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Abstract
Drug development is both increasing in cost whilst decreasing in productivity. There is a

general acceptance that the current paradigm of R&D needs to change. One alternative

approach is drug repositioning. With target-based approaches utilised heavily in the field of

drug discovery, it becomes increasingly necessary to have a systematic method to rank

gene-disease associations. Although methods already exist to collect, integrate and score

these associations, they are often not a reliable reflection of expert knowledge. Further-

more, the amount of data available in all areas covered by bioinformatics is increasing dra-

matically year on year. It thus makes sense to move away from more generalised

hypothesis driven approaches to research to one that allows data to generate their own

hypothesis. We introduce an integrated, data driven approach to drug repositioning. We first

apply a Bayesian statistics approach to rank 309,885 gene-disease associations using

existing knowledge. Ranked associations are then integrated with other biological data to

produce a semantically-rich drug discovery network. Using this network, we show how our

approach identifies diseases of the central nervous system (CNS) to be an area of interest.

CNS disorders are identified due to the low numbers of such disorders that currently have

marketed treatments, in comparison to other therapeutic areas. We then systematically

mine our network for semantic subgraphs that allow us to infer drug-disease relations that

are not captured in the network. We identify and rank 275,934 drug-disease has_indica-

tion associations after filtering those that are more likely to be side effects, whilst com-

menting on the top ranked associations in more detail. The dataset has been created in

Neo4j and is available for download at https://bitbucket.org/ncl-intbio/

genediseaserepositioning along with a Java implementation of the searching algorithm.
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Introduction
Understanding the molecular mechanisms of diseases is vital within the field of target-based
drug discovery. A causal association between a gene and a disease describes a situation whereby
a gene is directly or indirectly responsible for disease risk via one or more mechanisms [1].
Monogenic disorders, such as Huntington’s disease, are identified simply through the presence,
or absence, of single gene mutations; in this case a mutation in the Huntingtin protein, HTT
[2]. Conversely, multigenic, or complex, disorders are caused by multiple genetic variants,
which may affect pleiotropic genes and be influenced by various environmental factors [3].
Due to the complexity of multigenic diseases, allele associations are more probabilistic and less
deterministic; the presence of a high-risk allele may only mildly increase the chance of disease
[3][4]. For these reasons identifying causal links between a gene and disease experimentally is
expensive and time consuming. Association studies, however, identify disease susceptibility
variants that do not necessarily mean the variant is important in disease causation. It is an eas-
ier task to identify gene-disease (G-D) associations as opposed to causation associations [5].

The shift to large scale sequencing of individual genomes and the availability of new tech-
niques for probing thousands of genes provide new means for identifying these G-D associa-
tions. Experimental techniques such as positional cloning and/or microarray analysis can
return tens to hundreds of candidate genes [6]. Managing and integrating these data has thus
become an important task within bioinformatics, and numerous G-D databases have been
developed to aid this. Entries in databases are mainly obtained through manual curation of the
biomedical literature [7]. In order to capture data that may have been missed by manual cura-
tion, automated text mining approaches can also be used [8]. Although automated text mining
approaches improve recall, precision is drastically reduced in comparison to manual extrac-
tion. Genetic associations can also be extracted directly from experimental data, such as
genome-wide association studies (GWAS), and stored in dedicated databases. Predictive meth-
ods may also be used to populate databases identifying associations through statistical infer-
ence, including cross species inferences derived from animal models. Mouse and rat models
have been used to predict human G-D associations for a number of years, and there exists a
wealth of cross-species G-D association data available [9–11]. Cross-species models can be
complicated by diverse types of phenotype representations in terms of physiological and ana-
tomical differences between species, however this knowledge cannot be ignored [12]. In order
to create a state of the art view of current knowledge regarding G-D associations, integration of
these heterogeneous data-sources is required.

A holistic view of the field allows for emergent properties that would otherwise be invisible
to be realised [13]. Secondary resources, such as DisGeNET [14, 15] and MalaCards [16],
already integrate associations from multiple primary resources that have been curated, pre-
dicted and derived computationally from text. DisGeNET apply a systematic scoring to these
associations, however the chosen metric fails to give a relative view of known G-D associations.
A complete ranking of G-D associations from primary resources, taking into consideration the
reliability of each dataset using current knowledge, would aid tasks such as computational tar-
get-based drug discovery [17], as well as reducing inevitable bias present in datasets that were
all developed for different purposes. Despite historically being driven by phenotypic
approaches [18], target-based approaches to drug discovery came to prominence after sequenc-
ing of the human genome. It was believed that target-based drug discovery would allow for a
more rational approach to drug design, and thus increase research and development (R&D)
success and productivity [18, 19]. Target-based approaches are still heavily prominent and
extensively used in the pharmaceutical industry [20], with successes including the tyrosine
kinase inhibitors imatinib (Gleevec) and gefitinib (Iressa) [21]. Overall, due to increased costs
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and reduced productivity, there is a general acceptance that the current state of R&D needs to
change [22].

Part of the solution, in the short term, is drug repositioning, also known as drug repurpos-
ing. Drug repositioning is the application of established, approved compounds to treat diseases
other than those for which they were marketed. This process allows for increased confidence
and reduced attrition further along the development pipeline, resulting in reduced develop-
ment costs and time taken for a drug to reach the market. Many repositioned drugs currently
on the market have been discovered through serendipitous or rational observations, as demon-
strated by sildenafil (Viagra) and duloxetine (Cymbalta) respectively. Neither of these drugs
utilised efficient routes to market given the potentially huge search space of drug-disease inter-
actions. Systematic approaches to the searching of such solution spaces are required to provide
an efficient and scalable alternative to manual investigations. As a means of satisfying these
needs many pharmaceutical companies now have groups focused purely on repositioning. Aca-
demic interest has also resulted in numerous studies describing systematic computational
approaches to drug repositioning. Existing methodologies are based on: chemical structure
similarity [23]; protein structure similarity and molecular docking [24]; phenotype similarity
(including side-effect similarity [25] or gene expression similarity [26]); and genetic variation
[27]. Numerous network-based approaches focus on the creation or mining of integrated net-
works that allow for many of these approaches to be implemented or even combined [28, 29].
Data integration is an essential part of systems analysis; providing integrative views of multiple
data sources and data types, such as drugs, proteins, genes and diseases [30].

