifying selection similar to that observed for bovine PRNP are normally
only detected for genes encoding functionally important endogenous host proteins such as his-
tones or ubiquitin [10, 11]. In the absence of function, what might explain such intense purify-
ing selection?

The primary goal of this study was to determine whether strong purifying selection is acting
directly on bovine PRNP [9], or if the selective signal actually radiates from a proximal bovine
protein coding gene. Notably, the two proximal genes flanking bovine PRNP on BTA13 are
ZMYNDI11 (~202 kb upstream) and PRND (~31 kb downstream). ZMYNDI1 encodes a tran-
scriptional regulator protein that binds to adenovirus E1A proteins [12] while PRND encodes
the doppel protein (Dpl), an evolutionarily related paralogue of PRNP believed to be involved
in sperm maturation and capacitation [13]. Given the physical proximity between PRNP and
PRND [14], as well as phylogenetic evidence that the two genes have been evolutionarily co-
selected [15], we tested the hypothesis that strong selection within bovine PRND may be
explanatory for selective signals previously detected in bovine PRNP [9]. Collectively, our anal-
yses provide statistical support for intense purifying selection operating on bovine PRNP, with
bovine PRND variation exhibiting no evidence for deviation from a strictly neutral model.

Materials and Methods
DNA panels

To comprehensively evaluate nucleotide sequence variation within bovine PRNP and PRND,
we compiled and utilized data derived from 228 DNA samples previously employed to investi-
gate bovine PRNP [16-18], including representatives of Bos taurus taurus, Bos taurus indicus,
and their hybrids (composites). For PRND analysis, we used these same bovine samples, which
included DNA extracted from 39 Holstein steers [17] and 189 commercially available sperma-
tozoa samples of unrelated sires from the following 41 cattle breeds: Angus (4), Beefmaster (4),
Belgian Blue (4), Blonde D’Aquitaine (5), Braford (4), Brahman (28), Brahmousin (2), Brangus
(12), Braunvieh (5), Brown Swiss (4), Charolais (5), Chianina-Chiangus (5), Corriente (1),
Gelbvieh (4), Gir (12), Guzerat (1), Hereford (3), Holstein (4), Limousin (3), Maine Anjou (4),
Murray Gray (2), Nelore (8), Normande (1), Piedmontese (2), Red Angus (4), Red Brangus (1),
Red Poll (1), Romagnola (2), Salers (3), Santa Gertrudis (9), Scottish Highland (1), Senepol (2),
Shorthorn (19), Simbrah (3), Simmental (8), Tabapua (1), Tarentaise (1), Texas Longhorn (4),
Three-way-cross (2), and White Park (1) [16, 18].

PRND sequencing and multiple sequence alignments

Polymerase chain reaction primers amplifying a 991 bp product encompassing the entire
PRND coding region were designed from the Genbank reference sequence DQ205538 (5'-
AGATCACTATCCTGAATGGTG-3, 5-TTTAGGTAGAGCCTGGAGAG-3'). Each 25-pL PCR
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reaction contained 50 ng of genomic DNA, 1x PCR buffer with 1.5 mM MgCl,, 1 mM each
dNTP, 0.8 uM of each primer, and 1.5 units of Taq polymerase. Amplification conditions were
as follows: 94°C for 1 min; 35 cycles of 94°C for 30s, 56°C for 30s, 72°C for 30s; 72°C for 2 min;
4°C hold. PCR products were visualized and verified on 2% NuSieve gels (Cambrex, Rockland,
ME) and subsequently treated with ExoSAP-IT (GE Healthcare, Piscataway, NJ) for purifica-
tion. Purified PRND PCR products were directly sequenced using the amplification primers
and a pair of internal primers (5'-TTGCCAAGTACCTCCCAG-3', 5-TTTCCTTGGTGACATTGG-
3') in conjunction with standard dye terminator cycle sequencing technology. Individual
PRND contig sequences were assembled for each sample using Lasergene 6 (DNASTAR, Inc.,
Madison, WI). Thereafter, PRND sequences were aligned using ClustalX [19] and submitted to
GenBank (accession numbers JF808218-JF808446). Likewise, bovine PRNP exon 3 sequences
[9, 16, 17] were also aligned using ClustalX [19] as previously described [9].