Chiang et al [31], for example, integrate data describing diseases and drugs. A network-
based guilt-by-association (GBA) method is also introduced, whereby novel drug uses are
inferred based on a shared treatment profile of disease pairs. This approach takes a very high-
level view of the field, focussing purely on drug-disease relations with no consideration of the
underlying genetic or pharmacological mechanisms at play. Gottlieb et al [32] make use of a
broader collection of datasources to create five drug-drug similarity measures and two disease-
disease similarity measures. These similarity measures are then used by PREDICT, an algo-
rithm to infer novel drug indications. Other approaches utilise target information during the
prediction task and the associations between these and the disease state. Huang et al [33] inte-
grate drug, protein and disease data. A network propagation model is then used to infer poten-
tial drug-protein/G-D relationships, in which genes with similar functional modules are related
to drugs. Unlike the other approaches, Daminelli et al [34] introduce a method that focusses
on known data to ‘fill in the blanks’, as opposed to using abstracted similarity data. Recognising
the importance of G-D associations this approach integrates structural and chemical data to
build a drug-target-disease network. This network is then mined for network motifs of bi-cli-
ques, where every drug is linked to every target and disease. Links from drugs to diseases are
predicted by completing the incomplete bi-cliques. Interestingly, the authors chose to focus the
approach on only 147 promiscuous drugs.

In this work we introduce an exhaustive, novel approach for identifying new uses for exist-
ing drugs, with a focus on G-D associations. We apply a Bayesian statistics approach, devel-
oped by Lee and colleagues [35], as means of integrating and ranking G-D associations
captured in 10 primary data sources. Scored G-D associations, providing a state of the art view
of G-D knowledge, are then integrated with other biological entities to produce a semantic net-
work for target-driven drug repositioning. A method for the automated detection of therapeu-
tic areas of interest is also introduced. Finally we introduce a four node semantic subgraph and
mine the integrated network for instances of this subgraph, using an algorithm previously
described by Mullen et al [36]. Novel drug-disease interactions inferred from the network are
then ranked, with those involving diseases from the therapeutic area of interest discussed in
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more detail. It is expected that the approach introduced in this paper will facilitate further
research on drug repositioning.

Background

Gene-disease association databases
Several existing primary databases focus on G-D associations. These databases typically con-
tain associations obtained through manual curation of the biomedical literature. One well
established source of G-D associations is the Online Mendelian inheritance in Man (OMIM)
database [37]. More recent projects include the Comparative Toxigenomics Database (CTD)
[38] and UniProtKB [39]. Another source, Orphanet [40], focusses primarily on rare diseases
and orphan drugs. Databases populated with associations extracted directly from the literature,
using text mining approaches, also exist [7], such as BeFree [8] and SemRep [41]. Although the
accuracy of automatically extracted associations is not as high as manually curated data, the
systematic approach to their construction means that they are more inclusive of true positives.

BeFree [8] provides a good example of a text mining resource. BeFree, along with support-
ing statements and provenance, is available for download and uses the EU-ADT and GAD cor-
pora to extract associations from text. Focussing on a subset of abstracts returned from
PubMed, BeFree use their own query (only querying about 3% of current MEDLINE data-
bases). After applying filtering, BeFree captures 330,888 associations involving 13,402 genes
and 10,557 diseases [8]. SemRep [41] also provides text mined associations. Like BeFree, Sem-
Rep provides gd, drug-disease and drug-target associations, but unlike BeFree has been
designed to identify a large variety of semantic predictions. When using the same corpus as
BeFree, SemRep has a higher precision but a lower recall [8]. Other approaches to collecting
G-D associations involve cataloguing data directly from genetic experiments, or inferring asso-
ciations from animal models.

Over the last decade GWAS have produced data on thousands of single nucleotide polymor-
phisms (SNPs). These SNPs are associated with the risk of hundreds of diseases. Although
developed as a means to identify causal SNPs, GWAS data are non-trivial to work with; they
identify marker SNPs that are often not the causal, rather associative, and present as a conse-
quence of the disease state as opposed to being responsible for causing the disease state. It is
also worth noting that GWAS data only contains associations derived from a subset of diseases
for which genetic studies have been conducted. As with any exercise in data collection, the data
captured in datasources may be biased, depending on the intended purpose of the data. This is
particularly true of GWAS data, which is particularly biased [42] to diseases such as Crohn’s
disease that are of interest to industry. Nevertheless, GWAS data are available for download via
the GWAS catalogue [43]. The Rat Genomics Database (RGD) [10] and the Mouse Genomics
Database (MGD) [9] provide G-D associations that have been identified in animal models but
are statistically inferred to represent human associations.

Controlled vocabulary of diseases
Before dealing with G-D associations it is important to identify a standardised representation
of both genes and diseases. Due to work completed by the Human Genome Organization
(HUGO) Gene Nomenclature Committee (HGNC), it is a fairly straightforward task to identify
a strict representation for human genes [44]. To identify a good disease representation is more
complicated, since there are numerous disease classifications and ontologies competing with
one another. These disease classifications are designed for different purposes and are mutually
inconsistent, consequently these are poorly integrated with each other. The Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED-CT) is one such example and cross
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maps to several revisions of the International Classification of Diseases, which is used in the
clinical setting [17]. SNOMED-CT is one of the many terminologies that is combined in the
even broader Unified Medical Language System (UMLS) Metathesaurus; another is Medical
Subject Headings (MeSH) [45]. UMLS contains many distinct concepts that are very close in
meaning, and as a result even human annotation using UMLS concepts is problematic [46].

One alternative is the Disease Ontology (DO), part of the Open Biomedical Ontologies
(OBO) Foundry Initiative. The DO cross maps to UMLS and has extensive cross-referencing,
however it maps poorly to diseases captured in datasets such as DisGeNET. We recently calcu-
lated that of the diseases captured in DisGeNET, 100% mapped to UMLS, 60% mapped to
MeSH and 24% mapped to the DO. This is a current challenge for large-scale disease data inte-
gration that aims to gather a comprehensive coverage of disease to enable systematic interoper-
ability across biomedical domains [8]. At present, it appears that MeSH offers the best trade off
between interoperability and semantic clarity.

Graph Model
In order to view G-D associations in biological context it is important to define a data structure
that will aid in this task. Graph representations of complex systems are widely used in com-
puter science, social and technological network analysis, and are particularly relevant to many
studies in bioinformatics [47]. Semantically-rich networks, which implement a graph-based
representation, are ideal for representing integrated data [48]. In semantic graphs each edge (or
relation) and vertex (or node) are assigned a single type from a predefined set to semantically
describe their meaning. In such a representation, vertex v1 may represent cGMP-specific 3’,5’-
cyclic phosphodiesterase and is assigned the type Protein, whilst vertex v2 represents silden-
afil and is thus assigned the type Small_Molecule. If v1 is a known target of v2 we capture
this interaction in a directed edge, e1, of type binds_to. Vertices and edges of semantic
graphs may also be annotated with attributes.

Materials and Methods
We have developed an approach to identify novel drug-disease (Dr-D) associations from an
integrated target network, showing how data-inspired hypothesis generation can be used to
guide mining. The approach is made up of five main components which are described in Fig 1.
These components comprise: (i) Integration and ranking of G-D associations (ii) The creation
of a semantic integrated network for target-based drug repositioning, using scored G-D associ-
ations, protein, gene, disease, and drug data (iii) Identifying a therapeutic area of application,
using only the integrated network (iv) Mining the integrated dataset for instances of a semantic
subgraph whose mappings allow us to infer novel uses for existing drugs (v) A method for cal-
culating semantic distance between two diseases within the MeSH hierarchy.