Haplotype inference and network analysis

For haplotypes that were not phase-resolved through a second round of PCR, cloning, and
bidirectional sequencing [9], we assembled unphased diploid genotypes for nucleotide
sequence variation observed within the coding regions of bovine PRNP and PRND, including
both single nucleotide polymorphisms (SNPs) and insertion-deletion mutations (indels).
Bovine PRNP and PRND haplotype reconstructions were performed with PHASE 2.1 [20, 21]
using all intragenic polymorphisms, all cattle (n = 228), and the—X10 option as previously
described [22]. Haplotype phases previously established for 112 of the PRNP samples [9] were
designated as phase-known for haplotype reconstruction.

Median joining haplotype networks for bovine PRNP and PRND were constructed using the
program Network 4.5.1.0 (Fluxus Technology Ltd) in conjunction with the suggested character
weights of 10 for SNPs and 20 for indels. Network branch angles were adjusted to ensure clarity
without modifying branch lengths.

Sequence analysis

Phased PRNP and PRND sequences were used in conjunction with the software program
DnaSP 5.1 [23] to estimate the number of potentially synonymous and non-synonymous
nucleotide sites, the number of synonymous and non-synonymous polymorphisms, and the
number of synonymous (ds) and non-synonymous (dy) substitutions per site with Jukes-Can-
tor correction [24, 25]. Of the 456 phased resolved PRNP sequences evaluated, 19 had align-
ment gaps in the octapeptide repeat region and were excluded from the synonymous and non-
synonymous analysis.

Tests of selection

To evaluate potential deviations from a strictly neutral model of molecular evolution, we used
the Z-test implemented in MEGA 4 [26] to evaluate the null hypothesis that dy = ds (strict neu-
trality; two-tailed test) and the research hypothesis dy < ds (one-tailed test) using pair-wise
deletion of alignment gaps with Jukes-Cantor correction. For pairwise tests of selection, we
estimated the variance of (dy — ds) via bootstrap analysis with 1000 replicates. Frequency dis-
tribution tests, including Tajima’s D [27] and Fu and Li’s Tests (D*and F*) [28], were per-
formed in DnaSP v5.1 [23] using all PRNP and PRND coding region polymorphisms
(excluding gaps). Significance was assessed for each test by estimating confidence intervals
through coalescent simulations using the observed number of segregating sites with 5,000 repli-
cates [23]. All tests were conducted both with and without the 19 PRNP haplotypes possessing
alignment gaps. The program GARD (Genetic Algorithm for Recombination Detection) was
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used to detect the presence of recombination in the PRND and PRNP sequences [29]. No overt
evidence of recombination was detected. The potential for episodic and pervasive selective
pressures was estimated for the unique haplotypes using the tree-based analysis programs
MEME (Mixed-Effects Model of Evolution [30]), FUBAR (Fast, Unconstrained Bayesian
AppRoximation [31]), and BS-REL (Branch-site Random-effects Likelihood [30]), which are
part of the HyPhy software suite [32], as executed in the Datamonkey webserver [33]. Chi-
square with Yates correction was used to assess the overall magnitude of differences in the dis-
tributions of polymorphisms at synonymous and non-synonymous sites with respect to PRNP
and PRND (http://www.quantpsy.org/chisq/chisq.htm).