Integrating Gene-Disease Associations
In order to avoid data duplication and redundancy we focus only on primary data resources
and do not include secondary resources, such as DisGeNET and Malacards during G-D associ-
ation integration. In an effort to reduce bias in the data we include data from sources that cover
all four of the database types described previously: curated, experimentally derived, literature
derived, and those inferred from animal models. G-D associations were extracted from the
sources listed in Table 1. Only G-D associations that contained diseases mappable to the MeSH
hierarchy were included in the analysis. Mapping between UMLS1 Concept Unique Identifiers
(CUIs) and MeSH was done using the Metathesaurus1. This mapping was used for associa-
tions captured in BeFree, CTD and SemRep. Next, all 2,208 mappings present between MIM
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and MeSH identifiers were extracted from ORDO. This set of mappings was extended to 3,967
using a manually curated mappings set of 3,029 (with overlap). This mapping between MIM
and MeSH was then used to integrate associations captured in MGD, OMIM and UniProtKB.
For G-D associations in GWAS a manually curated mapping between 1,131 GWAS traits and
MeSH Unique Identifiers (UIs) was used (see S1 Data). G-D associations from RGD required
no mapping as diseases are already categorised using MeSH UIs. After all G-D associations
were mapped to MeSH, a relatively even spread of G-D associations across all 29 therapeutic
areas of the MeSH hierarchy (see S1 Table for MeSH category names) was observed, with C04,
C10, C16 and C23 being slightly over represented (Fig 2A). We can also see that associations
from OMIM and UniProtKB are, on average, captured in more than three of the other data-
sources, whilst, on average, there is little crossover between associations captured in BeFree,
GoF/LoF, RGD and SemRep (Fig 2B).

Ranking Gene-Disease Associations
Gold standards are used as a reference point for many predictive and scoring methodologies,
and are generally a set of consensus knowns that have been agreed upon by the community.
For areas whereby a gold standard does not exist, such as the G-D setting, this set becomes sub-
jective to the area of use and the task at hand. Different approaches exist for ranking disparate
data; some do not use a a gold standard, such as that described by Weile and colleagues [49],
and some that do make use a gold standard, like the work completed by Lee and co-workers
[35]. In order to score individual G-D associations we used the Bayesian statistics approach

Fig 1. Overview of approach to identify novel drug-disease (Dr-D) associations.Gene-disease associations from 10 sources are first
integrated and ranked. These scored associations are then integrated with protein, gene, disease and drug data to give an integrated dataset. A
therapeutic area of application is then identified before the dataset is mined for instances of a semantic subgraph whose mappings contain
inferred dd associations. Finally, any dd associations that are likely side effects (SEs) are filtered using the MeSH distance measure, before all
ranked dd associations are returned.

doi:10.1371/journal.pone.0155811.g001
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Table 1. Data sources of gene-disease associations.

Source Version/Accessed Type #Associations #Map MeSH % Map MeSH

CTD [50] Jul_02_2015/Aug’15 Curated 24,346 23,813 97.8

OMIM1 [37] 18-08-2015/Aug’15 Curated 5,143? 3,375 65.6

Orphanet [40] 2015_07_31/Jul’15 Curated 6,094 1,744 28.6

UniProtKB [39] 2015_08 Curated 4,679 3,203 68.5

GWAS Catologue [43]� 24_08_2015/Aug’15 Experimental 13,326 5,112 38.4

BeFree [8] 24-Aug-2015/Aug’15 Literature 330,888 233,264 70.5

GoF/LoF⊲ -/Oct’15 Literature 4,793 3,459 72.2

SemRep [41]� 25/Feb’15 Literature 96,024 72,908 75.9

MGD [9, 11]* 24_08_2015/Aug’15 Predicted 1,943 1,577 81.2

RGD [10]* 21_08_2015/Aug’15 Predicted 7,667 7,667 100

Datasources used for G-D associations. ‘Curated’ refers to manually curated associations, ‘Experimental’ refers to associations drawn directly from

genetic experimental observations, ‘Literature’ refers to associations automatically mined from literature and ‘Predicted’ refers to associations statistically

inferred from animal models.
? Not including 1,397 associations for which the molecule basis is unknown.
�Threshold of 1e-7 was used.
⊲See S1 Article.
�Extracted associations between gene and disease that were of the following predicates: AFFECTS; ASSOCIATED_WITH; AUGMENTS; CAUSES;

PREDISPOSES; COEXISTS_WITH and NEG_ASSOCIATED_WITH as described in [8].

*Used the same parameters used by DisGeNET to extract predicted associations.

doi:10.1371/journal.pone.0155811.t001
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that makes use of a gold standard, developed by Lee and colleagues [35]. This approach calcu-
lates a log-likelihood score (LLS) for each dataset, using Eq 1:

LLSLðEÞ ¼ log
PðLjEÞ=:PðLjEÞ
PðLÞ=:PðLÞ

� �
ð1Þ

where P(L|E) and ¬P(L|E) are the frequencies of edges, or links, (L) observed in a given data-
source (E) between genes and diseases. For estimating these conditional odds, we count the
number of G-D pairs that have associations and are also supported by the gold standard. This
score can therefore be interpreted as the likelihood of the linkage conditioned on the given evi-
dence and corrected for background expectations of linkages. In Bayesian terms, the ratios P
(L)/¬P(L) represents the prior odds ratio, which is the ratio of the probability of the linkage
and its negation before the evidence is seen. The log likelihood score can be interpreted as
being proportional to the accuracy of the datasource. This term is estimated by counting the
number of G-D pairs with a known interaction and those without any shared annotation
among all possible G-D pairs captured in the data.

The confidence scores were then integrated using the weighted sum (WS) as described by
[35] and summarised in Eq 2. In Eq 2, C1 is the highest confidence score and Cn the lowest con-
fidence score computed from a set of n datasets. A higher weighting is given to datasets with
higher confidence, which facilitates dependencies between the datasets. Division of the score
by a computed D parameter means that, while the highest score is integrated unchanged, sub-
sequent LLS scores are progressively down-weighted. This is especially relevant to G-D associa-
tions, whereby it is common practice to primarily populate a database with associations from
other curated sources before extending it (CTD, Orphanet and UniProtKB all collect a subset
of associations captured in OMIM).

WS ¼
Xn

i¼1

Ci

ðDi�1Þ ð2Þ

Integrated Dataset
Ranked and scored G-D associations were then integrated with other data to create a semanti-
cally-rich network to aid in the identification of potential drug repositioning opportunities (all
sources and data types included in the network are detailed in Table 2). The dataset was built
using the Neo4j Java API version 2.1.2 and, after removing all unconnected entities, contains
55,973 nodes and 529,738 edges (a TSV version of the dataset is provided S2 Data). To distin-
guish between rare (generally monogenic) and common (often complex) diseases the Orphanet
Rare Disease Ontology (ORDO) was also included. 1,779 MeSH UIs were captured as syno-
nyms within the ORDO. Wherever a Rare_Disease node contained a MeSH UI, the MeSH
node was integrated with the ORDO disease and resulted in a Rare_Disease vertex with
the synonymous MeSH UI becoming an attribute. The metagraph for our dataset is shown in
S1 Fig.

The integrated graph contains approved drugs, Small_Molecules, and binds_to
interactions from these to single Protein targets. Wherever possible these binds_to asso-
ciations are annotated with activity types (IC50, Kd, Ki and Potency) and the corresponding
activity values (nM). For each Protein, the Gene which it is encoded_by is also included.
A Genemay also be linked to diseases, either a Rare_Disease or a Common_Disease,
via involved_in associations. These involved_in associations are annotated with val-
ues produced during the G-D association ranking described previously. Finally, diseases and
drugs may share has_indication and has_side_effect edges. The dataset is
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designed in a manner to allow for target-based drug repositioning opportunities to be identi-
fied systematically.

Identifying Area of Application
Using both G-D associations and Dr-D associations from the integrated network we calculated
a therapeutic area unmet score (TAU), using the formula in Eq 3;

TAUðtaÞ ¼ :PðDr � DÞ � PðG� DÞ � 1� 1

MAX
� jtaj

� �
ð3Þ

Table 2. Data sources, types, attributes and frequency used in integrated repositioning graph.

Source Version/Acc NodeType #Nodes RelationType #Rels Attributes

UniProtKB [39] 2015_08 Protein 20,203 - - UniProt UID

UniProt ID

Name

UniProtKB 2015_08 Gene 19,744 - - Entrez Gene Symbol

Entrez Gene ID

UniProtKB 2015_08 - - encoded_by 19,903 -

ORDO [51] 2/July’15 Rare_Disease 8,626 - - Name

MESH

OMIM

UMLS

ORDO 2/July’15 - - part_of 12,518 -

ORDO 2/July’15 - - has_parent 11,201 -

MeSH [45] 2015/Aug’15 Common_Disease 11,735* - - MeSH Header

MeSH

MeSH Tree

MeSH 2015/Aug’15 - - is_a 23,829 -

DrugBank [52] 4.3/July’15 Small_Molecule 7,469 - - DBID

Name

Category

Group

DrugBank 4.3/July’15 - - binds_to 14,250 Action

ChEMBL [53] 20/Sep’15 - - binds_to 23,507 Activity type

Activity value

ChEMBL 20/Sep’15 - - - - Drug mechanism?

SIDER [54] 4/Aug’15 - - has_indication 4,488⊲ -

NDFRT [55, 56] Aug’15 - - has_indication 4,396 -

PREDICT [57] - - - has_indication 1,265 -

CTD curated [58, 59] - - - has_indication 18,540 -

SIDER 4/Aug’15 - - has_side_effect 67,934� -

Scored gd - - - involved_in 309,885 Association score Directionality�

Data sources used in the creation of the repositioning dataset.

*Made up of 5,370 descriptor records and 6,365 supplementary records.
?532 drug activity types (including agonist and antagonist) were taken from ChEMBL and mapped to drugs in the dataset.
⊲Unique associations from the 16,306 integrated.
�Unique associations from the 163,525 integrated.
�3,459 G-D associations are annotated with the gene functionality resulting in a disease state, either loss-of-function (2,211) or gain-of-function (1,248).

doi:10.1371/journal.pone.0155811.t002
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Where ta is the therapeutic area being looked at (e.g. C01), P(G-D) is the probability that the
data contains a G-D association for a disease in that ta, ¬ P(Dr-D) is the probability that the
data does not contain a dd association for a disease in that ta, and MAX represents the size of
the greatest ta. The TAU, in theory, can range from 0 (therapeutic areas with little knowledge
in the dataset, highly drugged areas and areas with few diseases) to 1 (therapeutic areas with
relatively high levels of knowledge captured in the data containing a low percentage of diseases
with marketed small therapeutic molecules and areas with high numbers of diseases).

We also use a simple equation to calculate a rich therapeutic area (RTA) score. This equa-
tion uses the same notation as Eq 3 and can also produce scores from 0 (areas with little knowl-
edge captured in the dataset) to 1 (areas with a lot of knowledge captured in the dataset), using
the following:

RTAðtaÞ ¼ PðDr � DÞ � PðG� DÞ ð4Þ

Calculating MeSH Distance
The MeSH hierarchy is rather verbose, and thus the specificity of terms is a potential problem.
Due to the size of the MeSH hierarchy, two diseases may be synonymous yet captured in multi-
ple parts of the taxonomy. Ontology based similarity measures may be structure based (e.g.
path length, depth of concept or lowest common subsumer) or content based (whereby you
use a corpus of terms and look at information content). We created a semantic distance mea-
sure, Sim, using the structure based approach described by Leacock and Chodorow [60] to
measure the distance between two diseases in the hierarchy (Eq 5). Although originally devel-
oped to measure the distance between nouns in WordNet, an electronic lexical database [60],
the method has previously been applied to MeSH [61].

SimðCi;CjÞ ¼
1

MAX

� �
� �log

DistðCi;CjÞ
2depth

� �
ð5Þ

Where MAX is the maximum mapping score, depth is the max depth of the hierarchy and Dist
is the shortest path length between the two concepts, Ci and Cj. Reducing the stringency at
which diseases are mapped to others in the MeSH hierarchy allows us to better filter potential
noise caused by has_side_effect associations. For example, an inferred has_indica-
tion association is made between drugX and diseaseY, whilst a known side effect of
drugX is diseaseZ, a child term of diseaseY in the MeSH hierarchy. As one of drugX’s
known side effects is semantically similar to the inferred indication, it is fair to assume that
drugX is not a reasonable candidate for the treatment of diseaseY. In this instance Sim(dis-
easeY,diseaseZ) would give us a value of 0.768. Using 0.768 as the equivalence threshold (ET)
during filtering means all inferred associations that are one node away in the MeSH hierarchy,
from known side effects will be removed. Therefore, the Sim value allows for the identification
of semantic ‘equivalence’ using a certain threshold or leniency, the ET.

Mining
An implementation of the semantic subgraph searching algorithm described by Mullen et al
[36] was used to identify all instances of the semantic subgraph depicted in Fig 3 contained
within the integrated network. The algorithm was extended to allow for attribute comparison.
The subgraph depicted in Fig 3 was used as it is the most simple schematic representation of a
drug-disease pathway. By searching for instances of the four node subgraph we hope to identify
novel dd associations, essentially by ‘filling in the blanks’.