Results
General nucleotide data

To facilitate a detailed comparative analysis between bovine PRNP and PRND variation, we
computed the number of potentially synonymous and non-synonymous nucleotide sites [24,
25], the total number of synonymous and non-synonymous SNPs, and the number of synony-
mous and non-synonymous substitutions per site (Table 1). The coding sequence of bovine
Doppel is 537 bp in length, and 6 SNPs were identified among the 228 samples at positions 141
(A/G), 149(A/G), 172(A/G), 285(C/T), 395(A/G), and 528(A/T). The three SNPs detected at
sites 141, 285, and 528 were predicted to encode synonymous substitutions, while SNPs at posi-
tions 149, 172, and 395 were predicted to encode amino acid replacements (R50H, A58T,
Q132R, respectively; IUB/TUPAC Amino Acid Codes). All 6 PRND polymorphisms were
detected among samples representing B. t. taurus and the composite cattle, but only 3 were pre-
dicted in samples representing B. t. indicus cattle (141, 172, 395). Collectively, 30 synonymous
SNPs and one non-synonymous SNP (S154N; B. t. indicus and composite cattle) were pre-
dicted in the coding sequences of bovine PRNP, as previously described [9].

Haplotype data

The 31 polymorphic nucleotide sites in PRNP yielded 31 distinct haplotypes (S1 Table), with
corresponding frequency distributions among B. t. taurus, B. t. indicus, and composite cattle

Table 1. Nucleotide data for PRND and PRNP genes.

#alleles #syn sites 2 # syn mut ® # non-syn sites ° # non-syn mut ¢ ds© dy'f d/ds
PRND
B. t. taurus 278 119.06 3 414.94 3 0.0036 0.0013 0.3705
B. t. indicus 100 119.36 1 414.64 2 0.0028 0.0024 0.8514
Composite 78 119.12 3 414.88 3 0.0043 0.0017 0.3869
Total 456 119.14 3 414.86 3 0.0037 0.0018 0.4796
PRNP
B. t. taurus 264 186.33 23 605.67 0 0.0064 0.0000 0.0000
B. t. indicus 98 186.33 10 605.67 1 0.0102 0.0003 0.0255
Composite 75 186.33 10 605.67 1 0.0070 0.0001 0.0128
Total 437 186.33 30 605.67 1 0.0076 0.0001 0.0105

2 number of potentially synonymous sites

® number of synonymous mutations observed

¢ number of potentially non-synonymous sites

9 number of non-synonymous mutations observed
¢ synonymous substitutions per site
 non-synonymous substitutions per site

doi:10.1371/journal.pone.0155924.t001
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Table 2. PRND haplotype data.

hap# @ 141° 149 °
1 G G
2 G G
3 G G
4 G G
5 G G
6 G G
7 G A
8 G A
9 A G

& haplotype identifier
® nhucleotide position in PRND

doi:10.1371/journal.pone.0155924.1002

172°

9]

> 00 >>0 00

285° 395° 528 ° % B. t. taurus % B. t. indicus % composite
© A T 69.49 43.88 62.50
© G T 15.07 19.39 16.67
T A A 0.37 0.00 0.00
T G A 6.99 0.00 8.33
c A T 0.00 3.06 0.00
© G T 0.00 13.27 0.00
© A T 2.94 0.00 417
T G A 3.68 0.00 278
o] G T 1.47 20.41 5.56

that were similar to a previous PRNP analysis [16, 18]. The 6 polymorphic nucleotide sites in
PRND produced 9 individual haplotypes (Table 2). PRND haplotypes #1 and #2 accounted for
the majority of all haplotypes predicted in B. t. taurus (85%), B. t. indicus (63%), and composite
(79%) cattle. Notably, four PRND haplotypes were exclusive to B. t. taurus in our samples,
which resulted from 3 putative SNPs that were not detected among B. t. indicus cattle. Interest-
ingly, haplotypes #5, #6, and #9 were identified primarily in B. t. indicus (37%) compared to B.
t. taurus (1%; See Table 1). Median joining haplotype networks constructed as putative repre-
sentations of bovine PRNP and PRND evolution (Fig 1) provide evidence for only a few major
haplotypes as well as haplotype sharing across the three investigated bovine lineages (B. t. tau-
rus, B. t. indicus, and composites). Moreover, specialized beef and dairy breeds could not be dif-
ferentiated based on PRNP or PRND haplotypes, which is concordant with a recent study on
bovine Toll-like receptor evolution [34].

Tests of selection

The observed ratio of synonymous to non-synonymous polymorphisms predicted for bovine
PRNP was highly skewed (30:1, respectively), whereas PRND exhibited no skewness (3:3,
respectively). To further assess and compare the potential for functional and/or selective con-
straint(s) acting on bovine PRNP and PRND, we computed Tajima's D, Fu and Li’s D*, and Fu
and Li’s F* (Table 3). All frequency distribution tests indicated that variation within bovine
PRNP does not adhere to a strictly neutral model, which is concordant with a previous study
demonstrating that bovine PRNP is subject to strong purifying selection [16]. In contrast, fre-
quency distribution tests carried out for PRND revealed no evidence for departure from a
strictly neutral model (Table 3).

The Z-test was conducted to determine if the rate of change between synonymous sites and
non-synonymous sites was strictly neutral (dy = ds) or directional (dy < ds) for PRND and
PRNP (Table 3). Variation within bovine PRND did not deviate from strict neutrality
(Table 3). However, a significant deviation was noted for variation within bovine PRNP, and
was consistent with purifying selection [9]. Though the direction of selection cannot accurately
be determined within a population by the absolute value of the dy/ds ratio relative to one [35],
differences in the magnitude of selective constraint(s) between the two genes may still be
highlighted by the dn/ds ratio (i.e., PRND = 0.4796; PRNP = 0.0105). Moreover, using the chi-
square test for non-integers with Yate's correction for continuity (two-tailed) to compare the
number of synonymous polymorphisms and potentially synonymous nucleotide sites between
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Fig 1. Median joining haplotype networks for PRNP and PRND. Median joining haplotype networks were
constructed for bovine PRNP and PRND using character weights of 10 for SNPs and 20 for indels. Network
branch angles were adjusted to ensure clarity without modifying branch lengths.

doi:10.1371/journal.pone.0155924.g001
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Table 3. Tests of selection for PRND and PRNP genes.

Fu and Li D*

PRND

B. t. taurus 1.04
B. t. indicus 0.83
Composite 1.14
All Cattle 1.00
PRNP

B. t. taurus -4.89 @
B. t. indicus 0.67
Composite 0.04
All Cattle -3.64 2

2 Statistically significant (P < 0.05)

doi:10.1371/journal.pone.0155924.t003

Fu and Li F* Tajima's D Z-testdy =ds Z-test dy < dg

0.84 0.07 -0.871 0.917

1.48 2.21 -0.117 0.116

0.84 -0.16 -0.899 0.938

1.01 0.55 -0.800 0.824
-4532 -2.002 -2.374° 24352
0.32 -0.47 -2.656 2 2.756 2
-0.54 -1.39 -2.341 2 24162
-3.552 -1.952 -2.753 2 2.797 2

PRNP and PRND revealed a significant difference between the two genes (P = 0.005), whereas
the rate of nonsynonymous change was not found to differ (P = 0.413). The difference in syn-
onymous changes, but not nonsynonymous changes, further supports the supposition that
bovine PRNP is under purifying selection, with selective signals that cannot be attributed to
PRND.

To further clarify inferences drawn from our initial tests of selection, we also sought to
investigate the potential for episodic selection within bovine PRND and PRNP. Analyses per-
formed using the programs MEME and BS-REL [30] failed to detect evidence for episodic
selection within PRND and PRNP (S1 File). Moreover, using the program FUBAR [31], we
observed site-specific evidence for pervasive purifying selection within both PRND (n = 3 sites/
codons) and PRNP (n =9 sites/codons); whereas evidence for pervasive diversifying selection
was only detected in PRND (n = 2 sites/codons; S1 File). Collectively, these analyses further
support the conclusion that nearly all nucleotide sites within the coding sequence of bovine
PRND adhere to a strictly neutral model of molecular evolution, whereas the coding sequence
of bovine PRNP is subject to intense purifying selection, thereby suggesting a potentially
important role for bovine PrP.