Data Driven Approach to Drug Repositioning Using G-D Associations
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Mappings, M, were scored and ranked using the Activity value and Association score values
attached to the involved_in and binds_to relations respectively, using Eq 6. The Associ-
ation score captured on the involved_in relations was created during the G-D ranking sec-
tion of the approach, and ranged between 0-1. The Activity value, attached to the binds_to
relation was extracted from ChEMBL and included values associated to: IC50; Ki; Kd and
potency, all of which had values ranging from 1nM—1 × 1019 nM. The Activity value for each
binds_to association was normalised to the same range as the Association score, to give
�Activity value; this was done simply by subtracting log10 (Activity value) × 0.1 from 1, where 1
is the maximum log10 (Activity value) captured in the dataset. At this point is also worth noting
that, because no activity values are available in DrugBank, all binds_to relations taken from
here are automatically assigned an Activity value of 0.8. This value is assigned so as to not miss
any potential mappings that are made up of binds_to associations from DrugBank, whilst
not over weighting the unknown activity values.

ScoreðMÞ ¼ �Activity value ðMÞ þ Association score ðMÞ
2

ð6Þ

Results

Identifying Area of Application
We wished to identify a therapeutic area of unmet need to apply our approach in a data objec-
tive manner. In order to do this we looked at two relevant data types from our network, G-D
associations and dd associations. As our approach utilises G-D associations for target-based
drug repositioning, it is important to target therapeutic areas for which a large proportion of
the contained diseases have data supporting their genotypic mechanisms; we cannot infer indi-
cations involving therapeutic areas that have no network date. The percentage of each

Fig 3. Semantic subgraph used duringmining of the integrated network. Subgraph represents the
simplest approach to schematically represent the route from drug to disease using target-based approaches
to drug repositioning. Through identifying mappings of the subgraph in our integrated dataset we aim to infer
the red has_indication relations. Mappings are scored using the values captured in the Activity value and
Association score attributes (shown in green) found on the binds_to and the involved_in relations,
respectively. Note: in mappings ‘Disease’ can be either a Common_Disease or a Rare_Disease and a
‘Drug’ is an approved Small_Molecule.

doi:10.1371/journal.pone.0155811.g003
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therapeutic area that was involved in at least one involved_in association was therefore cal-
culated; this is shown in Fig 4A. It was then necessary to identify a therapeutic area that had
G-D associations describing the diseases, but also had fewer small therapeutic molecules. We
therefore calculated the percentage of each area for which there already exists a marketed small
therapeutic molecule. This percentage was calculated using the has_indication relations
present in our network and is shown in Fig 4B).

When calculating a therapeutic area which has a relatively large amount of knowledge cap-
tured in our dataset, we have to also consider the size of said therapeutic area (i.e. how many
diseases are contained). For example, the therapeutic area C25 (chemically-induced disorders)
has dd associations for 52% of the disorders which are contained within the term, as well as
G-D associations for 65%. Looking at these two values alone we can see that there is a relatively
large amount of data for this area, however, it is made up of only 108 diseases, and makes up
only 0.4% of diseases in the dataset. To avoid identifying such small areas for focus we only
consider therapeutic areas that represent over 3.44% (we have 29 therapeutic areas and so 100/
29) of the total diseases captured in the dataset to identify a rich therapeutic area.

With a TAU (Eq 3) of 0.53, we show that C16 (hereditary diseases) is the largest unmet
therapeutic area (S2 Fig). However, we chose C10 (diseases of the central nervous system),
with second highest TAU of 0.38, for the focus of this work. Our work focusses on approved
small molecules, as these drugs have already passed safety tests and are easier to reposition.
Many genetically simple hereditary diseases are generally not suited to this type of treatment,
as some are untreatable and others are caused by gene knock outs. Hereditary diseases tend
to be better treated using metabolic manipulation, protein augmentation and gene therapy

Fig 4. Identifying a therapeutic area of interest. (A) Dark grey shows the number of diseases in each therapeutic area of the MeSH
hierarchy. Light grey shows the number of those diseases that are not involved in any of the gene-disease associations captured in our
network. Red shows the number of diseases that are involved in a gene-disease association as a percentage of the total number of diseases
in that therapeutic area. (B) Dark grey shows the number of diseases in each therapeutic area of the MeSH hierarchy. Light grey shows the
number of those diseases that currently do not have a small molecule treatment on the market. Red shows the number of diseases that do
have a treatment on the market as a percentage of the total number of diseases in that therapeutic area.Note: please see S1 Table for
disease area names.

doi:10.1371/journal.pone.0155811.g004
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[62]. We also identify the therapeutic area C04 (Neoplasms) as having the greatest RTA
(Eq 4) of therapeutic areas containing more than 3.44% of the total number of diseases in the
dataset (S3 Fig). We therefore apply our approach to C10, an area of unmet need, and C04,
an area relatively rich in data.

Ranking Gene-Disease Associations
When using each dataset as the gold standard UniProt, on average, ranked first for the score
attributed by the LLS (S2 Table). Because of its consistent high ranking, G-D associations from
UniProt were used as the gold standard for the scoring of associations. Using UniProt, LLS
scores for the datasets ranged from 16.57 for OMIM to 10.95 for GWAS. After testing a range
of D parameters, a D value of 5.0 was used for this work as it was deemed to optimise the area
under the curve (AUC) value (S4 Fig). This resulted in a total of 309,885 unique scored G-D
associations (S3 Data), with scores ranging from 10.95 to 20.29.

Mining
The dataset takes 64 minutes to build on on a local machine (8GB RAM and 1.8GHz Intel Core
i5). The algorithm described in [36] was implemented in Java and ran against the Neo4j graph.
This search used an initial candidate set of 1,188 nodes (approved, small molecule drugs that
target humans or other mammals) and took 13 minutes to complete. An exhaustive search
returned 539,162 mappings.

Steps were then taken to filter these results in order to remove as much noise as possible.
Mappings containing predicted has_indication associations that were known to be side
effects (captured as has_side_effect relations in the network) were removed. We also
dismissed mappings that predicted has_indication associations with a Sim value� 0.768
to known has_side_effect associations as being potential side effects. An equivalence
threshold of 0.768 was used as it gave us the best balance between precision and recall of the
known has_indication associations whilst also pruning, on average, the highest ranked
inferred associations (S3 Table and S5 Fig). Of the 539,162 mappings, 42,689 were classed as
being potential side effects. A further 4,947 mappings were removed as the mechanism of the
drug and the G-D association directionality (loss-of-function (LoF) or gain-of-function (GoF)
data) contradicted one another (e.g. the drug was an antagonist and gene is associated to dis-
ease via a LoF relation). Finally, 41,798 mappings containing one of the 298 absorption, distri-
bution, metabolism, and excretion (ADME) genes [63] were also dismissed.

This left us with 451,269 mappings inferring potential has_indication associations.
This set of mappings identified 275,934 unique associations (some associations were identified
by more than one mapping) and are provided in S4 Data. Of all the mappings that inferred the
same has_indication association, the mapping that achieved the highest score was kept
and used for all analysis. Inferred indications covered every therapeutic area of the MeSH hier-
archy, ranging from 55,875 for neoplasms (C04) to 2 for disorders of environmental origin
(C21) (S1 Table). 219,623 unique associations involved Common_Disease (inferred from
369,124 mappings) whilst 56,311 associations involved Rare_Diseases (inferred from
82,145 mappings) (see Table 3).

We then looked at how well our methodology was able to identify known has_indica-
tion associations captured in our network. All has_indication associations (from the
four sources listed in Table 2) that involved the 1,188 approved small molecules used during
the search were extracted (S4 Table). Fig 5 shows how the approach performs in identifying
known has_indication associations for different therapeutic areas (all, C04 and C10) and
different disease types (Common_Diseases and Rare_Diseases). Of the 18,889 known
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has_indication associations, 1,006 involved 63 drugs that were part of the 1,188 investi-
gated, but returned no mappings, leaving 17,883 that could potentially be validated. For map-
ping known has_indication associations to those inferred by our approach we use a Sim
threshold of 0.633, the equivalent of a 2 node distance within the MeSH hierarchy. We believe
this provides the best trade-off between the verbosity of the MeSH hierarchy whilst also ensur-
ing inferred diseases are close enough in disease mechanism for the proposed therapeutic small
molecule to be relevant. Using the Sim threshold of 0.633, our approach identifies 12,955 of the
known has_indication associations (72.65%) (S5 Table). An AUC of 0.73 was achieved
when looking at all of the inferred dd associations (Fig 5). The number of knowns identified by
the approach can be increased to 97.6% if the Sim value is relaxed to 0.231, which represents a
node distance of nine in the MeSH hierarchy (S5 Table).

C04: Neoplasms. 55,875 unique has_indication inferred associations involved neo-
plasms (branch C04 of the MeSH hierarchy). 16,492 of these unique associations involve Rar-
e_Diseases (inferred from 29,331 mappings) whilst 39,383 unique has_indication
associations involving Common_Diseases were identified (inferred from 73,501 mappings).
Of the 2,856 known has_indication dd associations our approach identifies 1,927 of
these, or 68%. When we consider the fact that 455 of the knowns involve 28 drugs that our
approach was unable to infer associations for, due to lack of data, that gives us an 80% identifi-
cation rate for known dd associations involving neoplasms, with an AUC of 0.69 (Fig 5).

Of the top 10 ranked inferred dd associations involving neoplasms (Table 4), we see that
three map exactly to indications in our network, one is currently being investigated in a clinical
trial [65], one has been previously investigated in the clinic [64], one is now approved for the
indication we propose and another is supported by literature [66]. Of the top 10 inferred indi-
cations, three are novel and are currently not supported by evidence. One of those indications,
is the use of Pazopanib in the treatment of Mastocytosis.

Pazopanib as a treatment for Mastocytosis? Pazopanib is a small molecule inhibitor of
multiple protein tyrosine kinases and is approved for the treatment of advanced renal cell carci-
noma and advanced soft tissue sarcomas. Mastocytosis, classed as a rare disease, is a mast cell
activation disorder of both children and adults caused by the presence of too many mast cells
(mastocytes) and CD34+ mast cell precursors. The cause of mastocytosis is not known but acti-
vating mutations in the proto-oncogene receptor tyrosine kinase, KIT, are found in most patients
with mastocytosis [67]. The mutation makes mast cells more sensitive to stem cell factor (SCF).
SCF plays an important role in stimulating the production and survival of cells such as blood
cells and mast cells, inside the bone marrow. When bone marrow is exposed to SCF, it produces
more mast cells than the body can cope with, leading to symptoms of mastocytosis [67].
Although no official treatment exists for mastocytosis many drugs are prescribed off-label,
including the tyrosine kinase inhibitors, desatinib, imatinib and masitinib [67]. Due to the fact
that that pazopanib displays inhibitory effects on the KIT enzyme similar to those that have been
used as off-label treatments, it poses an interesting alternative in the treatment of mastocytosis.

Table 3. Number of mappings for each disease type and therapeutic area post filtering.

All Diseases Common Disease Rare Disease

All Therapeutic Areas 275,934 (451,269) 219,623 (369,124) 56,311 (82,145)

C04: Neoplasms 55,875 (102,832) 39,383 (73,501) 16,492 (29,331)

C10: Nervous System Diseases 54,635 (84,213) 41,241 (66,536) 13,394 (17,677)

After applying filtering we were left with a set of mappings that inferred unique (no repeats) drug-disease associations. Numbers in brackets denote how

many mappings inferred the unique associations.

doi:10.1371/journal.pone.0155811.t003
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C10: Nervous System Diseases. 54,635 unique has_indication inferred associations
involved diseases of the nervous system (branch C10 of the MeSH hierarchy). 13,394 of these
unique associations involve Rare_Diseases (inferred from 17,677 mappings) whilst 41,241
unique has_indication associations involving Common_Diseases were identified
(inferred from 66,536 mappings). Of the 4,249 known has_indication dd associations
our approach identifies 2,846 of these. When we consider the fact that 125 of the knowns
involve 37 drugs that, due to holes in the data, our approach was unable to infer associations
for, that gives us a 69.0% identification rate for known dd associations involving nervous sys-
tem diseases, with an AUC of 0.75 (Fig 5).

Of the top 10 ranked inferred dd associations involving diseases of the nervous system
(Table 5), we see that only one maps exactly to an indication in our network whilst another
maps with a Sim of 0.66 (MeSH distance of two nodes). Another eight are novel and are cur-
rently not supported by evidence. One of those indications is the use of Lisinopril in the treat-
ment of Alzheimer’s Disease.

Fig 5. Validating inferred has_indication associations. All 18,889 has_indication associations captured in our integrated network
were extracted. These associations were used as a means of validating the ability of our approach to identify known has_indication
associations. Note: For each disease category (ALL, C04 and C10) the set of known indications were pruned to only include those containing
drugs included in the inferences made by our approach (totalling 17,883). Mapping was done using a Sim value of 0.633, this is equivalent to a
distance of two nodes in the MeSH hierarchy.

doi:10.1371/journal.pone.0155811.g005
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Lisinopril as a treatment for Alzheimer’s Disease? Alzheimer’s Disease is a chronic
neurodegenerative disease that usually starts slowly and gets worse over time, and currently
has no cure. Lisinopril, a potent, competitive inhibitor of angiotensin-converting enzyme
(ACE), is used to treat hypertension and symptomatic congestive heart failure. There is evi-
dence to suggest that Angiotensin converting enzyme inhibitors can reduce the risk of Alzhei-
mer’s disease in the absence of apolipoprotein E4 allele [68]. As such, we propose lisinopril as a
potential treatment for Alzheimer’s disease.