Discussion

Herein, we have demonstrated that strong purifying selection on bovine PRNP cannot be
attributed to selective pressures that are acting on a neighboring coding region (i.e., PRND), as
bovine PRND variation does not depart from a strictly neutral model of molecular evolution.
We also show that B. t. taurus and B. t. indicus share the major haplotypes for both genes,
thereby suggesting that the majority of the polymorphisms, and the differences in selective con-
straints between PRNP and PRND, likely occurred before taurine and indicine divergence.
Notably, we cannot dispute the fact that prion knockouts analyzed to date lack gross evi-
dence of deleterious effects [36]. However, we do dispute the conclusion that a lack of deleteri-
ous effects suggests that PRNP is simply dispensable [5], as biological dispensability, the
manifestation of disease, and evolutionary rate have a significant relationship [37-39]. Interest-
ingly, prior analyses of essential genes, Mendelian disease genes, and complex disease genes, as
compared to non-essential and non-disease genes, demonstrate evidence of strong purifying
selection [38, 39]. Relevant to this study, a protein under intense purifying selection (i.e.,
bovine PRNP), with even a small but measureable fitness effect, may be essential for the func-
tional viability of certain cells and their corresponding tissues [37, 40-42]. For this reason, it
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should be noted that fitness effects may simply not have manifested in the controlled environ-
mental conditions utilized for prion knockout cattle, or perhaps they were not recognizable
through the limited assessment of these animals [5]. Examples exist in the literature of gene
knock out effects observed to act only in a gender specific manner or in an age-dependent man-
ner [43-46]. PRNP knockout mice have in fact been shown to have numerous subtle pheno-
typic differences [36]. Other than resistance to TSE, the first documented phenotypic change
in PrP knockout mice was disturbances in sleep and altered circadian rhythms, as compared to
wild-type mice, when housed in constant darkness [47, 48]. The knock out cattle used as evi-
dence to suggest that PRNP is a dispensable gene were all castrated males studied as mature
adults with no physiological or immunological stress placed on the animal(s). In general, given
many accounts of gender-specific and age-specific effects observed for gene knockouts, as well
as specific examples for PRNP reviewed by Steele and colleagues [36], it is possible that no
gross changes were observed for castrated males under the carefully controlled environments
(i.e., feeding and housing) used for the knock out cattle studies. These studies lack the exhaus-
tive assessment of all developmental and physiological conditions necessary to assert any
claims as to the biological dispensability of PRNP.

Fitness effect(s) or dispensability is not the only contribution to evolutionary rate. The num-
ber of protein-protein interactions has a strong correlation to both evolutionary rate and fitness
[37]. Evidence that 30 different proteins likely interact with PrP [49], could at least, in part,
explain the high degree of conservation commonly observed for the mammalian PRNP gene.
Putative functional roles for PrP are likewise multifaceted with numerous cellular pathways
influenced by PrP [50-52]. PrP has been shown to have a role in epithelial to mesenchymal
transition [53], and several studies report protective roles for PrP, including protection against
oxidative stress [54, 55]. PrP may also play a direct role in Alzheimer’s disease, another neuro-
degenerative disorder [54, 56]. High levels of PrP expression are found in placenta, indicating a
potential role in reproduction [57]; this role ties closely with evidence that Dpl and a third
member of the prion gene family, Shadoo (Sho), can both interact with PrP, as well as function
in place of PrP in aspects of reproduction [58]. Consistent with this is the observation that in
the absence of PrP, aberrant expression of Dpl in the CNS results in mice that develop ataxia
due to apoptosis of cerebellar cells [59], suggesting that Dpl is interacting with ligands that
would normally interact with PrP. Expression of PrP in these tissues is sufficient to negate this
effect [60]. Sho exhibits PrP-like neuroprotective properties with regard to Dpl-induced neuro-
toxicity in the CNS [49], indicating that Sho is also likely to be capable of interacting with the
same ligands. A clear overlap of interactions exists between the various members of the prion
gene family, which may be one plausible explanation for the lack of a discernable phenotype in
PRNP knockout animals.

Supporting Information

S1 File. BSREL and FUBAR analysis output.
(DOCX)

§1 Table. PRNP haplotype information.
(XLSX)
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