Discussion
In this paper, we explored the concept of using a data driven approach to infer novel drug repo-
sitioning leads; our results identify diseases of the nervous system as being in need of more

Table 5. Top 10 inferred associations involving unique diseases of the nervous system.

Drug (DrugBank ID) Gene Disease (MeSH UIs) Type (ORDO) Evidence Score

Nitrendipine (DB01054) CACNA1S Hypokalemic periodic paralysis (D020514) R (681) - 0.999

Clonazepam (DB01068) GABRA1 Juvenile myoclonic epilepsy (D020190) R (307) M (0.76) 0.999

Mifepristone (DB00834) ESR1 Bulbospinal neuronopathy, X-linked recessive (C537017) C - 0.999

Memantine (DB01043) GRIN2A Landau-Kleffner Syndrome (D018887) R (98818) - 0.996

Bromocriptine (DB01200) DRD2 Myoclonus-dystonia syndrome (C536096) R (36899) - 0.994

Roflumilast (DB01656) PDE4D Acrodysostosis (C538179) R (950) - 0.991

Lisinopril (DB00722) ACE Alzheimer Disease (D000544) C - 0.991

Roflumilast (DB01656) PDE4D Stroke (D020521) C 0.987

Clonazepam (DB01068) GABRB3 Epilepsy, Absence (D004832) C M (1.0) 0.991

Triazolam* (DB00897) GABRG2 Generalized Epilepsy With Febrile Seizures Plus, Type 3 (C565811) C - 0.988

We present the top ranked 10 inferred has_indication associations involving unique diseases of the central nervous system. All ranked associations

are available for download. A disease is classed as Rare (R) if it maps to ORDO and Common (C) if it is only in MeSH and not mappable to an ORDO

concept. Evidence: M = maps to indications in dataset with Sim 0.66 or above; A = approved; C = clinical trial; and P = scientific paper. (*This drug has

been withdrawn in the UK due to risk of psychiatric adverse drug reactions, but continues to be available in the U.S)

doi:10.1371/journal.pone.0155811.t005

Table 4. Top 10 inferred associations involving unique neoplasm diseases.

Drug (DrugBank) Gene Disease (MeSH UI) Type (ORDO) Evidence Score

Sunitinib (DB01268) KIT Gastrointestinal Stromal Tumors (D046152) R (44890) M(1.0) 0.999

Ponatinib (DB08901) FLT3 Acute myeloid leukemia D015470 R (519) A 0.998

Dasatinib (DB01254) EPHB2 Familial prostate cancer (C537243) R (1331) C [64] 0.996

Ethinyl Estradiol (DB00977) ESR1 Breast Neoplasms (D001943) C M(1.0) 0.988

Dasatinib (DB01254) BCR Myelogenous, Chronic, BCR-ABL Positive (D015464) C M(1.0) 0.988

Pazopanib (DB08901) KIT Mastocytosis D008415 R (98292) - 0.984

Afatinib (DB08916) ERBB2 Stomach Neoplasms (D013274) C - 0.973

Sunitinib (DB01268) RET Multiple endocrine neoplasia type 2B (D018814) R (247709) - 0.961

Sunitinib (DB01268) RET Pheochromocytoma (D010673) C C [65] 0.960

Sunitinib (DB01268) NTRK1 Familial medullary thyroid carcinoma (C536911) R (99361) P [66] 0.958

We present the top ranked 10 inferred has_indication associations involving neoplasms. All ranked associations are available for download. A

disease is classed as Rare (R) if it maps to ORDO and Common (C) if it is only in MeSH and not mappable to an ORDO concept. Evidence: M = maps to

indications in dataset with Sim 0.66 or above; A = approved; C = clinical trial; and P = scientific paper.

doi:10.1371/journal.pone.0155811.t004

Data Driven Approach to Drug Repositioning Using G-D Associations

PLOS ONE | DOI:10.1371/journal.pone.0155811 May 19, 2016 16 / 24



small molecule treatments. We integrated and ranked G-D associations from multiple data-
sources, highlighting the need for a standard representation within the field. We use these
ranked associations to create a semantically-rich integrated network for drug repositioning.
We show how mining this network for semantic subgraphs allows us to infer novel dd
interactions.

We identify two therapeutic areas to focus on, one, C04, with a relatively rich knowledge
base, and one, C10, containing many diseases that are currently in need of a therapeutic mole-
cule. We see, as expected, that the approach performs better when looking at neoplasms (C04)
in comparison to the less treated and less informed diseases of the nervous system (C10);
highlighting the fact that systems approaches are limited by the data available. This limit in data
may become more of a problem in the long term, especially when it comes to developing treat-
ments for diseases of the central nervous system. Clinical trials are very expensive in the area of
nervous system diseases, due to the placebo affect, meaning that great numbers of trialists are
needed. As a result many companies are withdrawing their development efforts from this area,
making nervous system diseases a great area of opportunity for repositioning, and in particular
in silico approaches. Our approach does not address the problems caused by the placebo affect.
Rather, by bringing data together, in a similar fashion to the clinician, we hope that as more
data becomes available, we can reduce the attrition rates whilst also improving efficacy.

The approach presented here makes use of a MeSH distance measure, Sim. This measure is
used twice during the approach. A Sim value of 0.768 is used for filtering potential has_si-
de_effect associations, equivalent to a one node path from a known side effect. A lower
Sim value of 0.633 is used to validate inferred has_indication associations against the
known indications captured in the network, equivalent to a two node path. The two values vary
due to the fact that they are used for different purposes. Reducing the stringency used to filter
potential side effects, results in the loss of many of the true positives (S3 Table). Indeed, by fil-
tering potential side effects using a Sim of 0.633 instead of 0.768 would result in a loss of 31%
of true positive inferred has_indication associations. When validating inferred has_in-
dication associations, the lower the Sim value the greater the AUC (S6 Fig). In this instance,
a Sim value of 0.633 gives the best trade off between AUC and maintaining semantic ‘equiva-
lence’, when it comes to validation. We believe that these differing Sim values reflect the man-
ner in which drugs are marketed, with indications being as high level as possible for marketing
reasons. On the other hand side effects tend to map to a greater level of granularity and so do
not require such lenient mapping.

Possible extensions to this approach should include more thorough analysis in terms of the
identification of disease areas of interest. Instead of simply identifying a therapeutic area that
appears to be relatively untreated one could consider other factors for disease prioritisation.
For example not all diseases have the same impact on society and so integrating data that con-
siders this would be useful. The WHO global burden of disease measures burden of disease
using the disability-adjusted-life-year (DALY).

As well as a more thorough disease prioritisation step more focus must be placed on direc-
tionality, both in terms of the effect on function of the gene mutation and the drug functional-
ity (e.g. agonist, antagonist). As far as we are aware no datasource details the effect of function
that a gene mutation has; i.e. does it result in LoF (the gene product has less or no function) or
GoF mutation (product of mutated gene gains a new and abnormal function) and although we
used a text mining approach to try and address this it was not exhaustive. Drug functionality
must also be considered if this work is truly to provide detailed inferences. We did manage to
get drug functionality for around 500 drugs from ChEMBL, but this did not cover all drugs in
the dataset. This problem is highlighted with by the first ranked inferred association from the
diseases of the central nervous system (Table 5). We propose Nitrendipine, a potent blocker of
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the calcium channel (CACNA1S), as a treatment for Hypokalemic periodic paralysis. Although
both the binds_to and involved_in associations are correct, the lack of directionality
attached to the G-D association makes this particular inference a poor one. Nitrendipine is
annotated as being an inhibitor of CACNA1S in our dataset, as such if the mutation involved
of CACNA1S had been correctly annotated as a LoF mutation, this inference would have been
filtered as contradictory. As such, the administration of Nitrendipine as a treatment for Hypo-
kalemic periodic paralysis is likely to exacerbate the condition as opposed to treating it.

Despite this approach allowing for an initial reduction of the search space the next step
would require a more robust filtering of the results. One would need to ensure that the target
could indeed be reached by the drug, i.e. if a compound is unable to pass the membrane the tar-
get must be located on the surface of the cell. This could be achieved by looking at cellular loca-
tion of targets, which could be extracted from GOA, as well as the physiochemical properties of
the compound, from DrugBank or ChEMBL.

We have introduced a strategy for mining for potential drug repositioning opportunities,
however, at the moment, we can see how this is limited by the data we have available. We pave
the way for more stringent ontological representation of G-D associations; like the Experimen-
tal Factor Ontology (EFO) work being carried out at the Centre for Therapeutic Target Valida-
tion (CTTV). We believe that as the quality of data increases this in silico approach will
complement target identification and validation; reducing target attrition through efficacy.

Supporting Information
S1 Article. Gain of Function & Loss of Function Gene-Disease Associations. Article
describes the rational and methods used during the extraction of the gain-of-function & loss-
of-function gene-disease associations.
(PDF)

S1 Fig. Metagraph of the integrated dataset.Metagraph shows the node types and the edge
types used in the integrated dataset and how they interact with one another.
(EPS)

S2 Fig. Identifying an area of unmet need. Using Eq 3 we scored each therapeutic area in the
MeSH hierarchy. The TAU score considers how mush data is captured in our dataset and the
percentage of diseases in that therapeutic area that do not have a marketed small therapeutic
molecule.
(EPS)

S3 Fig. Identifying a therapeutic area to validate our approach. Using Eq 4 we score each
therapeutic area in the MeSH hierarchy. The RTA score considers how much data is captured
in our dataset for each therapeutic area. Note: red diamonds show the therapeutic areas which
include<3.44% (100/29) of all diseases. For the purpose of this exercise they will not be consid-
ered for analysis as they do not offer a fair representation of the data included in the work.
(EPS)

S4 Fig. ROC curve when altering D-value used to score associations with UniProt as the
gold standard. Using UniProt as the gold standard, all G-D associations were scored using D-
values from 1.0–8.0. We see that a D-value (DV) of 5.0 (grey) gives us the highest area under
the curve AUC when validating using UniProt.
(EPS)

S5 Fig. Calculating Sim threshold for pruning potential side effects from inferred indica-
tions. This figure provides a graphical representation of the data captured in S3 Table. For
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each threshold the F-Measure (using precision and recall of known indications captured in the
network), shown in black, as well as the average ranking position of the excluded potential side
effects, shown in red, were calculated. In order to calculate the ranking positions of those
excluded, all associations inferred by the methodology were ranked prior to any filtering and it
was these rankings used here. The aim of filtering out potential side effects was to reduce noise
in the results whilst also ensuring we weren’t filtering potential indications. We assume that
the associations scoring higher, and thus rank higher (highest being 1), are predicted with
more confidence and thus we wish to ensure potential side effects are excluded from the highest
ranking associations.
(EPS)

S6 Fig. Altering Sim threshold whilst mapping inferred has_indication associations to our
set of 18,889 known. For each of the Sim values investigated we see how many of the known
has_indication associations are identified by the inferred has_indication associa-
tions. Unsurprisingly, as the Sim value is relaxed the AUC increases.
(EPS)

S1 Table. Number of mappings returned for each MeSH therapeutic area after filtering.
Associations that include diseases that fall under multiple MeSH categories are duplicated in
the counts (if a disease has multiple mesh tree terms from the same therapeutic area these are
also counted multiple times). Only associations that survived the filtering steps are included.
(PDF)

S2 Table. LLS score for each test source when altering gold standard (GS) source. After
applying the LLS method and alternating the gold standard, GS sources (left column), we see
how every other source, the test sources (top row) perform in terms of identifying the ‘knowns’
captured in the GS. Performance is measured using the LLS score, which is shown. Further-
more, for each GS used, test sources are ranked in terms of performance (the higher the LLS
score the better the performance of that test source). All ranks are shown in brackets and all
scores are rounded to 2 decimal places.
(PDF)

S3 Table. F1 score using each of the possible Sim scores whilst pruning potential side effects
from all mappings returned during the search. Predicted interactions were mapped to the

known indications using a Sim of 1.0. Note: all values are corrected to 4 d.p. F1 ¼ 2� P�R
PþR

� �
TP = true positive, FP = false positive, FN = false negative.
(PDF)

S4 Table. Number of has_indication associations captured in the network that involve
the 1,188 approved small molecules. Sources cumulatively provide 18,889 unique has_in-
dication associations which is reduced to 17,883 when only considering those involving
drugs captured in the inferences made by our approach. Percentage in brackets reflects the per-
centage of associations from source x that involves drugs found in both sets (source x and the
inferences).
(PDF)

S5 Table. Number of known has_indication associations mapped to inferred associa-
tions using altering Sim values.Of the 18,889, known has_indication associations,
1,006 involved 63 drugs of the 1,188 investigated for which our approach returned no map-
pings, leaving 17,883 that could potentially be validated.
(PDF)
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S1 Data. Mapping of GWAS traits to MeSH headers used during the work.
(TXT)

S2 Data. A TSV version of the integrated dataset used.
(ZIP)

S3 Data. All 309,885 scored and ranked gene-disease associations.
(TXT)

S4 Data. All 275,934 scored and ranked inferred drug-disease associations.
(TXT)
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